On categories into which each concrete category can be embedded. II

Cahiers de topologie et géométrie différentielle catégoriques, tome 18, n° 3 (1977), p. 249-269

<http://www.numdam.org/item?id=CTGDC_1977__18_3_249_0>
Given a contravariant functor F from sets to sets, the category $S(F)$ has for objects pairs (X, S), with X a set and $S \subseteq FX$; morphisms are mappings $f: (X, S) \to (Y, T)$ such that $Ff(T) \subseteq S$. The paper characterizes those functors F for which $S(F)$ is a universal category, i.e. every concrete category can be fully embedded into it. The characterization is very simple: F must be nearly faithful, i.e. there must be a cardinal α such that for arbitrary mappings $f, g: X \to Y$ we have: if $f \neq g$, then either $Ff \neq Fg$ or $\text{card } f(X) < \alpha$, $\text{card } f(Y) < \alpha$.

The paper continues the author's previous characterization of covariant functors F for which $S(F)$ (defined analogously) is binding. There are striking similarities between the two cases, yet the main result here has no analogy in the covariant case.

I

CONVENTIONS. Set denotes the category of sets and mappings.

The word *functor* will denote a contravariant set functor.

Let e be a decomposition of a set X. Then the canonical mapping from X to X/e will be denoted by e, therefore the class of e containing x is denoted $e(x)$.

If $f: X \to Y$ is a mapping, then $\text{Ker } f$ is the canonical decomposition of f, i.e. $\text{Ker } f = \{ f^{-1}(y) \mid y \in \text{Im } f \}$.

The cardinal α is meant as the set of all ordinals with type less than α; α^+ denotes the cardinal successor of α.

DEFINITION. A concrete category is called *universal* if every concrete category can be embedded into it.
THEOREM 1.1. The category $S(P^-)$ is universal.

PROOF. See [8].

NOTE. We recall the definition of the functor $P^-:

$$P^-(X) = \{ Z \mid Z \subseteq X \},$$

if $f: X \to Y$ then for every $Z \in P^Y$, $P^- f(Z) = f^{-1}(Z)$.

DEFINITION. A full embedding Ψ from the concrete category (K, U) to the concrete category (L, V) is called strong if there exists a set functor $F: \text{Set} \to \text{Set}$ such that the diagram

$$
\begin{array}{ccc}
K & \xrightarrow{\Psi} & L \\
U \downarrow & & \downarrow V \\
\text{Set} & \xrightarrow{F} & \text{Set}
\end{array}
$$

commutes.

DEFINITION. An object is rigid if it has no non-identical endomorphism.

Now we shall describe a "behaviour" of the functor F.

CONVENTION. Let F be a functor. Then for a cardinal α, F^α denotes the subfunctor of F such that

$$F^\alpha_Y = \bigcup_{\text{card } Z \leq \alpha} \bigcup_{f \in Z^Y} \text{Im } Ff,$$

where Z^Y is the set of all mappings from Y to Z.

DEFINITION [4]. A cardinal $\alpha > 1$ is an unattainable cardinal of a functor F if $F\alpha - F^{\alpha\alpha} \neq \emptyset$. Then put

$$F^\alpha_X = F^{\alpha+}_X - F^{\alpha}_X.$$

The class of all unattainable cardinals of F is denoted by Λ_F.

THEOREM 1.2. Let X be an infinite set such that there exists $\alpha \in \Lambda_F$, with $\alpha \leq \text{card } X$. Then $\text{card } FX \geq \text{card } 2^X$.

PROOF. See [4].

DEFINITION. Let $f, g: X \to Y$ be mappings onto. Then f, g are diverse if there exists $Z \subseteq X$ such that either
A system \mathcal{A} of mappings from X to Y is called diverse if arbitrary distinct mappings $f, g \in \mathcal{A}$ are diverse.

Proposition 1.3. If α is an unattainable cardinal of a functor F and if $f, g : X \to \alpha$ are diverse, then

$$F f(F_\alpha \alpha) \cap F g(F_\alpha \alpha) = \emptyset.$$

Proof. See [4].

Lemma 1.4. Let X be an infinite set. Then for every infinite cardinal α with $\alpha \leq \text{card } X$ there exists a diverse system \mathcal{A} of mappings from X to α such that $\text{card } 2^X$.

Proof. See [4].

Definition. We say that $f : X \to Y$ is coarser than $g : X \to Z$ if there exists $h : Z \to Y$ such that $h \circ g = f$.

Proposition 1.5. If $f : X \to Y$ then $\text{Im } F f = \bigcup \text{Im } F g$ where the union is taken over all $g : X \to \alpha$ coarser than f and $\alpha \in A_F$.

Proof. See [7].

Definition. Let F be a functor, $x \in FX$. Define

$$\mathcal{F}_F^X(x) = \{ e \mid e \text{ is a decomposition of } X, x \in \text{Im } F e \}.$$

Further we shall write

$$\| \mathcal{F}_F^X(x) \| = \min \{ \text{card } \text{Im } e \mid e \in \mathcal{F}_F^X(x) \}.$$

Proposition 1.6. Let F be a functor; then $\alpha \in A_F$ iff there exists $x \in FX$ such that $\| \mathcal{F}_F^X(x) \| = \alpha$ for $\text{card } X \geq \alpha$. Further $\gamma \in F_\alpha Y$ iff $\| \mathcal{F}_F^Y(\gamma) \| = \alpha$.

Proof. Clearly $x \notin F_\alpha \alpha$. On the other hand $x \in \text{Im } F f$, where $f : X \to Y$ is onto and $\text{card } Y = \alpha$; therefore $x \in F_\alpha X$ and $\alpha \in A_F$. The rest is evident.

Corollary 1.7. If $\| \mathcal{F}_F^X(x) \|$ is finite, then there exists e with

$$\mathcal{F}_F^X(x) = \{ e' \mid e \text{ is coarser than } e' \}.$$
PROOF. If \(e \neq e' \) and
\[
\text{card } \text{Im } e' = \text{card } \text{Im } e < \aleph_0,
\]
then \(e \) and \(e' \) are diverse and by Proposition 1.3 we get Corollary 1.7.

PROPOSITION 1.8. Let \(F \) be a functor, \(f : X \to Y \). Then for every \(y \in F Y \) it holds
\[
F^X_F(Ff(y)) \supset \{ e' \mid \text{there exists } e \in F^Y_F(y), \text{eo} f \text{ is coarser than } e' \}.
\]

PROOF is easy.

