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MORITA EQUIVALENCES OF ENRICHED CATEGORIES 
*

by Harald LINDNER

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XV-4

0. Introduction and summary

The «Morita Theorems» treat the question of equivalences of two

categories of modules. They give criteria for functors between two cate-

gories of modules to be adjoint, coadjoint, or an equivalence. A detailed

treatment of these theorems is to be found in the book of H. Bass on K-

theory ( see also [20] , 17.9.12). These results have been generalized by
D.C. Newell by considering small preadditive categories instead of rings

( = preadditive categories with precisely one object).
In the nonadditive version the categories of modules are replaced

by functor categories [ A , Ens] and [B, Ens for small categories A
and B . This question has recently been studied by B. Elkins and J.A.
Zilber ( [6] , to appear ).

This paper is a generalization of these results to the case of equi-
valences of functor categories enriched over a bicomplete closed category
V as defined in [3].The «Morita Theorems» have been treated independent-

ly in [9] by J. Fisher-Palmquist and P.H. Palmquist (to appear) on

the same level of generality. Contrary to [9] , this paper also gives the

following result on the equivalence of enriched functor categories : Let

V be a bicomplete closed category. For every small V-category A we de-

fine a V-category P A such that the following holds : For any two small

V-categories A and B the V-functor categories [A , V ] and [ B, V ]
are V-equivalent iff P A and P B are V-equivalent. For V = Ens and for

V = Ab this result is well known and can be found in some of the papers

cited above. For V = Ens see also [1], IV 7.5, [14] and [10J, 2.14 a.
The fact that P A is not known to have a small skeleton causes some trou-

* 
Conférence donnée au Colloque d’Amiens ( 1973 )
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ble in the proof of this theorem. For this reason and for further applica-
tions we introduce the notion of a small V-functor, which generalizes a

notion of Ulmer ( [22] , 2.29).
In the first part of this paper we define the notion of a small V-

functor and prove a theorem on the V-representability of V-functors ( 1.9 ) .

In the second part we consider categories of small V-functors and prove
the existence of Kan ( co- )extensions for V-functors with a small domain

(but not necessarily small codomain) (2.4). An important special case

is the Yoneda embedding H* : B -&#x3E; [Bo, V] for a small V-category B .

We prove generalizations of well known theorems ( [20] , 17.3.1/ 2 ) on the

Yoneda embedding (2.7 and 2.8). In the third part we apply the results

of part one and two to the question of equivalences of V-functor catego-
ries. The theorems 3.7 , 3.10 , and 3.11 are the announced generalizations
of the «Morita Theorems» . In part four we consider some examples. We

refer particularly to 4.3 (topological modules ) and to 4.4 : in this case

an application of the theory of part three yields a connection with the pro-
cess of completing a metric space.

Henceforth let V denote a closed category as defined in [3] . The
reader is assumed to be familiar with the theory of V-categories as far as

presented in [3] . Our notation agrees essentially with that of [3] and

[20] . We follow a frequent abuse of notation by omitting the canonical

isomorphism (AOB)OC-&#x3E;AO(BOC) in the category of V-categories
(and sometimes in V as well). The proofs are either omitted or sketched.

This paper is a brief version of the author’s doctoral thesis, D3sseldorf

1973 .

After this paper had been written, I learned about the existence of

a related paper by F. W. Lawvere [24] . Furthermore, I have been informed

by G. M. Kelly that the notion of a « small V-functor» has also been consi-
dred by R. Street.
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1. Sma I I V-functors

In this first part we introduce the notion of a «small V-functor»

(1.4). The first application is the theorem on the representability of V-

functors (1.9), a further important application is the theorem on Kan co-

extensions (2.4). In order to fix our notation we recall two definitions

and one proposition.

1.1 DEFINITION. Let U:B-C, K:C-D, and G: B -&#x3E;D be V-functors

and let k : G - K U be a V-natural transformation. ( K, k ) is called a Kan

coextension of G along U iff for every V-functor S : C - D the mapping

is bijective.
We abbreviate «Kan extensions (and «Kan coexiensions) by ((KE))

(and «KCE»). Furthermore, we often call K (instead of ( K, k ) ) a KCE

of G along U .

