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CAHIERS DE TOPOLOGIE 3e COLLOQUE SUR LES CATEGORIES

ET GEOMETRIE DIFFERENTIELLE DEDIE A CHARLES EHRESMANN

Vol. xxI- ~ (1980)

TOWARD THE DESCRIPTION IN A SMOOTH TOPOS OF THE

DYNAMICALLY POSSIBLE MOTIONS AND DEFORMATIONS OF A

CONTINUOUS BODY

by F. William L AWVERE 

0. INTRODUCTION.

It is an honor to participate in the commemoration of the work of

Charles Ehresmann because he, like other great French geometers of our

times, realized clearly that in order to make possible the learning, develop-

ment, and use of concrete infinite-dimensional differential geometry, it is

necessary to reconstruct it as a concept, and that this reconstruction is

only possible on the basis of a sharp determination of the decisive abstract

general relation ( DAGR ) of the subject, and that in order to succeed in the

latter determination, it is mandatory to develop the theory of categories.
Now that category theory has indeed been advanced to a very great extent,

we can show our appreciation for what we have learned of it from these geo-
meters and others, by taking up the physics of continuous bodies and fields,
which was after all the primary source of the geometry developed by their

teachers such as E. Cartan. The recognition of that source, just as much

as the internal axioms which we labor to perfect, is a DAGR of the subject

( see Karl Marx, Critique of Political Economy, Section 3 «on Method», for
the explanation of the role of DAGR in the reconstruction of the concrete

as a concept ).

According to Lenin, the scientific  world-picture is a picture of

m atter-that-moves and matter-that-thinks », and moreover the special role of

matter-that-thinks is to reflect the decisive relations in the world in order

to provide theory as a guide to action. This materialist world-picture

*) Partially supported by the National Science Foundation and the Martin Chair of
Mathem atic s.
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of subjective idealism and objective idealism respectively. Subjective ideal-

ism was concocted by Plato, Berkeley, etc. in order to prepare the way for

the acceptance of objective idealism, and this destructive and anti-scien-

tific work was carried on more recently by Mach, Russell, Brouwer, Heisen-

berg, etc. Note that all these idealists made special distortions of the sci-

ence of mathematics as one of the bases of their attempts to get the public
to accept their philosophy that the world is a figment of imagination (whe-
ther ours or « god’s»).

As many have pointed out, the essential object of study in mathema-

tics is space and quantitative relationships. Thus, as an essential part of

the scientific world-picture, we have the mathematical world-picture

/~ n atur al B.

2013201320132013201320132013/ ~ numbers, 
sp ace j truth value s

and .0 
quantity B../

whose links with the remainder of the scientific world-picture should ne-

ver be forgotten. Consideration of this picture shows clearly, by the way,

just how wrong was the banker Kronecker and his followers who claim that

the continuum is only a mental construction from N and Q (the subjective
idealizations of iteration and truth respectively), rather than primarily a

~7R



MOTION OF MATTER...

concept derived directly from our historical-scientific experience with the

world of matter-in-motion.

What we have learned about mathematics should enable us to deter-

mine the DAGR in the above  vague notion of that complex whole » (Marx)
which is mathematics. In the following attempt to outline part of such a de-

termination, I have presupposed for lack of space several of those DAGR

contained in the elements of category theory.

1. MOTION OF MATTER AS DESCRIBED IN A CARTESIAN-CLOSED CAT-

EGORY OF SMOOTH OBJECTS AND SMOOTH MORPHISMS.

In order to treat mathematically the decisive abstract general rela-

tions of physics, it is nessary that the mathematical world picture involve

a cartesian-closed category 6 of smooth morphisms between smooth spaces.

(The same is also necessary in order to treat the calculus of variations in

a self-sufficient way, as pointed out and utilized by K. T. Chen’s Urbana

notes on GV . )
For let B f 6 be a space considered to represent a certain body.