PROPOSITION 1.9. Let \(F \) be a functor, \(y \in F Y \). If for some \(\tilde{e} \in F^Y_F(y) \) and for some \(f : X \to Y \), \(\tilde{e} \circ f \) is onto, then
\[
F^X_F(Ff(y)) = \{ e' \mid \text{there exists } e \in F^Y_F(Y), \text{eo} f \text{ is coarser than } e' \}.
\]

PROOF. There exists a mapping \(h \) such that \(\tilde{e} \circ f \circ h = id \), then
\[
F \circ h \circ Ff(y) = F \circ \circ F \circ F \circ z = F \circ (z) = y,
\]
where \(z \in F(Y/\tilde{e}) \) with \(F \circ (z) = y \). Now by Proposition 1.8 we get Proposition 1.9.

DEFINITION. Let \(F \) be a functor. For \(x \in F X \) denote by \(e_x \) the finest decomposition which is coarser than each \(e \in F^X_F(x) \).

NOTE. If \(\alpha \) is a finite cardinal and \(x \in F_\alpha X \), then \(e_x \in F^X_F(x) \).

COROLLARY 1.10. Let \(F \) be a functor, \(\alpha \) a finite cardinal. If, for some \(f : X \to Y \) and for some \(y \in F_\alpha Y \) we have \(Ff(y) \in F_\alpha X \), then
\[
e_{Ff(y)} = \text{Ker}(e_{y} \circ f).
\]

PROOF is easy.

\[\text{II} \]

LEMMA 2.1. The object \((6, V)\) is a rigid object of \(S(P^*) \), where
\[
V = \{ \{ 0 \}, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 4 \}, \{ 5 \}, \{ 0, 1 \}, \{ 0, 2 \}, \{ 0, 3 \}, \{ 0, 4 \},
\{ 1, 2 \}, \{ 1, 3 \}, \{ 1, 5 \}, \{ 2, 4 \}, \{ 2, 3, 4, 5 \}, \{ 1, 3, 4, 5 \},
\{ 1, 2, 4, 5 \}, \{ 1, 2, 3, 5 \}, \{ 0, 3, 4, 5 \}, \{ 0, 2, 4, 5 \}, \{ 0, 2, 3, 4 \},
\{ 0, 1, 3, 5 \}, \{ 1, 2, 3, 4, 5 \}, \{ 0, 2, 3, 4, 5 \}, \{ 0, 1, 3, 4, 5 \},
\{ 0, 1, 2, 4, 5 \}, \{ 0, 1, 2, 3, 5 \}, \{ 0, 1, 2, 3, 4 \} \}.
\]
PROOF. Since $\emptyset \not\in V$ and for every $i \in \mathbb{B}$, $\{i\} \in V$ we get, if $f: (\mathbb{B}, V) \rightarrow (\mathbb{B}, V)$ is a morphism of $S(P^*)$, then f is a bijection. Therefore for every $\{i, j\} \in V$ we have

$$f^{-1}(\{i, j\}) = \{f^{-1}(i), f^{-1}(j)\} \in V.$$

Hence

$$\text{card}\{\{i, j\} \in V \mid j \in \mathbb{B} - \{i\}\} \leq \text{card}\{\{f^{-1}(i), j\} \in V \mid j \in \mathbb{B} - \{f^{-1}(i)\}\}$$

for every $i \in \mathbb{B}$ and thus we get for every $i \in \mathbb{B}$,

$$\text{card}\{\{i, j\} \in V \mid j \in \mathbb{B} - \{i\}\} = \text{card}\{\{f^{-1}(i), j\} \in V \mid j \in \mathbb{B} - \{f^{-1}(i)\}\}.$$

Hence

$$f^{-1}(5) = 5, \quad f^{-1}(2) = 2.$$

Now it is easy to verify that $f = \text{id}_\mathbb{B}$.

CONVENTION. An object of $S(\mathcal{F})$ will be called an F-space.

DEFINITION. Denote by $E(P^\ast)$ the full subcategory of $S(P^*)$ over those (X, W) for which $Z \in W$ implies $X-Z \in W$ and $Z \not= \emptyset$.

PROPOSITION 2.2. There exists a strong embedding of $S(P^*)$ into $E(P^*)$.

PROOF. Let (X, W) be a P^*-space. Define $\Psi(X, W) = (\mathbb{B} \wedge \mathbb{B}, W_S)$, where:

$$W_S = \{Z, X \wedge \mathbb{B} - Z \mid Z \in V, \text{card} Z < 3\} \cup$$

$$\cup\{0, 1, 2\} \cup Z, \{3, 4, 5\} \cup X-Z \mid Z \in W\};$$

for a given $f: (X_1, W_1) \rightarrow (X_2, W_2)$, $\Psi f = f \cup \text{id}_\mathbb{B}$. Clearly Ψ is an embedding. We shall prove that it is also full. Let $f: \Psi(X_1, W_1) \rightarrow \Psi(X_2, W_2)$.

First we prove $f(X_1) \subseteq X_2$. Assume the contrary, i.e. $f(x) = i$ for some $x \in X_1$ and $i \in \mathbb{B}$. Then $f^{-1}(\{i\}) \in (W_1)_S$ and therefore either

$$f(\{0, 1, 2\}) = \{i\}, \quad \text{or} \quad f(\{3, 4, 5\}) = \{i\},$$

or $f((X_1 \wedge \mathbb{B}) - Z) = \{i\}$ for some $Z \in V$, $\text{card} Z < 3$.

Since $\emptyset \not\in (W_1)_S$ and $\{i\} \in (W_2)_S$ for every $i \in \mathbb{B}$, we have $6 \in \text{Im} f$ and therefore the last case is impossible. Further there exists

$$j \in \mathbb{B} \quad \text{such that} \quad \{i, j\} \in (W_2)_S$$

and so $f^{-1}(\{i, j\}) \in (W_1)_S$. Hence either $j \in f(X_1)$ or $f(X_1) = \{i\}$. In the former case we get again either
(we use the fact that \(\{ j \} \in (W_2)_S \) and so \(6 \subset f^{-1}(\{ i, j \}) \); this is a contradiction. In the latter case

\[
f^{-1}(\{ i, j \}) = (X_1 \cup 6) - Z \quad \text{for some } Z \in V, \text{ card } Z < 3
\]

and therefore \(6 \subset \text{Im} f \) and it is again a contradiction. Hence

\[
f(X_1) \subset X_2 \quad \text{and} \quad f(6) = 6.
\]

By Lemma 2.1 we have \(f/6 = \text{id}_6 \) and \(f/X_1 : (X_1, W_1) \to (X_2, W_2) \) is a morphism of \(S(P^-) \). Thus \(\Psi \) is a strong embedding.