1.2 DE F INITI ON . Let and K : C -&#x3E; D be V-functors and

let

be V-natural. ( K, f ) is called a coend of T iff for every V-functor S:

c - D there is a bijection between (the set of) Y-natural transformations

g:K-S and (the set of) V-natural transformations d:T-&#x3E;S, which is

given by d=gf.
We often call K (instead of (K, f)) a coend of T.

1.3 PROPOSITION. Let D be a tensored V-category. and let G:B -D,

U:B-&#x3E;C and K : C -&#x3E; D be V-functors. There is a canonical bijection bet-

ween the sets of V-natural transformations k: G -&#x3E;K U and

If k and f correspond to each other with respect to this bijection, then

(K,k) is a KCE of G along U iff:
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We apply 1.3 mainly if B is small and D is V-cocomplete. In that

case ( K , f ) is a coend iff it is a pointwise coend (cf. [4], Prop. I.3.2 ) .
The following definition is fundamental.

1.4 DEFINITION. A V-functor F C-&#x3E; D is called small iff there are a

small V-category B , V-functors U : B -&#x3E; C and G : B -&#x3E; D , and a V-natural

transformation f : G -&#x3E; F U such that (F,f) is a Kan coextension of G

along U .

1.5 REMARKS.

( a ) If D is V-cocomplete, one may require without loss of generality
that U in 1.4 is V-fully faithful or a V-full embedding (cf. 1.8).

(b) If C has a small skeleton, then every V-functor with domain C is

small. In that case one may choose U as the inclusion of a skeleton of C .

( c ) Every Y-representable V-functor is small. If C E l C I is a repre-

senting object, one may choose U as the inclusion into C of the V-full

V-subcategory with the single obj ect C .

(d) Let A be a tensored V-category. Then every generalized V-repre-
sentable V-functor Ten A (- , A ) . H C: C - A is small. This is a conse-

quence of ( c ), since Ten A (-, A ) preserves Kan coextensions (cf. [4],
Prop. I.4.2 ).

The statement (c) is an immediate consequence of the V-Yoneda lemma

because of 1.3 . However, 1.5 (c) also follows from proposition 1.6, which

is mentioned here for a later application (3.6).

1.6 PR O P O SITI O N . Let U : B -&#x3E;C be the inclusion of a V-f ull V-subcate-

gory with one object B . Let C E I C I be a retract of B ( in the category

C0 , the underlying category of C ) . Then H C:C-V is a KCE o f H C. U

along U.

In order to prove 1.6, one has to apply 1.3 and one has to see that, for

every X E lCl, ,

is a coend of the V-functor
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This is easily seen to be true by writing down the obvious (but large)

diagram. The following proposition 1.7 is useful for the proof of 1.8.

1.7 PR O P OSITION. Let
G

and B - D be

y’.-functors.
(a) Let g : H - G V be a V-natural trans formation such that ( G , g )

is a KCE of H along V.

(i) If k : G - K U is a V-natural transformation such that ( K, k)

is- a KCE o f G along U , then ( K , ( k * V ) g) is q KCE o f H along U V .

( ii ) If a : H - K U V is a V-natural transformation such that ( K , a)

is a KCE of H along U V , then there is a unique k : G - K U such that

( k * V ) g = a . Furthermore, ( K , k ) is a KCE of G along U .

(b) Let D be V-cocompl ete and let A be small. Let U be V-fully

f aithful. If a : H - K U V is a V-natural transformation such that ( K , a) is

a KCE of H al ong U V, then ( K U , a) is a KCE o f H al ong V .

Part (a) is a purely formal consequence of the definition 1.1 , whereas

(b) can easily be proved by using 1.3 .

1. 8 COROLLARY. Let D be a V-cocompl ete V-category. A V- f unctor F :

C - D is small iff there is a small V-full V-subcategory B of C (let
U : B - C denote the inclusion) such that F is a KCE o f F U along U .

As a first application of the notion of « small V-functor » we state

the theorem on the V-representability of V-functors (1.9). We call a V-

functor V-continuous iff it preserves cotensor products and all small V-

limits. This notion corresponds to « small V-continuous » in [4] .