B could be a 0-dimensional system of particles, a I-dimensional elastic

cord, a 2-dimensional flexible shell, or a 3-dimensional solid or fluid body.
Let T be a standard ( 1-dimensional ) space used to measure time, and let

E be the ordinary flat 3-dimensional space. Then a motion of B in E is

often represented by a morphism q : T X B - E which can be thought of as

assigning to each  time, particle in the body&#x3E; the corresponding place in

E during the motion. (However, the diagram is valid even if .~..~ is generated

by (duals of) atomless Boolean algebras ; even though there may be no cons-

tant instants and/ or particles to which apply q , the concept of a varia-

ble element of T X B would still have a rational and non-trivial significance

and q could be applied to such yielding a variable point of space with the

same parameter domain .A . )

Describing the motion by a morphism q is necessary and useful if

we want to compute by composition variable quantities ( of the motion ),

which depend only on location. For example E is equipped with a metric

E x E - R , so that if a reference point po : 1 ~ E is given, the composition
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TX B_ q ~E

dLSt(p~, -)
R

gives the distance to po at each instant of each particle of the moving and

deforming body.

But, for other calculations it is necessary and useful to consider

the motion as described by

q = ~ q, q: B -~ ET

assigning to each particle its path through E , where the space E ~ of

( smooth ) paths exists independently of a particular body or particular mo-

tion. Since E is a flat space it has a vector space V (also an object in

~ ) of translations acting by a morphism +: E X V - E (which when paired
with the projection becomes an isomorphism .~ &#x3E;: Ij ~ E % E whose inuerse,

when followed by the projection to v, is denoted as subtraction of points ).
There is a morphism ( ) : E ~ -~ IjT (in Newton’s notation) which is again

independent of a particular body and motion but which, when composed with

q , yields a morphism B - T~T which upon applying inverse -h-transform,
becomes u : T X B - V , the velocity morphism of the motion q .

But the same motion needs to be considered in still a third way :

q = X(qr) for certain purposes. Here r is merely the commutativity iso-

morphism r: $ X T ~ T ~ B for cartesian product, so that q: T , EB gives
the time-dependence of the placement of the body in space. Again the space
EB of all possible placements is independent of any particular given motion

q of B . Since B comes equipped with a mass-distribution v and since E

is convex, there is a morphism

1 
f ~ ~d~: EB -~ E~v~"’~~.(B~ B

which assigns, to each ( smooth ) placement of B the corresponding position
of the center of mass. More generally there may be a natural partition B - n

( e. g., if B is the solar system considered as the union of n fluid bodies

Aft "



MOTION OF M ATTER ...

B =-- U Bi which retain their separateness throughout the motions consi-
t6 ~

dered). Then (assuming each Bi has substantial mass), B -~ n induces

a morphism ~B -~ En by restricting the above center-of-mass formula to

each BL , t6~. A 11 the last was independent of particular motion. But now
the just-constructed EB -~ En can be composed with any particulat motion,
when the latter is taken in the q guise, to yield ~he time-dependence of the

center(s)-of-mass under the motion

r 201320132013~201320132013~E~

En

This construction suggests how the state space X 4 Q for a cer-

tain body n may involve more than just the tangent bundle of the confi-

guration space Q = E’~ , since states may involve internal motions of the Bi.

Further examples of quantities whose computation requires the

three versions of the motion are :

(1) The temperature experienced by each particle of B as B moves

through a temperature field 8 :

T x B q E

0
R

(2 ) The mean position of particles of B over the last 0 t duration,
where the size of 0 t is fixed :

B ~1 ET x

ET ~~~~~-A~+-~-/ x dt).( n.i"~ ry ( ~ ~ 
At t-At 

,~y .

(3) The deformation rate T X B -~ T *~l~l ( V) computed as the inverse
X-transform of the composite
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B --.: A~( v)T ~ ) T * e A ~ ( V 16 ’~ ,
where the second makes sense for any vector space W in place of A ~ ( v )
(the purpose of tensoring with the  one-dimensional &#x3E;&#x3E; T* being to main-

tain correct physical dimensions). However the construction of the defor-

m ation B - l11 ( T~ ) T out of q : T X B - E w ill be described in a little more

detail ; in fact time is only a passive parameter in this particular construc-

tion, so the essential thing is to construct grad( q): B -+ Al (v) from a giv-
en placement q: B ~ E . Now applying the tangent bundle functor ( )D and

the special property of that functor for flat spaces E (Section 2 ), we get

the composite

B~ qD ED ~- _ E X v ~- v

which by the amazing further right-adjoint property of infinitesimal objects
like D (Section 3 ) transforms into ,

B grad(q)
where such gradients always factor through the linear portion 1B 1 ( Tl ) of

the non-linear h-valued differential-form representator V D since of course

derivatives are linear on fibers.