Proposition 2.3. There exists a full subcategory \(\mathcal{M} \) of \(S(P^-) \) such that:

1. If \((X, W) \in \mathcal{M}\) then \(\emptyset \notin W \), \(\emptyset \notin W \) and for every \(x \in X \) there exists \(Z \in W \) with \(x \in Z \);

2. If \(f, g : (X_1, W_1) \to (X_2, W_2) \) and \((X_1, W_1), (X_2, W_2) \in \mathcal{M} \), then there exists \(Z \in W_2 \) with \(f^{-1}(Z) \neq g^{-1}(Z) \);

3. There exists a strong embedding from \(S(P^-) \) to \(\mathcal{M} \).

Proof. Define \(\Phi : S(P^-) \to S(P^-) \) as follows: \(\Phi(X, W) = (X \cup 6, W_D) \) with

\[
W_D = V \cup \{0, 1, 2\} \cup Z \mid Z \in W \cup \{3, 4, 5\} \cup Z \mid Z \subset X \};
\]

for a given \(f : (X_1, W_1) \to (X_2, W_2) \) put \(\Phi f = f \cup \text{id}_6 \). Evidently \(\Phi \) is an embedding. Now, we shall prove that, if

\[
f : (X_1 \cup 6, (W_1)_6) \to (X_2 \cup 6, (W_2)_D),
\]

then \(f(X_1) \subset X_2, f(6) \subset 6 \). For every \(i \in 6, \)

\[
\{i\} \in (W_2)_D \quad \text{and} \quad \emptyset \notin (W_1)_D,
\]

therefore \(6 \subset \text{Im} f \). We assume that for some \(x \in X_1, f(x) = i \in 6 \). Then we have \(f^{-1}(\{i\}) \in (W_1)_D \) and hence either

\[
f(\{0, 1, 2\}) = \{i\} \quad \text{or} \quad f(\{3, 4, 5\}) = \{i\}.
\]

Further there exists \(j \in 6 \) such that \(\{i, j\} \in (W_2)_D \), and therefore

\[
f^{-1}(\{i, j\}) \in (W_1)_D.
\]

We get that \(f^{-1}(\{j\}) \cap X_1 \neq \emptyset \) but then either

\[
f(\{0, 1, 2\}) = \{j\} \quad \text{or} \quad f(\{3, 4, 5\}) = \{j\}
\]

254
and hence \(6 \subseteq f^{-1}(\{i, j\}) \) - a contradiction. Thus
\[
f(X_1) \subseteq X_2, \quad f(6) \subseteq 6.
\]
By Lemma 2.1, \(f/6 = id_6 \) and therefore \(f/X_1: (X_1, W_1) \rightarrow (X_2, W_2) \) is a morphism of \(S(\mathcal{P}^*) \). Put \(M = \Phi(S(\mathcal{P}^*)) \). Evidently \(\Phi: S(\mathcal{P}^*) \rightarrow M \) is a strong embedding and \(M \) has the required properties.

NOTE. The set functor carrying \(\Phi \) (or \(\Psi \)) is \(I \vee C_6 \) where \(I \) is the identity functor and \(C_6 \) is the constant functor to \(6 \).

COROLLARY 2.4. There exists a full subcategory \(\mathcal{J} \) of \(E(\mathcal{P}^*) \) such that:

1. if \((X, W) \in \mathcal{J} \), then \(W \neq \emptyset \);
2. if \(f, g: (X, W) \rightarrow (Y, S) \) and \((X, W), (Y, S) \in \mathcal{J} \), then there exists \(Z \in S \) with \(f^{-1}(Z) \neq g^{-1}(Z) \);
3. there exists a strong embedding from \(S(\mathcal{P}^*) \) to \(\mathcal{J} \).

PROOF follows from Propositions 2.2 and 2.3.

THEOREM 2.5. If \(2 \in A_F \), then there exists a strong embedding from \(S(\mathcal{P}^*) \) to \(S(F) \).

PROOF. Via Proposition 2.2 it suffices to prove that there exists a strong embedding from \(E(\mathcal{P}^*) \) to \(S(F) \). Define
\[
\Omega(X, W) = (X, W_F),
\]
where
\[
W_F = \{ x \in F_2 X \mid \text{there exists } Z \in S, Z \in e_x \};
\]
for a given \(f: (X, W) \rightarrow (Y, S) \), define \(\Omega f = f \). Clearly \(\Omega \) is an embedding; let us prove that it is full. Let \(f: (X, W_F) \rightarrow (Y, S_F) \) be a morphism of \(S(F) \). Then for every \(x \in S_F \) it holds:
\[
\text{there exist } Z_1, Z_2 \in S \text{ such that } \{ Z_1, Z_2 \} = e_x
\]
(see Corollary 1.7 and the definition of \(\Omega \)). On the other hand for every \(Z \in S \) there exists \(x \in S_F \) such that \(\{ Z, Y-Z \} = e_x \).

Now by Corollary 1.10, we get that
\[
\{ f^{-1}(Z), X-f^{-1}(Z) \} = e_{F f(x)}.
\]
Thus \(f^{-1}(Z) \in W \) and \(f : (X, W) \rightarrow (Y, S) \) is a morphism of \(S(P^1) \).

III

CONSTRUCTION 3.1. Let \(F \) be a functor such that \(a \in A_F \), where \(a > 1 \) is a finite cardinal. Then there exists an object \((X, V)\) of \(S(F)\) such that:

1° \(\text{card } X = a + 4 \);
2° \(V \subset F_a X \);
3° for every \(x \in X \) there exist \(y_1, y_2 \in V \) such that \(\{ x \} \in e_{y_1}, \{ x \} \notin e_{y_2} \);
4° if \(x \in V \), then \(F(e_x)(F_a a) \subset V \);
5° for \(x \in X \) denote by

\[gr x = \text{card } \{ Z | \text{card } Z > 1, x \in Z, \text{there exists } y \in V, Z \subset e_y \} , \]

then \(gr x > 1 \) with at most one exception;
6° \((X, V) \) is rigid;
7° if \(a \geq 3 \) then there exists \(x \in X \) such that \(gr x = 1 \) and if for some \(Z \subset X, x \in Z, gr x = 1 \) and \(Z \in e_y \) for some \(y \in V \) then \(\text{card } Z < 3 \).

We shall construct these objects by induction in \(a \). For \(a = 2 \), the object exists by Lemma 2.1 and Theorem 2.5.

We assume that for \(a < n \) the construction is performed and \(n \in A_F \).