1. 9 THEOREM ( V-representability of V- functors). Let C be a V-comple-
te V-category; let T : C - V be a V-functor. The following are equivalent :

(i) T is V-continuous and small.

(ii) T is V-representable.

We remark that a representing obj ect for T can be constructed as an end
of the V-functor (3), provided that T is a KCE of G along U .
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For V = Ens, 1.9 reduces to the well known ordinary representa-

bility theorem (cf. [20] 10.3.9). This follows from the following remark:

Let C be a finitely complete (ordinary) category and assume that T :

C - Ens preserves finite limits. Then T is small iff T is proper. (More

precisely Let D be a subset of lCl I and let U: B - C be the inclusion of

the full subcategory B such that I B I = D . D is a dominating set for T

if f T is a KCE of T U along U . )

2. Categories of small V-functors

In the following we often use the well known «Interchange Theorem

for Coends» that is stated oelow. In its formulation we have used an evi-

dent generalization of 1.2 .

2.1 PROPOSITION. Let and Q :
B° O B - C be V- f unctors. Let ( P , p ) and ( Q , q) be pointwise coends of
T . For every C E ç I there is a bijection between ( the sets o f ) V-natu-

ral trans formations p’ : P - C and q’ : Q - C, given by p’ p = q’ q . Further-

more, p’ is a coend iff q’ is a coend.

2.2 LE MMA. Let V be complete and let D be a V -cocomplete V -category.
1 f S, T: C - D are V- functors such that S is small, then the V- functor

(4) has an end :

In order to prove 2.2 one can use 2.1 and the V-Yoneda lemma.

2.3 COROLLARY. Let V be complete. Let C and D be V-categories such

that D is V-cocomplete. There is a V-category [C , D] together with an

evaluation V.functor E : [ C, D] O C - D such that :

( a) (i) the objects of [ C, D] are precisely the small V- functors

from C to ’D.

(ii) E(T,-)= T for every TE I [C,D 1 1.
( iii) the V- functor (4) admits as an end the family
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(b) for every Y.functor G: X O C -D such that G ( X , - ) : C -D is

small for all X E IX I there is a unique Y-functor F : X - [ C, D] such that
the diagram ( 5) commutes.

If C is small, [C,D] is the V-category whose class of objects
consists of all V-functors from C to D (cf. [3], 4.1). However, the
class of objects of [C,D ] is generally an element of a higher universe

( i.e. [C,D] is an illegitimate category), but one can find a skeleton of

[C, D] whose class of objects is contained in the same universe (cf.

[22] 2 . 29 ) .

Now let U: B - C’ be a V-functor whose domain B is small. If V is

complete and if D is V-cocomplete then there is a unique V-functor U =

[U,D] : [C,D] -&#x3E; [B,D] (composing with U ) such that the diagram
( 6 ) commutes :

N

The Y-functor U is known to be V-adjoint provided that C is small (cf.

[3], 6.1). The following theorem is a generalization to the case of ar-

bitrary y-categories C .

2.4 TH E O R E M . Let U : B - C be a V- functor whose domain B is small. I f
V is complete and D is V-cocomplete, the V.functor U: [C , D] -&#x3E; [B , D I

( c f. 2. 3 and diagram (6)) has a y-coadjoint f.-functor R from [B , D]
to [ C, D] . 1 f U is V-fully faithful then so is R .

We remark that for ( RG ) C can be construc-

ted as a coend
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2.5 THEOREM. Let V be complete and let D be a V-cocomplete V-cate-

gory. For every V-category C, the V-category [C,D] is V-cocomplete.

Furthermore, the V-functor Ten [C, D] : V O[C, D] -&#x3E; [ C,D] can be

chosen in such a way that the diagram (7) commutes.

In order to prove that every ( ordinary ) func tor M : Q -&#x3E; [ C, D ]0 with a

small domain Q has a colimit, one proceeds as follows : for every q E Q I
there is, according to 1.8, an inclusion Uq : Bq -&#x3E;C of a small V-full V-

subcategory Bq of C such that Mq is a KCE of (M q ). U q along Uq . If

U:B-&#x3E;C denotes the inclusion of the V-full V-subcategory B of C , de-

fined by lBl : = U Q l Bql then M q is a KCE of (M q) . U along U

according to 1.7 . The assertion follows now from 2.4 and from the cocom-

pleteness of [B, D ] . The remaining statements in 2.5 can be verified qui-
te easily.