2. REPRESENTABILITY OF TANGENT BUNDLE. SPECIAL FORMULA

FOR THE TANGENT BUNDLE OF A FLAT SPACE. AND RAPID INTUI-

TtVE AND RIGOUROUS PROOFS OF ALL BASIC RESULTS OF DIFFER.

ENTtAL AND INTEGRAL CALCULUS.

In a topos &#x26; of smooth spaces and smooth morphisms, there will

be a commutative-ring-object R (which may be thought of as the endo-

morphism ring of the abelian group of translations of the geometric line)
which by abuse is often referred to as the line R , We don’t assume R is

a field, since the important mathematical properties we wish to emphasize
are to be invariant under passage to a topos of variable spaces and mor-

phisms more general than 6/ Y or 5;G (where Y is a parameter object in

~ or where G is a group object «(5;-Lie group » ) ; however the assumption
that R is a local ring would be stable under such passage. Often it is rea-

~R2



MOTION OF MATTER...

sonable to assume that 6 is strongly generated by the subcategory (t of

spaces A which can be realized as (domains of) equalizers

A ----,~ R n ~ /P~

of pairs of morphisms between finite cartesian powers of the line R ; such

A could be called «algebraic varie tie s », «analytic varieties, « smooth var-

ieties&#x3E;~, or «families of smooth varieties», etc.,depending on the nature of 11 .

Important examples of varieties are ( in addition to spheres, conics,
cubic hypersurfaces, etc. ) the infinitesimal varieties Dk (n ) C_, Rn def-

ined by the equations

Dk ( n ) = {  xl’...’ xn &#x3E; I any k-f-1 of the xi have R-product = 0 ~ I

and as an especially important case

D = DI (1 ) C, R defined by D - ~ ( h c R I h2 = 0 1

and which may be constructed geometrically as the intersection of a circle

with one of its tangent lines :

B 
B / / X2 +(Y_l )2 

=&#x3E; 
2-

x ~ +  Y - 1 &#x3E;~ = i j -&#x3E; x = oB..X y 0 ] =&#x3E; x2=O

D

D has the one obvious point (and in examples only the one global
point ) 0: 1 - D. In fact in the useful examples, the arbitrary morphisms
Rn -~ RT"’ and more generally between open subvarieties are (not nonstan-

dared » points and morphisms but) precisely the usual points and morphisms ;
nonetheless in interesting examples D is not isomorphic to 1 . In dealing
with the geometrically- and physically-necessary categories of variable

spaces and morphisms, one must reject the idea (fostered by the concen-

tration in the past 100 years on constant, abstract sets and maps and cons..

tant topological spaces, etc.) that a space X somehow lives entirely on

its constant points 1 -~ X . More precisely we assume (what is true in many

example s ) that

D = hER ~ h2=0~ 1

883
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is big enough so that for any al’ a2 f R ,

~ h ( h2 = 0 &#x3E; al h = a2 h ] ~ aI = a2 &#x3E;
i.e. that although one obviously cannot divide by a single nilpotent elem-

ent, one can «divide by all nilpotent elements jointly &#x3E;&#x3E; and indeed many
situations (see below) arising in practice are such that when hypotheses
like a 1 h = a2h can be proved they can actually be proved for all nilpo-
tents h . This assumption of enough nilpotents can be regarded as an ex-

pression of Euler’s famous principle of differential and integral calculus

h=0 and h,;60.

Cur axiom forces the logic of the topos 11 to be non-Aristotelian

( unless R = ~ ( 0 ) ) in the sense that

{0!u!/~D)~0}(_~ D

cannot be an isomorphism ; it was perhaps the general lack of clarity on

this fact which Bishop Berkeley was able to exploit in his subjective-ideal-
ist attack on materialist science.