Let \(G \) be a functor with \(n - 1 \in A_G \). Let \((X', V')\) be a \(G \)-space fulfilling the conditions 1-7 for \(n - 1 \). We assume that \(a \notin X' \) and put \(X = X' \cup \{ a \} \). We choose an arbitrary decomposition \(\tilde{e} \) of \(X \) in \(n \) classes such that

\[\text{card } \tilde{e} (a) = 2 \text{ and if } gr x = 1 \text{ for some } x \in X', \text{ then } x \in e(a). \]

Put

\[V = \bigcup F e(F_a X / e) \cup F \tilde{e}(F_a X / \tilde{e}) \]

where the union is taken over all \(e \) such that \(\{ a \} \in e \) and the restriction of \(e \) to \(X' \) is equal to \(e_x \) for some \(x \in V' \). Let \(f : (X, V) \rightarrow (X, V) \) be a morphism of \(S(F) \); then \(f \) is a bijection by Corollary 1.10 and Condition 3 for \((X', V')\). Further \(gr a = 1 \) and for \(x \in X - \{ a \} \), \(gr x > 1 \). Hence \(f(a) = a \).

Clearly \(f : (X', V') \rightarrow (X', V') \) is a morphism of \(S(G) \) and hence \(f = id_X \).

The other required properties are easy to verify.
PROPOSITION 3.2. If $\alpha > 2$ is a finite cardinal and $\alpha \in \mathcal{A}_F$, then there exists a F-space (X, V) and $x_0 \in X$ such that the following conditions hold:

1. (X, V) is rigid, $V \subset \mathcal{F}_\alpha X$;
2. for every $\gamma \in V$, $\text{card }\gamma_i(E_{1-i}) \leq \alpha - 1$ for $i = 0, 1$, where E_i is the class of $\epsilon \gamma_i$ containing x_0;
3. for every $x \in X$ there exist $\gamma_1, \gamma_2 \in V$ such that $\{x\} \in \epsilon \gamma_1 \setminus \epsilon \gamma_2$.

PROOF. Since $\alpha > 2$ we can choose by Construction 3.1 the F-space (X, V) fulfilling Conditions 1-7. Therefore there exists $x \in X$ with $gr x = 1$. Put $x = x_0$. Clearly $((X, V), x_0)$ fulfills Conditions 1-3 from Proposition 3.2.

LEMMA 3.3. Let α be an infinite cardinal. Then for every set X such that $\text{card }X = \alpha$ and every subsets X_1, X_2, X_3 of X such that $X_1 \cap X_2 = X_2 \cap X_3 = \emptyset$, $\text{card }X_1 = \text{card }X_2 = \alpha$ and every mapping $f: X_2 \to X_3$ onto, there exists a diverse system \mathcal{A} of mappings $g: X \to \alpha$ such that $\text{card }\mathcal{A} = \text{card }2^X$ and every $g \in \mathcal{A}$ fulfills:

1. for every $i \in \alpha$, $g^{-1}(\{i\}) \cap X_j \neq \emptyset$ for $j = 1, 2$;
2. there exists no non-constant mapping h coarser than g with $h(x) = h(f(x))$ for every $x \in X_2$.

PROOF. If there exists $Z \subset X_3$ such that $\text{card }Z < \alpha$ and $\text{card }f^{-1}(Z) = \alpha$, then put $Y = X_1 - Z$. By Lemma 1.4 there exists a diverse system \mathcal{B} of mappings from Y to α with $\text{card }\mathcal{B} = \text{card }2^X$. Now, for every $h \in \mathcal{B}$ we choose $g_h: X \to \alpha$ such that $g_h / Y = h$, $\text{card }g_h(Z) = 1 = \text{card }g_h(X_2 - f^{-1}(Z))$ and, for $i \in \alpha$, $g_h^{-1}(\{i\}) \cap f^{-1}(Z) \neq \emptyset$.

If there exists no $Z \subset X_3$ with this property, then we choose a decomposition $\{Z_1, Z_2\}$ of X_2 such that $\text{card }Z_1 = \text{card }Z_2 = \text{card }X_2 - f(Z_1) = \alpha$.

By Lemma 1.4 there exists a diverse system \mathcal{B} of mappings from Z_1 to α with $\text{card }\mathcal{B} = \text{card }2^X$. Now, for every $h \in \mathcal{B}$ we choose $g_h: X \to \alpha$ such that
and for every $i \in \alpha,$

$$g_{i}^{-1}(\{i\}) \cap f(Z_{2}) \neq \emptyset, \quad g_{i}^{-1}(\{i\}) \cap X_{1} \neq \emptyset.$$

Then $\mathcal{A} = \{g_{h} \mid h \in \mathcal{B}\}$ has the required properties.

CONDITION A. An F-space (X, V) fulfills the condition A if for arbitrary subsets X_1, X_2, X_3 of X such that

$$\text{card } X_1 = \text{card } X_2 = \text{card } X \quad \text{and} \quad X_1 \cap X_2 = X_2 \cap X_3 = \emptyset$$

and for arbitrary mapping $f: X_2 \to X_3$ onto there exists $y \in V$ such that

- a) for every $e' \in F^X_F(y)$ there exists $e \in F^X_F(y)$ coarser than e', such that $e(x) \cap X_i \neq \emptyset$ for every $x \in X$ and $i = 1, 2$;

- b) there exists $e \in F^X_F(y)$ such that for every $e' \in F^X_F(y)$ we have
 1° $e'^\cap * e \in F^X_F(y)$ and
 2° a mapping h from X is constant whenever

$$h(x) = h(f(x)) \quad \text{for every } x \in X_2$$

and h is coarser than e ($e'^\cap * e$ denotes a co-intersection of e' and e).

PROPOSITION 3.4. Let $\alpha \in \Lambda_{F}$ be an infinite cardinal such that there exists $x \in F_{\alpha} \alpha$ with non-trivial e_{x}. Then there exists an F-space (X, V) and a x_{0} of X such that:

- a) (X, V) is rigid;

- b) $\text{card } X = \alpha, \quad V \subset F_{\alpha} X$;

- c) for every $a \in X$ there exists $y_{a} \in V$ such that $e_{y_{a}}(a) \neq e_{y_{a}}(x_{0})$;

- d) (X, V) fulfills condition A.