An important special case of 2.4 can be obtained by taking U =

H*: B -&#x3E; [ B°, V ] for a small V-category B. This yields statement (a) in

2.7. The statements (b) - (d) of 2.7 can be found essentially in [3],
6.3. Theorem 2.7 is a literal generalization of theorem 17.3.1 in [20] . In

order to be able to formulate 2.7 we need one more definition :

2.6 D E F IN I T IO N . Let V be complete and let F : B -&#x3E; D be a V-func tor

with a small domain B . We denote by F V : D -&#x3E;[B°,V] the unique V-

functor making the diagram (8) commute:



385

If V is also complete (or if D has a small skeleton), there is the

V-category [D°, V ] according to 2.3, together with the Yoneda embedding
H* : D - [ D° , Vj ( cf. 1.5 (c)). In that case, Fy could also be defined as :

2. 7 THEOREM. Let V be bicomplete. Let B be small and D be a V-co-

compl ete y-category.
( a ) The V- f unctor H*: [ [B° , V ] , D ] -&#x3E; [ B , D ] ( composing with

H* ; B -&#x3E; [B ° , V ] , c f . diagram ( 6 ) ) has a V-coadjoint

which is V-fully faithful.
(b) Let Fe l [B,D] l. Then K F is V-coadjoint to F v : D -&#x3E; [ B ° , V ]

(cf. 2. 6 ) . Furtherm ore, ( K F ) . H* = F .

(c) A V-functor G : [ B ° , V I - D is V-coadjoint iff G is V-coconti-

nuous. If this is the case, ( G H*)v is V -adjoint to G .

(d) K induces a V -equival ence of [ B , D ] with the V- f ull V-subca-

tegory o f [ [ B° , V ] , D] , the objects of which are the ( equival ence
classes of) V-cocontinuous V-f unctors.

The following theorem is a literal generalization of theorem 17.3.2
in [20] (cf. [2] and [3] , 7.3 ).

2.8 THE OR EM (Characterization of the Yoneda embedding ) . Let V be

bicomplete. Let U: B - C be a V-functor such that B is small and C is

V-cocomplete. The following are equival ent :
(a) There is a V-equivalence T : C -&#x3E; [B°, V ] such that T U is V-

isomorphic to H* : B - [ Bo , V I .
(b) For every V - f unctor F : B - D with a V-cocom p l ete codomain D

there is a V-cocontinuous V- f unctor G : C - D such that G U = F , and any
two such V- f unc tors are V-i somorphi c.

( c ) U V : C -&#x3E; [B ° , V ] is a V-equivalence ( c f. 2. 6).

(d) U is V-dense, Uv is V -cocontinuous and Uv - U is V-isomorphic
to H*:B’" [Bo, V].

(e) U is V-fully faithful and V-dense. Furthermore, for every BEI!2. f
the V-functor HUB : C -&#x3E; V is V-cocontinuous.
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We call U «V-prodense» iff it has one ( hence all) of the proper-

ties (a) - ( e ) of 2.8. This is a slight generalization of a definition in [9]

(proof of 3.2 ) , where C is required to be of the form [ A, V] for a small

V-category A . The definition then applies to the V-functor B (9 A - V that

uniquely corresponds to U by means of 2.3 (b). The proof of 2.7 and 2.8

is analogous to the proof in the special case V = Ens (cf. [20], 17.3.

1/ 2 ) . We proceed to generalize parts of the results of 2.7 and 2.8 to the

case of not necessarily small V-categories B . In the case V = Ens this

result (existence of a free V-cocomplete V-category over every V-category

C) is due to Ulmer ( [22], 2.29). Before proving this generalization we
make a definition and state a lemma.