The assumption of enough nilpotents leads to immediate rigourous

proofs of all the basic formulas of calculus, provided we define the deriv-

ative f’: R - R of a morphism f : R --~ R as being the (unique by the axiom)
one characterized by the condition

f(x~-h ) = f (x ~ ~ f ’(x~. h

for all x c R , all h such that h2 = 0 . For example if we assume that f ’
is the derivative of f and g’ is the derivative of g , then both the Leibniz

rule
’ 

(fg~ ~ = fg~ ~ f ~~
as well as the chain rule

(~ o f~ ~ - (g’o f). f’

are immediate algebraic calculations, wherein we apply at the last step the

«cancellation of all nilpotents jointly » as assumed. Also the fundamental

theorem of calculus

( f~ ~ f~, ~ f
a
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x

is likewise immediate, where f f exists for all ( smooth ) f and is geo-
a

metrically considered as the area /12 under the curve and where of course

fx+h f = f(x~, h for all h E D.
x

As a couple of further proofs (usually slandered as «nonrigourous»)
of some facts from geometry and electromagnetism needed in engineering,
consider the following :

( 1 ) Define the number ~r ~ l~ by the condition A ( r) _ ~r r2 , , where

A ( r ) is the area of the disc

A(r) _ tt2 l x, y&#x3E; ~ 1 x2+y2  r2~) .

( It is clear from easy pictures that 2  rr  4 . ) Then we want to compute
the length L (r) of the boundary circle of the disc of radius r :

L ( r ) = ~.c 1 ( c7 ~ I I ) .

We do this by calculating the area B ( r, h ~ of the band of width h in two

w ays :

r h

~r~=7~+A/-77~=2~rA, since h2 = 0,
B (r, h ) - L ( r~. h, since the error introduced by slitting and

straighthening the band is proportional
to h2.

Hence

L ( r )h - 217 rh for all h2 = 0

and therefore L ( r) = 217 r by the principle.

(2 ) Consider the weak electric field E at a substantial distance x

from a system of two near oppositely-charged particles 2 h apart :

h h - -
.________ x_ _______,:

x

By Coulomb’s law ;
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( 1 - 1 ~ ~ 1 - 1
(x-h)2 (x + h)2 x2- 2x h x 2 + 2xh

. 1 ( 1 - ~1 ~_ 1 ( 1 + 2h -rl - 2h ~~." 

1-~ 1 +2Jf. x2 x x
x x

Hence E = ¢ h , i. e, this weak field falls off in inverse proportion to the
x3

cube of the distance. In fact most proofs of this sort in physics books be-

come rigourous algebra if hypotheses like « h « 1 &#x3E;&#x3E; are interpreted to mean

h 2 = 0 and if  substantial &#x3E;&#x3E; is interpreted to mean invertible in the appro-

priate ring.

Now since to describe motion of matter, the category 11 of smooth

spaces needs to be cartesian closed, we can for any object X consider

the space XD of infinitesimal paths in X ; we ( with ample justification)
w ill call it the tangent bundle o f X . Since D a-- R , there will be a diff-

erentiation morphism XR -~ XD which assigns to any path R -3 X its deriv-

ative at t = 0 . Since clearly

h2=~ ~ (yh)2=O,
the multiplicative monoid R acts on D , and hence by functoriality it acts

on any tangent bundle. (In our smooth context, preservation of such actions

by a morphism q5 should be considered morally equivalent to linearity of

the morphism 0 The cancellation principle from which we above derived

calculus, as well as the existence of a derivative in 11 for every morphism

in 11 , is guaranteed by the following Kock-Lawvere axioms which has

been verified in many concrete examples of 11 (see Dubuc, these «Cahiers»

V olum e ~ ~.- 3 ) : the m orphism

R &#x3E;C R ~ R D defined by  a ~, a1 &#x3E; ~ r (h ~ a 0-i- a 11t ~,
is an isomorphism in Cg . More generally if E is any flat space with R-vec-

tor space V of translations and if G is any open subspace of E , while

k = 1 , 2 , 3, ... , then G x v’~ -~ G ~ ~ (1 ~ defined by
k ~

x, vl, ..., vk&#x3E; -..-~ ~ (h ~.-~ 2 h l, v .) ,’ ~ 
z=1 

’

386



TANGENT BUNDLES AND C AL CULUS ...

is an isomorphism ( openness of G clearly implies that G is closed under

the infinitesimal translations mentioned ).