PROOF. We choose a set X with $\text{card } X = \alpha$ and choose $x_0 \in X$. For every a we choose a bijection $f_{a}: X \to \alpha$ such that $e_{x}(f_{a}(a)) \neq e_{x}(f_{a}(x_{0}))$. Then

$$e_{Ff_{a}(x)}(a) \neq e_{Ff_{a}(x)}(x_{0}).$$

Put

$$\mathcal{B}_{0} = \{Ff_{a}(x) \mid a \in X \setminus \{x_{0}\}\}.$$

Now, we choose bijections
\[\Psi_1 : \text{card} 2^X \to \{ f : X \to X \mid f \neq \text{id}_X \}, \]
\[\Psi_2 : \text{card} 2^X \to \{ (X_1, X_2, X_3, f) \mid \text{card} X_1 = \text{card} X_2 = \alpha, \]
\[X_1 \cap X_2 = X_2 \cap X_3 = \emptyset, f : X_2 \to X_3 \text{ is onto} \}. \]

For \(i \in \text{card} 2^X \) denote
\[C_i = \{ y \in F_a X \mid F(\Psi_1(i))(y) \neq y \}. \]

As an application of Lemma 1.4 we get that \(\text{card} C_i = \text{card} 2^X \). Further for \(\Psi_2(i) = (X_1, X_2, X_3, f) \) denote
\[D_i = \{ y \in F_a X \mid \text{there exists } e \in \mathcal{F}_P^X(y) \text{ with} \]
\[1^o \text{ for every } x \in X, e(x) \cap X_j \neq \emptyset \text{ for } j = 1, 2, \]
\[2^o \text{ for every } e' \in \mathcal{F}_P^X(y), e' \cap e \in \mathcal{F}_P^X(y), \]
\[3^o \text{ there exists no non-constant mapping from } X \]
\[\text{coarser than } e, \text{ with } h(x) = h(f(x)) \text{ for every } \]
\[x \in X_2 \}. \]

If we construct the system \(\mathcal{A} \) from Lemma 3.3 for \((X_1, X_2, X_3, f) = \Psi_2(i) \),

then for every \(g \in \mathcal{A} \) we have \(F g(x) \in D_i \) and therefore \(\text{card} D_i = \text{card} 2^X \).

Now we shall construct, by induction on \(i \in \text{card} 2^X \), sets \(B_i, C_i \) such that:
\[\text{card} C_i < \text{card} 2^X, \quad B_i \subset C_i \cap F_a X \text{ for every } i. \]

Put \(C_0 = B_0 \). We assume that we have the sets \(B_i, C_i \) for \(i < j \). If \(j \) is a

limit ordinal, put
\[B_j = \bigcup_{i<j} B_i, \quad C_j = \bigcup_{i<j} C_i. \]

If \(j = k + 1 \) then
\[a) \text{ we choose } x_k^1 \in C_k \setminus C_k, \text{ such that } F(\Psi_1(k))(x_k^1) \notin C_k, \]
\[b) \text{ we choose } x_k^2 \in D_k \setminus (C_k \cup \{ x_k^1, F(\Psi_1(k))(x_k^1) \}). \]

Put
\[B_j = B_k \cup \{ x_k^1, x_k^2 \}, \quad C_j = C_k \cup \{ x_k^1, F(\Psi_1(k))(x_k^1), x_k^2 \}. \]

Evidently
\[\text{card} C_j < \text{card} 2^X \text{ and } B_j \subset C_j \cap F_a X. \]

Put \(V = \bigcup B_j \) where the union is taken over all \(j \in \text{card} 2^X \). The \(F \)-space
\((X, V) \) has the required properties.
LEMMA 3.5. Let (X, V) be a rigid F-space. If $g_1 : Y_1 \to X$, $g_2 : Y_2 \to X$ are onto, then every mapping $h : Y_1 \to Y_2$ such that $F h (F g_2 (V)) \subseteq F g_1 (V)$ fulfills $g_2 \circ h = g_1$.

PROOF. Assume the contrary, i.e., $g_2 \circ h \neq g_1$. Then there exists $f : X \to Y_1$ such that

$$g_1 \circ f = id_X \quad \text{but} \quad g_2 \circ h \circ f \neq id_X.$$

Further it is clear to verify that $g_2 \circ h \circ f$ is an F-morphism of (X, V) - a contradiction.

CONSTRUCTION 3.6. Let $\emptyset = ((X, V), x_0)$ be a couple where (X, V) is an F-space, $\text{card} X > 1$ and $x_0 \in X$. For every set Y and every $Z \subseteq Y$ define $g_Z : U \to X$ where $U = (Y \times (X \setminus \{ x_0 \})) \cup \{ x_0 \}$ as follows

$$g_Z (x_0) = x_0, \quad g_Z (y, x) = x_0 \quad \text{if} \quad y \in Y \setminus Z, \quad x \in X \setminus \{ x_0 \},$$

$$g_Z (y, x) = x \quad \text{if} \quad y \in Z, \quad x \in X \setminus \{ x_0 \}.$$

Define a functor $\Sigma_{\emptyset} : S (P^*) \to S (F)$:

$$\Sigma_{\emptyset}(Y, W) = (U, \bigcup_{Z \subseteq W} F g_Z (V)),$$

and for $f : (Y_1, W_1) \to (Y_2, W_2)$ put

$$\Sigma_{\emptyset} f = (f \times id_{X \setminus \{ x_0 \}}) \cup id_{\{ x_0 \}}.$$

Clearly Σ_{\emptyset} is faithful and if Σ_{\emptyset} is full, then Σ_{\emptyset} is a strong embedding.

NOTE. If Z_1, Z_2 are distinct subsets of Y, then g_{Z_1} and g_{Z_2} are diverse.

LEMMA 3.7. Let $\emptyset = ((X, V), x_0)$ and $Z \subseteq Y$. If $y \in V$ fulfills:

let $e \in \mathcal{F}_F^X (y)$ such that for every $e' \in \mathcal{F}_F^X (y)$, $e' \cap * e \in \mathcal{F}_F^X (y)$,

then $F g_Z (y)$ fulfills:

for every $e \in \mathcal{F}_F^U (F g_Z (y))$, $e \cap \text{Ker} (e \circ g_Z) \in \mathcal{F}_F^U (F g_Z (y))$.

PROOF follows from Proposition 1.9.

LEMMA 3.8. Let n be a finite unattainable cardinal of F. Let an F-space (X, V) and $x_0 \in X$ fulfill the conditions 1-3 from Proposition 3.2. If

$$g : \Sigma_{\emptyset} (Y_1, W_1) \to \Sigma_{\emptyset} (Y_2, W_2)$$
is an $S(F)$-morphism and $\emptyset \not\in W_1$, then for every $Z_2 \in W_2$, $Z_2 \neq \emptyset$, there exists $Z_1 \in W_1$ such that $F(g_{Z_2} \circ g)(V) \subset Fg_{Z_1}(V)$.