2.9 D E F I N I T I O N . Let V be bicomplete. Let B be a small and D be a

V-cocomplete V-category. Let K denote the V-coadj oint of

OB is defined by :

For every G E I [B,D] l , the V-functor - O B G is V-coadj oint to

G v. If F : B ° -&#x3E; V is another V-functor, then F 0 B G is a coend of the V-

functor

For V = Ens , 0 B is the well known ((tcnsorproduct over small categories»

(cf. [20] , 17 .7) . If B =1, OI )= TenD .
2. 10 L E MM A . Let V be bicomplete. Let C and D be V-categories, D

V-cocomplete. For every V-functor F: C - D there is a KCE

of F along H*:C-&#x3E; [C°,V]. Let B be small and let U : B -&#x3E; C° be a

V-func tor. Then the diagram (10) is commutative up to V-isomorphism
(.R denotes the V-coadj oint of U (cf. diagram ( 6 ) ) ) .
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2.11 THEOREM. Let V be bicomplete. For every V-category C, [C°, V]
is the free V-cocomplete V-category over C by means of H* : C - [ co, v ] ,
i. e. :

(a) [ C° , V ] is V-cocomplete. For every V-funct or F: C -&#x3E; D such

that D is V-cocomplete, there is a V.cocontinuous V-functor

( b ) Let D be y-cocow.JJlete. If S : [C° , V ] -&#x3E; D is V-cocontinuous, then

S is a KCE of S H* al ong H* .

3. V-equivalence of -1/-functor categories

Criteria are known for a V-category to be V-equivalent to [B,V]
for a small V-category B (cf. 2.8; [3], 7.3; [2] ). For V = Ens there

are statements on the equivalence of [ A, Ens and [ B, Ens] for small

categories A and B . There is such an equivalence iff the full subcate-

gories of [ A , Ens ] and [ B , Ens of all retracts of representable
functors are equivalent (cf. [1], IV 7.5 ; [10], 2.14 a; [14]). This
result will be generalized as follows : For each small V-category A we

define a V-category P A such that [A, V ] and [ B, V ] are V-equiva-
lent iff P A and PB are V-equivalent (3.7). For V = Ab this means : Let

R and S be two rings ( or, more generally, two small preadditive cate-

gories ). Rmod and Smod are equivalent iff the corresponding full sub-

categories of all finitely generated projectives are equivalent. In this case
more ’statements on the equivalence of categories of modules are known,
the «Morita Theorems)) (cf. [201 , 17.9.12). These theorems are also gene-
ralized (3.10, 3.11 ) (cf. [9] ). From now on we will assume V to be bi-

complete. V-equivalence will be denoted by «~» .

3.1 DEFINITION. Let A be small. We denote by P A the V-full V-subca-
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tegory of [A°, V ] of all ( « atoms » , cf. [2] ) objects T such that HT :

[A°, V] - V is V-cocontinuous. For every A E I A I , the V-functor HA is

in P A, because H (HA)=E(-, A), and E(-, A): [A° , V ] -&#x3E; V is V-co-in PA, because H = E(-, A), and E(-, A): [A°, V ] -&#x3E;V is V-co-

continuous. Therefore H* : A -&#x3E; [A°) , V ] factors through P A c--&#x3E; [A°, V ] 
by means of a uniquely determined V-func tor JA : A - P A .

An obvious consequence of this definition is :

3.2’ LEMMA. Let A and B be small V-categories. Then

We are now going to prove the converse of 3.2 , and moreover that

[A, D I is V-equivalent to [ B, D] for every f-cocompl ete V-category D

(cf. 3.5). We also derive a simple description of P A (3.4).

3.3 PROPOSITION. Let B be small and let U: B - C be a V-functor. The

following are equivalent :
(a) H c : C - V is a KCE of HC. U along U for all C E l C l .
( b) If D is V-cocomplete, every V- functor G : C - D is a KCE of G U

along U .

(c) Let D be V-cocomplete. If l : T - L is a coend o f T : C" 0 C - D ,

then l , (U° O U) : T. (U° O U)-L is a coend.

In the proof of 3.3 , the V-Yoneda lemma, 1.3 , and 2.1 are used.

3.4 PRO POSITION. Let A be small and let T : AO .... V be a V-functor. The

following are equivalent :
(a) ’ is V-cocontinuous.