This representability of tangent ( and jet ) bundle functors by ob-

jects like D leads to considerable simplifications of several concepts, con-

structions and calculations. For example, a first order OLE, or vector

field, on X is usually defined as a section / of the projection XD --~ X
( induced in our context by evaluating a tangent vector v at 0 : 1 - D ).

.

But by the h-conversion rule I is equivalent to a morphism

~; X X D ~ X satisfying ~(x, 0 ) = x,

i, e , to an « infinite sim al f low &#x3E;&#x3E; of the additive group R .

The notion of a morphism f : (X, 6) - ( Y, 71 ) between two vector

fields) (on two spaces) ( whose definition is for some reason usually not

given but rather replaced by the misleading suggestion that there always
exist induced vector fields) is simply that of an ~-morphism f which fur-
ther satisfies commutativity of

X XD f x D ~Y xD

I ~ ~ ~ QX f , y
If we have given actual flow X X R - X we can restrict it to DC...... R to

obtain a vector field, and indeed this process is the inverse image functor

Flows(&#x26; ) -Vector Fields (6)

for an essential geometric morphism of toposes, where its left and right ad-

joints are a useful explicit first step toward investigating the solutions

of an arbitrary ODE.

Since ( )D is a left exact functor, the computation of the tangent
bundles of spheres (as well as of the Lie algebras of classical Lie groups,
and in general of objects defined by nonlinear equations within flat spaces)
leads to the expected explicit results.

"We emphasize again that unlike the counter-intuitive «nonstandard

analysis &#x3E;&#x3E;, the ~-morphisms between usual manifolds are typically only

387
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the standard ones; it’s just that 5; has further interesting objects like D

which also have their ~-morphisms to manifolds X and which can then be

composed with morphisms X - Y , etc.

But ~ also contains the ( often infinite-dimensional ) function space
YX of any two spaces in 6 . When ~ is generated by a category li , the
smooth structure on YX is uniquely determined by knowing the morphisms

,b : A -» YX p A e d ,

and how these transform under any a : A’ -» A in li . But these morphisms

0 are X-equivalent to morphisms A X X - Y which are in turn easily com-

prehensible in classical terms. The tangent bundle of a function space is

trivial to compute, since in any cartesian-closed category we have

(YX)D - ~D~
i, e . a tangent vector to YX is just a smooth morphism from X into the

tangent bundle of Y , and similarly for vector fields, etc.

3. THE AMAZING RIGHT ADJOINTS WHICH PERMIT TRANSFORMATION

INTO «ORDINARY » FUNCTIONS 0 F IN FIN IT ESIMAL FUNCTIONALS AND

THE CONSEQUENT POTENTIAL SIMPLIFICATION OF THE USUAL

CALCULUS OF DIFFERENTIAL FORMS.

’Vhen K ock, Wraith, R eyes, Dubuc and others took up my 1967 pro-

gram of Synthetic Differential Geometry, they arrived at the amazing pre-

viously-undreamed~of (except by Newton, Euler, etc. ? ) fact, and indeed

from both the angle that the fact is needed axiomatically to prove such re-

sults as the stability under étale descent of the property of being a mani-

fold, as well as from the angle that the fact is actually true in many ex-

amples of l$ constructed by the standard Cartier-Grothendieck-Gabriel-

Lawvere method ! I (See Springer Lecture Notes 753 from the 1977 Durham

Conference on Sheaves and Logic . ) This fact is that all the objects D~ (n )
have the property of being connected and internally projective, which even

more objectively means that

D~ (n ~ E ~ - ~ I D c I ( )D has itself got a right adjoint ~ .
def

QRR
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Until someone suggests a better notation, I am calling ()¡J these right

adjoints. It is clear that 3) is closed with respect to finite products in any

topas 5;, but further properties of 3) remain to be discovered. The stan-

dard examples of 6; which are relevant actually satisfy the following null-

stellensutz : every object X in 6 is a quotient Y - X of an object Y

which is weakly generated by 5) in the sense that

V ~ 6 6 d A yl ~Y &#x26; y 1 ~y 2
Y2

=.&#x3E; 3DE~ 3a: D--~A (yla ~ y~a ).
However we will not need the nullstellensatz in what follows.