PROOF. Assume the contrary, i.e., there exist $y_0, y_1 \in Fg_{Z_2}(V)$ such that:

$$Fg(y_0) \subseteq Fg_{Z_0}(V) \quad \text{and} \quad Fg(y_1) \subseteq Fg_{Z_1}(V)$$

where $Z_0 \neq Z_1$.

We can assume that there exists $v \in Z_0 - Z_1$. Put $Fg(y_i) = z_i$ for $i = 0, 1$.

Then

$$\text{card } g_{Z_0}(\{v\} \times (X - \{x_0\})) > n - 1 \quad \text{and} \quad \{v\} \times (X - \{x_0\}) \subset g_{Z_1}(x_0).$$

By Corollary 1.10 we get that

$$\text{card } e_t(\tilde{g}_{Z_2}(\{v\} \times (X - \{x_0\}))) > n - 1$$

and

$$e_t(x_0) \supseteq g_{Z_2}(\{v\} \times (X - \{x_0\}))$$

where $t_0, t_1 \in V$ such that $Fg_{Z_2}(t_i) = y_i$ for $i = 0, 1$; but this contradicts the Condition 2 from Proposition 3.2.

LEMMA 3.9. Let α be an infinite unattainable cardinal of F. Let (X, V) and $x_0 \in X$ fulfill the conditions a-d from Proposition 3.4. If

$$g: \Sigma_0(Y_1, W_1) \to \Sigma_0(Y_2, W_2)$$

is an $S(F)$-morphism and $\emptyset \not\in W_1$, then for every $Z_2 \in W_2$, $Z_2 \neq \emptyset$ there exists $Z_1 \in W_1$ such that $F(g_{Z_2} \circ g)(V) \subset Fg_{Z_1}(V)$.

PROOF. Assume the contrary, i.e., there exist $y_0, y_1 \in Fg_{Z_2}(V)$ such that:

$$Fg(y_i) \subseteq Fg_{Z_i}(V) \quad \text{for} \quad i = 0, 1,$$

where $Z_0 \neq Z_1$. We can assume that $v \in Z_0 - Z_1$ and $w \in Z_1$. Put

$$U_i = (Y_i \times (X - \{x_0\})) \lor \{x_0\} \quad \text{for} \quad i = 1, 2.$$

By Proposition 1.8 and Lemma 3.7 there exists $e_i \in Fg_{Z_i}(V)$ such that e_i is coarser than

$$\text{Ker } g_{Z_2} \subset g \cap \text{Ker } g_{Z_i} \quad \text{for} \quad i = 0, 1.$$

Therefore we get that
\[
\text{card}(g_{Z_2} \circ g(\{v\} \times (X - \{x_0\}))) - g_{Z_2} \circ g(\{w\} \times (X - \{x_0\})) = \\
= \text{card}(g_{Z_2} \circ g(\{v\} \times (X - \{x_0\}))) - g_{Z_2} \circ g(\{v\} \times (X - \{x_0\}))) = \alpha.
\]

Put
\[
X_1 = g_{Z_2} \circ g(\{v\} \times (X - \{x_0\})),
\]
\[
X_2 = g_{Z_2} \circ g(\{w\} \times (X - \{x_0\})),
\]
\[
X_3 = \{g_{Z_2} \circ g((v, x)) \mid g_{Z_2} \circ g((w, x)) \in X_2\},
\]
\[
f(g_{Z_2} \circ g((v, x))) = g_{Z_2} \circ g((v, x)).
\]

Since \(v \notin Z_1\) we have \(X_3 \cap X_2 = \emptyset\). Clearly \(X_1 \cap X_2 = \emptyset\) and \(f\) is onto. Therefore there exists \(t \in V\) from Condition A for \((X_1, X_2, X_3, f)\). Denote:
\[
y_3 = F g_{Z_2}(t), \quad z_3 = F g(y_3), \quad z_3 \in F g_{Z_3}(V).
\]

By a, Condition A we have \(v, w \in Z_3\). Further there is \(e_1 \in \mathcal{F}_F^U(z_3)\) coarser than \(\text{Ker} g_{Z_3}\) and \(\text{Ker}(e_0 \circ g_{Z_2} \circ g)\), where \(e_0 \in \mathcal{F}_F(t)\) from b of Condition A. Hence there exists a mapping \(p\) such that \(e_1 = p \circ e_0 \circ g_{Z_2} \circ g\). Since \(e_1\) is coarser than \(\text{Ker} g_{Z_3}\) we get that
\[
p \circ e_0(x) = p \circ e_0(f(x)) \quad \text{for every} \quad x \in X_2
\]
- and thus \(p \circ e_0\) is constant and so is \(e_1\). This contradicts
\[
z_3 \in F g_{Z_3}(V) \subset F g_{Z_3}(F_{\alpha} X) \subset F_{\alpha} U_1.
\]

THEOREM 3.10. Let \(\alpha > 2\) be an unattainable cardinal of \(F\). Then there exists a strong embedding from \(S(P^-)\) to \(S(F)\) whenever there exists \(x \in F_{\alpha} X\) such that \(e_x\) is non-trivial.

PROOF. Let \((X, V)\) be an \(F\)-space and \(x_0 \in X\) fulfilling the conditions 1-3 from Proposition 3.2 if \(\alpha\) is finite, or the conditions a-d from Proposition 3.4 if \(\alpha\) is infinite. We shall restrict the functor \(\Sigma_0\) to the category \(\mathcal{W}\), where \(\mathcal{W} = ((X, V), x_0)\). By Lemmas 3.8 and 3.9, if
\[
g : \Sigma_0(Y_1, W_1) \to \Sigma_0(Y_2, W_2)
\]
is an \(S(F)\)-morphism, then for every \(Z_2 \in W_2\) there exists
\[
Z_1 \in W_1 \quad \text{such that} \quad F(g_{Z_2} \circ g)(V) \subset F g_{Z_1}(V)
\]
and then by Lemma 3.5 \(g_{Z_2} \circ g = g_{Z_1} \). Since \(W_2 \) is a cover of \(Y_2 \), we get that

\[
g(Y_1 \times \{ a \}) \subseteq Y_3 \times \{ a \} \quad \text{for every } a \in X-\{ x_0 \} \quad \text{and } g(x_0) = x_0 .
\]

For every \(a \in X-\{ x_0 \} \), define \(g_a : Y_1 \rightarrow Y_2 \) as follows:

\[
g_a(y_1) = y_2 \quad \text{iff} \quad g((y_1, a)) = (y_2, a)
\]

Then \(g_a : (Y_1, W_1) \rightarrow (Y_2, W_2) \) is an \(S(P^-) \)-morphism for every \(a \in X-\{ x_0 \} \).