(b) * along l

( c ) Let C denote [A°, V I . Then

is a coend of

3.5 COROLLARY. Let A be small and let D be V-cocomplete. Then

JA:[PA,D]-&#x3E;[A,D] is a V-equivalence.

This follows immediately from 2.4 , 3.3 , and 3.4.
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3.6 CO RO L LA R Y. P A is closed with respect to retracts (in [Ao , V]).

This is a cons equence of 1.6 and 3.5 .

3.7 COROLLARY. Let A and B be small V-categories. The following
are equivalent :

(a) for every V-cocomplete V-category D .

(b) I for every y’-cocomplete V-category D .

For D = V , (c) follows from (b) according to 3.2, whereas (c )==&#x3E;(a)

follows from 3.5. The implications (a)=&#x3E;(d) and (d)==&#x3E;(b) are

dual.

P (A°) is known to be V-equivalent to (P A)° if V = Ens or if

V = Ab . However, this equivalence is valid in general, and we shall prove
this fact below ( 3.9 ). In order to do so we first define a certain pair of

V-.adjoint functors. By restricting these adjoint functors to certain V-sub-

categories we will obtain the desired V-equivalence.

3.8 DEFINITION. Let A be a small V-category. The KE (not KCE! ) of

H* : A -&#x3E; [A° , V ] along (H*)° : A -&#x3E;[ A , V ]° will be denoted by DA .
Furthermore, we introduce the abbreviations

The functors * and + have been considered by Isbell [11, 12] and
Lambek [16] in the special case V = Ens . By definition, the following
formula holds for F E l [A,V] I and A E JAI: F* A = B V [FB, A [A, B]].

The V-functor + is V-coadjoint to * . 

3.9 PROPOSITION. Let A be a small V-category. The V- functors * and

+ (3.8) induce a V-equivalence between P A and ( P (A° )) .

We remark that it suffices to prove :

(i) uT : T -&#x3E;T + * ( u denotes the adjunction transformation) is V-iso-

morphic for all Te l P A l .
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Now we state the generalization of the «Morita Theorems» (3.10

and 3.11). Closely related results can be found in [91 . For the interpre-
tation of these theorems in the case V = Ab the reader is referred to [20] ,
17.9.12 and to the book of H. Bass on K-theory.

3.10 PROPOSITION. Let A and B be small V-categories and suppose that
[A-, V] and fBo , V] are V-equivalent. Then the V-centers of A and B are

Y--isomorphic ( as monoids in V) .

We recall the definition of the V-center of a V-category as the end of

Hom C : C° O C -&#x3E; V , together with its structure of a commutative monoid in

V , induced by the V-category structure of C . The proof of 3.10 uses the

fact that every V-dense and V-fully faithful V-functor U : B -&#x3E; C induces a

V-isomorphism between the V-centers of B and C .

Let X, Y be small and let Z be arbitrary. We denote the canoni-

cal V-isomorphism l 

3.11 THEOREM. Let A and B be small V-categories.

( a ) 1fT: C -&#x3E; [B ° , V] is V-adjoint then there is a V- f unctor F : 11 .... C

such that T = F V (cf. 2.6).

(b) Let D be V -cocomplete and let T : [A ° , V] D be V-coconti-

nuous. Then there is a V- functor G : A - D such that T - ( - O A G ) .
(c) If T : [A° , V] -&#x3E; [B ° , V] is V-adjoint, V-cocontinuous, and V-

fully faith ful then O B . ( G (9 F ) = Hom(Ao). 
(d) Let T: [Ao , V] -&#x3E; [B° , V] be a V-equivalence.

(i) ( - O B F) is an equivalenqe inverse o f ( - O A G) and o f FV .

Furthermore,

(ii) is a V-equivalence with in-

verses Furthermore,

(e) Let G:A-&#x3E; [Bo, V] be a V-functor. Gv : [B°,V] -&#x3E; [A°,V] is 
a V-equivalence iff G is V-prodense ( c f. remark after 2. 8). I f this is

true, , then G: B ° -&#x3E; [A , V] is V-prodense and ( G ) v : [A, V ] -&#x3E; [B, V]
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is a V-equivalence.