Further for every \(a, b \in X-\{ x_0 \} \) and every \(Z \in \mathcal{W} \),

\[
g_a^{-1}(Z) = g_b^{-1}(Z)
\]

Properties of \(\mathcal{M} \) imply that \(g_a = g_b \) for every \(a, b \in X-\{ x_0 \} \), thus \(\Sigma \bigcup \) is a strong embedding from \(\mathcal{M} \) to \(S(F) \). By Proposition 2.3, we obtain the Theorem.

IV

DEFINITION [9]. We say that a colimit of a diagram \(D : \mathcal{D} \rightarrow \mathcal{K} \) is absolute if every covariant functor \(F : \mathcal{K} \rightarrow \mathcal{L} \) preserves it.

LEMMA 4.1. Let

\[
f_i : A \rightarrow B_i, \quad g_i : B_i \rightarrow C, \quad i = 1, 2,
\]

be morphisms of the category \(\mathcal{K} \) and let

\[
h_1 : B_1 \rightarrow A, \quad h_2 : C \rightarrow B_2
\]

be morphisms of \(\mathcal{K} \) such that

\[
g_1 \circ f_1 = g_2 \circ f_2, \quad f_2 \circ h_1 = h_2 \circ g_1, \quad f_1 \circ h_1 = id_{B_1}, \quad g_2 \circ h_2 = id_C.
\]

Then the push-out of \(f_i : A \rightarrow B_i \), \(i = 1, 2, \) is absolute.

PROOF. See [10].

LEMMA 4.2. Let \(f : X \rightarrow Y, \quad g : X \rightarrow Z \) be mappings onto such that there exists exactly one \(z \in Z \) with \(\text{card } g^{-1}(z) > 1 \). Then the push-out of \(f, g \) is absolute.

PROOF. Let \(h_1 : Y \rightarrow V, \quad h_2 : Z \rightarrow V \) be this push-out. Choose \(k_1 : Y \rightarrow X \)
such that \(f \circ k_1 = \text{id}_Y \) and
\[
k_1(y) \in g^{-1}(\{g(z)\}) \quad \text{whenever} \quad f^{-1}(\{y\}) \cap g^{-1}(\{g(z)\}) \neq \emptyset.
\]
Further we choose \(k_2 : V \to Z \) such that
\[
h_2 \circ k_2 = \text{id}_Y \quad \text{and} \quad k_2 \circ h_2 \circ g(z) = g(z)
\]
and
\[
k_2(v) = g \circ k_1(h_1^{-1}(v)) \quad \text{for} \quad v \in V - \{h_2 g(z)\}.
\]
It is easy to verify that the definition of \(k_2 \) is correct and \(g \circ k_1 = k_2 \circ h_1 \).

Now, Lemma 4.2 follows from Lemma 4.1.

DEFINITION. A decomposition \(e \) is called *finite* if every class of \(e \) is finite and \(e \) has only a finite number of non-singleton classes.

COROLLARY 4.3. Let \(F \) be a functor, \(x \in FX \). If \(e_x = \{X\} \), then every finite decomposition is an element of \(\mathcal{F}_F^X(x) \).

PROOF. If \(e \) is a finite decomposition, then \(e \) is a co-intersection of decompositions \(e_i, \ i = 1, 2, \ldots, n \) such that every \(e_i \) has only one non-singleton class. If \(e_i \in \mathcal{F}_F^X(x) \) then by induction we get from Lemma 4.2 that \(e \in \mathcal{F}_F^X(x) \). Further every decomposition \(e_i \) is a co-intersection of
\[
e_i^j, \ j = 1, 2, \ldots, m,
\]
where every decomposition \(e_i^j \) has only one non-singleton class and every class of \(e_i^j \) has at most two points. Now, by induction we get from Lemma 4.2 that
\[
e_i^j \in \mathcal{F}_F^X(x) \quad \text{whenever} \quad e_i^j \in \mathcal{F}_F^X(x).
\]
Since \(e_x = \{X\} \), it is easy to verify by Lemma 4.2 that every \(e_i^j \in \mathcal{F}_F^X(x) \).

We recall the definition of the union and the co-union.

DEFINITION. Let \(f : Y \to X, \ g : Z \to X \) be monomorphisms. The monomorphism \(h : V \to X \) is called a union of \(f, g \) (we shall write \(f \cup g = h \)) if there exist
\[
f_1 : Y \to V, \ g_1 : Z \to V \quad \text{such that} \quad h \circ f_1 = f, \ h \circ g_1 = g,
\]
and for every \(h' : V' \to X \) for which there exist
\[
f_2 : Y \to V', \ g_2 : Z \to V' \quad \text{such that} \quad h' \circ f_2 = f, \ h' \circ g_2 = g.
\]
there exists

\[h_1 : V \rightarrow V' \quad \text{with} \quad h = h' \circ h_1. \]

The dual notion is a **co-union** (we shall write \(h = f \cup^* g \) if \(h \) is a co-union of \(f, g \)).

The covariant set functor \(F \) **preserves finite unions** if for arbitrary one-to-one mappings \(f : Y \rightarrow X, \ g : Z \rightarrow X \) we have

\[F f \cup F g = F(f \cup g). \]

\(F \) **preserves unions with a finite set** if for arbitrary one-to-one mappings with \(Z \) finite,

we have \(F f \cup F g = F(f \cup g) \).

The contravariant set functor \(F \) **dualizes finite co-unions** if for arbitrary mappings \(f : X \rightarrow Y, \ g : X \rightarrow Z \) onto, we have

\[F f \cup F g = F(f \cup^* g) ; \]

\(F \) **dualizes co-unions with a finite decomposition** if for arbitrary mappings \(f : X \rightarrow Y, \ g : X \rightarrow Z \) onto, where \(\text{Ker} g \) is a finite decomposition, we have

\[F f \cup F g = F(f \cup^* g) . \]

DEFINITION. A set functor \(F \) (covariant or contravariant) is said to be **nearly faithful** if there exists a cardinal \(\alpha \) such that, for arbitrary mappings \(f \neq g : X \rightarrow Y, \ F f = F g \) implies that

\[\text{card} f(X) < \alpha \quad \text{and} \quad \text{card} g(X) < \alpha . \]

MAIN THEOREM 4.4. Let \(F \) be a contravariant set functor. Then \(S(F) \) is a universal category if and only if \(F \) is nearly faithful.

To prove the Main Theorem we shall first prove a detailed characterization Theorem analogous to the covariant case (see below). Notice that the (covariant) identity functor \(I \) is faithful but \(S(I) \) is far from universal.

First we recall that a permutation with only one 2-cycle is called a transposition.