If V = Ens or if V = Ab , the condition «T is V-adj oint » in 3.11

( a ) may be weakened to « T is V-continuous , provided that C = [A°, V]
for a small V-category A . In general, this need not be possible :

3.12 PROPOSITION. The following are equivalent :
(a) Every V-continuous V- functor S:V-V is V-representable.
( b ) Let A be a small V-category. Every V-continuous V- functor T:

[A, V] -&#x3E; V is V-representabl e.
(c) Let A be a small V-category. Every y-continuous V- functor T

whose domain is [ A, V I is V-adjoint.

A sufficient condition for each of the three equivalent statements

in 3.12 to hold is the following: V is well-powered and has a cogenerator.

4. Examples

4. I. V = Ens . V-categories are ( in bijection with ) ordinary cate-

gories. If A is a small category, P A consists of the closure of A in

L4° , Ens] with respect to retracts (cf. [1], IV 7.5; [6]; [lO], 2.14

a ) . In [14], categories with precisely one obj ect, i.e. monoids, are con-

sidered.

4. 2. V = Ab . V-categories ( V-functors ) are preadditive catego-

ries (- functors ) . If A is a small preadditive category, P A consists

of the closure of A in [A°, Ab] with respect to retracts of finite copro-

ducts. If A is an Ab-category wiht precisely one object, i.e. A is a ring,
then [A°, Ab] is the category of all A-right modules. The objects of

P A are precisely the finitely generated projective A-right modules. For
the interpretation of 3.10 and 3.11 we refer to [20] , 17.9.12.

4.3. Every cartesian closed, bicomplete category V is an example
for the results of part 3. According to A.Kock, [15], and another (un-
published) manuscript of A. Kock, Halifax 1970, for every such category

V there is another bicomplete closed category Ab (V), the category of
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abelian group objects in V . For example, Ab is the category of abelian

group objects in the bicomplete, cartesian closed category Ens. We men-

tion as further examples :

a) Let V be a topos in the sense of A. Grothendieck [1], or let V
be a bicomplete topos in the sense of F. W. Lawvere and M. Tierney. Then

Ab (V) is a bicomplete closed category ( cf . [1], II- 6.7 and IV-12.8 ) .

b) Let V be the category C G of compactly generated topological
spaces or the category Ke of compactly generated topological Hausdorff

spaces, i.e. Kelley spaces. Then Ab(V) is a bicomplete closed catego-

ry (cf. [7]).
Let V be a cartesian closed category, which is also a Top-catego-

ry over Ens by means of a topological functor T : V- Ens in the sense of

Wyler (cf. [7]). This includes the two cases V = C G and V = Ke . Let

A be a small V-category. We claim that P A consists of all retracts of

V-representables. This can easily be derived from the fact that T carries

the structure of a monoidal functor in a canonical way and from the fact

that T is cocontinuous, using 3.4 and 3.6 .
We remark finally that the category Ab (V) may be trivial for

a cartesian closed, bicomplete category V (cf. 4.5 ) .

4.4. Let V be defined as follows : the objects of V are all non-

negative real numbers and 00. For all a, b E lV I there is at most one mor-

phism from a to b , and hom (a, b)# O iff a &#x3E; b . The following defini-

tions define on V the structure of a closed category (*) :

V is bicomplete. Small V-categories are semiquasimetric spaces, i.e.

pairs (X, d) such that X is a set and d: X X X -&#x3E; [0, oo ] is a mapping
such that:

(*) Metric spaces as V-based categories have been considered by F.W. Law-
vere, who lectured on that topic in Brunswick ( U.S.A ) and Halifax (Cana-
da) in 1969 (see also [24] ).
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V-functors f from (X, d) to (X’, d’) are all nonexpansive mappings f :
X-&#x3E;X’, i.e. mappings f such that (iii) holds :

We denote by ’qmet the category of small V-categories and V-

functors. The full subcategory qmet of all quasimetric spaces, i.e. com-

mutative semiquasimetric spaces ( X , d ) (such that d(x, y) = d(y, x) for

all x , y E X ) , is bireflective in SqMet . The coadjoint L for the inclusion

functor qMet-sqMet is given by

L(X, d): =(X, d), such that d(x, y): =max(d(x, y), d(y, x)).

Let ( X , d ) be a semiquasimetric space. The distance s on P(X,d)
is given by (11 ):

In general, P ( X , d ) is not commutative even if ( X , d ) is commutative.

However, P ( X , d ) is always separated, i.e. s (f , g) = s (g, f) = 0 implies

f=g. By 3.4, f E P ( X , d ) is equivalent to (12) :

For every semiquasimetric space (X , d) , P ( X , d ) together with the em-

bedding I(X,d):(X,d)-&#x3E;P(X,d) (cf. 3.1) is the completion of (X , d)

in the following sense (we abbreviate J(X,d) by «i»):

T H E O R E M . Let (X , d) be a semi quasimetric space.
a) is an isometry, i. e. for all

Furthermore, iff for all;

b) is dense, i. e. for every there is a

sequence x E X such that f = l irn i x
c ) P (X , d) is complete, i. e. every Cauchy sequence in P( X , d) has a

limit in P(X, d).

If ( X, d) is a metric space, L ( P ( X , d ) ) is the completion in the

usual sense of the metric space ( X , d ) .

4. 5 . Let M be a set. Let V be the category whose objects are

the subsets of M and whose morphisms are the inclusion mappings of the-
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se subsets. The definitions

define on V the structure of a cartesian closed category. V is bicomple-
te.

a) M=0, i.e. V = 1 . A V-category is an ordinary category A such

that every object of A is a zero object. If -A is any small V-category,
then P A = [ A, V ] = 1 . Two V-categories A , B are V-equivalent iff ei-

ther both are empty (i.e. l A l = l Bl = 0) or both are nonempty.

b ) M = { ø }, hence V = 2 . V-categories are partially preordered clas-

ses. V-functors are orderpreserving mappings. P A is V-equivalent to A

for every small V-category A .

c) Let M be arbitrary. A V-category A consists of a class I A I , and

for all X , Y E l A I a subset A [ X, Y ] of M such that:

A mapping T : IA 1-. I B I is a V-functor iff (iii) holds :

According to 3.4, the condition T E l P A I for a V-functor T : A° -&#x3E; V is

equivalent to

In particular, we will consider a discrete V-category A , i.e.

This implies certainly that Ao, the underlying category of A , is discrete

in the ordinary sense. Every mapping from I A I to V l is a V-functor

from A ° (or A ) to V . The obj ects of P A are all «partitions» of M with

respect to the index set l A l , i.e. all mappings T : l A l -&#x3E; 1 y.I I such that

( T X = 0 for arbitrarily many X E A I is permitted). This fact is an im-

mediate consequence of (13). The category ( P A )0 , the underlying cate-
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gory of the V-category P A , is discrete, too.

This example demonstrates that the class of objects of P A

cannot be obtained as a closure of A in [A°, V ] with respect to li-

mits or colimits of any kind, contrary to V = Ens and V = Ab (cf. 4.1 and

4.2 ) .

The category of abelian group objects in V is equivalent to the

terminal category 1 (cf. 4.3 ) .

4.6. We mention some other examples without giving detailed com-

men ts .

a) V = Ens* . V-categories are ordinary categories with a specified set

of zero morphisms (cf. [20], 5.5.6/7). For l A l # O, P A consists of all

retracts of representables, but if l AlI =O, P A =[A°,V] = 1.
b) V = N V S1, the category of real (or complex) normed vector spaces

and linear contractions (cf. [21], 20.1.10) . For F, G E l NVS1 l , F O G is

the algebraic tensor product with the norm

c ) V = Ban1 , the category of real. ( or complex) Banach spaces and li-

near contractions (cf. [2l], 20.1.10). V-categories with one object are

Banach algebras A (cf. [21], 3.2.1 ) , and [ A, V ] is the category of

A-modules.

d ) V = Bo , the category of bornological vector spaces (cf. [20], 16.

7.2 ) .

e ) V = n-cat, the category of small n-categories ( cf . [5]). For a small

V-category A , P A consists of all retracts of representable functors.
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