THEOREM 4.5. For a contravariant functor \(F \) the following conditions are
equivalent:

1. $S(F)$ is universal;
2. there exists a strong embedding from $S(P^*)$ to $S(F)$;
3. $S(F)$ has more than $\text{card } 2^{2^F\emptyset} + \text{card } 2^{F^1}$ non-isomorphic rigid spaces;
4. there exists a rigid F-space (X, V) with $\text{card } X > 1$;
5. F does not dualize co-unions with finite decomposition;
6. there exists a set X and $x \in FX$ such that e_x is non-trivial;
7. there exists a set X and a transposition $t: X \to X$ such that $Ft \neq F\text{id}_X$;
8. there exists a cardinal α such that for every set X with $\text{card } X \geq \alpha$ and every transposition $t: X \to X$ it holds $Ft \neq F\text{id}_X$.

PROOF. We recall that $6 \implies 2$ follows from Theorems 2.5 and 3.10. The implication $2 \implies 1$ follows from Theorem 1.1. The implications

$$1 \implies 3 \implies 4$$

are evident. Further $5 \implies 6$ follows from Corollary 4.3 and Proposition 1.5. The implication $8 \implies 7$ is obvious and so is

$$\text{non } 8 \implies \text{non } 4 \; \text{- thus } \; 4 \implies 8.$$

Therefore the theorem will be proved as soon as we show that $7 \implies 6$. Let $t: X \to X$ be a transposition such that $Ft \neq F\text{id}_X$, therefore there exists $x \in FX$ such that $Ft(x) \neq x$. Denote a, b distinct points of X such that

$$t(a) = b, \; t(b) = a.$$

If $e_x = \{X\}$, then there exists $e \in F^X_F(x)$ with $e(a) = \{a, b\}$ and

$$e(y) = \{y\} \; \text{for } y \in X - \{a, b\}.$$

Then $e = e_0 t$ and thus $Ft_F e = Fe$ - hence $Ft(x) = x$, because x is in $\text{Im } F e$ - a contradiction.

$6 \implies 5$. Let $x \in FX$ such that e_x is non-trivial. By Proposition 1.9 we can suppose that there exists $a \in X$ such that $\{a\} \in e_x$. We choose $b \in X$ such
that $e_x(a) \neq e_x(b)$. Let

$$e_1 = \{ X - \{ a \}, \{ a \} \}, \quad e_2 = \{ \{ a, b \} \cup \{ x \} \mid x \in X - \{ a, b \} \}.$$

We have that $x \notin \text{Im} F e_1 \cup \text{Im} F e_2$. On the other hand e_2 is a finite decomposition and $e_1 \cup^* e_2 = \text{id}_X$.

PROOF OF MAIN THEOREM. If F is nearly faithful, then F fulfills the condition 8 of Theorem 4.5 and thus $S(F)$ is universal. If $S(F)$ is universal, then F fulfills the condition 7 of Theorem 4.5 and by [5] it is nearly faithful.

We recall the analogous results on covariant set functors. Here, instead of universality, those F are characterized for which $S(F)$ is binding. (This means that the category of graphs is fully embeddable in $S(F)$ and, assuming the non-existence of too many non-measurable cardinals, it is the same as universality, see [3].) Let us remark that via Theorem 4.5, $S(F)$ is universal iff it is binding, for contravariant F.

For a covariant set functor F, denote for $x \in FX$,

$$\mathcal{F}_F^X(x) = \{ Z \subseteq X \mid x \in \text{Im} Fi, \ i : Z \to X \text{ is the inclusion} \}.$$

It is well-known (see [11]) that either $\mathcal{F}_F^X(x)$ is a filter or

$$\mathcal{F}_F^X(x) \cup \{ \emptyset \} = \exp Z = \{ Z \mid Z \subseteq X \}.$$

THEOREM 4.6. For a covariant set functor F the following conditions are equivalent:

1. $S(F)$ is binding;
2. there exists a strong embedding from the category of graphs to $S(F)$;
3. $S(F)$ has more than

$$\text{card } 2^F \emptyset + (\text{card } 2^{F1} \cdot \text{card } 2^{2^{F1}})$$

non-isomorphic rigid spaces;
4. there exists a rigid F-space (X, V) such that $\text{card } X > \text{card } 2^{F1}$;
5. F does not preserve unions with a finite set;
6. there exists a set X and $x \in FX$ such that $\mathcal{F}_F^X(x)$ is not an ultra-filter and $\cap Z \neq \emptyset$ where the intersection is taken over all $Z \subseteq \mathcal{F}_F^X(x)$;
7. there exists a set X, a transposition $t : X \to X$ and a mapping $p : X \to X$
such that $p(y) = y$ iff $t(y) \neq y$ and there exists $x \in FX$ with

$$Ft(x) \neq x \neq Fp(x);$$

\exists^a there exists a cardinal α such that for every set X, $\text{card} X > \alpha$ and every transposition $t: X \to X$ and every mapping $p: X \to X$ such that $p(y) = y$ iff $t(y) \neq y$, there exists $x \in FX$ with $Ft(x) \neq x$, $Fp(x) \neq x$.

COROLLARY 4.7. In the finite set theory, $S(F)$ is a universal category if and only if F is a non-constant functor, i.e. $S(F)$ is universal iff F does not dualize co-unions.

Again, the situation for covariant functors was described in [6].

THEOREM 4.8. In the finite set theory, $S(F)$ is a universal category if and only if F is not naturally equivalent to $(I \times C_M) \vee C_N$ for some M, N (we recall that C_M is the constant functor to M and I is the identity functor), i.e. $S(F)$ is universal iff F does not preserve unions.

EXAMPLE 4.9 (A non-constant functor which is not nearly faithful). Denote by β the usual set functor, assigning to a set X the set βX of all ultrafilters on X, and to a mapping f the mapping βf which sends an ultrafilter \mathcal{F} to the ultrafilter with base

$$\{ f(Z) | Z \in \mathcal{F} \}.$$

Let $\tilde{\beta}$ be the factor-functor of β with $\mathcal{F}, \mathcal{G} \in \beta X$ merged iff either $\mathcal{F} = \mathcal{G}$ or \mathcal{F} and \mathcal{G} are fixed (i.e. $\cap Z \neq \emptyset$, where the intersection is taken over all $Z \in \mathcal{F}$). Then, clearly, $\tilde{\beta}$ merges transpositions and so does the (non-constant) functor $F = P^* \circ \tilde{\beta}$.
REFERENCES.

Faculty of Mathematics and Physics
Charles University
PRAGUE
TCHECOSLOVAQUIE