Note that the fundamental transform ation rule for D f ~ is

XD -~ y

X -. YD
for any X, Y . "We will call such a morphism a (not-necessarily linear) Y-

valued differential form of kind D on X . Note that in its classical guise
XD -~ Y , a differential form is an infinitesimal functional, i.e. a functional
whose domain consists itself of functions with infinitesimal domain D .

But in the transformed guise X - YD , a differential form in X is just an

ordinary smooth function, albeit with a highly non-classical codomain YD . *
If Y = V is an object equipped with an action of the multiplicative monoid

I~ , we can single out a subobject

A ~ ( V ) C~., IjD , where D = Dl(l),

by the condition that the two induced actions of R on Tl D should agree

there. Then an arbitrary morphism X -~ A 1 ( R) is a di f feren~ic~l I-fonn on
X in the usual sense. Just how non-classical the objects YD are is indi-

cated by the fact that there is only one point 0 : 1 -~ l~ 1 ( R ) even though
the paths R -~ A 1 (R ) are as many as the functions R -~ R , etc. These

phenomena, taking place in the ((gros topos of all spaces* should not be

confused with the similar well-known phenomena taking place in a 4,petit

t opos &#x3E;&#x3E; s~t ( X ) C , ~/ X of (étale or other) sheaves on X , which latter

sort sh ( X ~ of topos should be considered as a glorified picture of a single
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space X , rather than as a category of all» spaces as 5; is.

Not only does the functoriality of the space A I (R)X of differen-

tial forms on a variable space X (not entirely trivial to prove rigourously
in the usual setting ) become immediate but the process of taking the gra..

dient grad(r~ ): X - ~11 ( R) of an arbitrary function 0: X - R on X be-

comes an instance of composition with a canonical morphism d: R - A I (R)
namely the one adjoint to the «principal part &#x3E;&#x3E; projection

R D -~-r R X R --’~-~ R .
The formula

grad(~)=do~ forall

and others like it suggests that a drastic simplification of the usual diff-

erential form calculus may be in the offing.

There is also another subobject (~~C2013~ RD such that morphisms
X - Q( R ) from X are  quadratic differential forms », i. e. (not necessarily

definite ) Riemannian metrics on X .

Question: Do physicists and engineers who work in electromagne-
tism and continuum mechanics somehow already unconsciously know» that

differential forms are really just glorified functions ?

I got the idea for the above approach to differential forms while

reading some papers by K.T. Chen on the Calculus of Variations in diff-

erential 1 spaces,~. However the existence of spaces like D, l~ 1 , etc., with
the consequent mathematical representability of tangent vectors and diff-

erential forms, does not hold in his setting, which is essentially the cart-

esian-closed subcategory ~1 ~ ~ consisting of all objects weakly gene-
rated by 1 , i. e. «living on their constant points ». Actually the topos gene-
rated by &#x26;1 is smaller than ~ ; it contains A1, etc., but not D , etc.

4. LAGRANGIAN DESCRIPTION OF THE DYNAMICALLY POSSIBLE MO-

TIONS OF A BODY.

In general the states X of a body B should be sufficient to deter-

mine their own evolution provided the general law I of the motion of B is

goo
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known. In general 1 the state space X may involve histories of motion but
there will always be a given morphism X - Q to the configuration space
of B , expressing the fact that each state involves a specific underlying

configuration («plus whatever further information is necessary»). In most

classical situations the state space is taken to be X = QD the tangent

bundle of Q , expressing that infinitesimal histories are all that is necess-

ary. Moreover the configuration space is Q L- EB the (sub)space of (ad-

m is sible ) placements. Then

X = QD c2013~E~ = (ED)8 = (EX v~B = ~BX r~B ~
so that in fact X C2013~ ~X vB (and often = ) where VB is the space of

velocity fields on B . In many cases the dynamically possible motions of

B can be singled out from the kinetically possible QT by knowing the La-
grangian function Y which is implied by the constitutive relations for B :

~ : X ~ ~ gives the work ~( q, v ) which would need to be added to the

potential I energy of the placement q in order to obtain the kinetic energy

of the velocity field v (on the body with mass distribution f1 ): Thus ~ is

a 1-dimensional&#x3E;&#x3E; vector space with the physical dimension of work.

Since T has a canonical vector field, any motion q: T - Q yields

T.D - 

qD 
~ Q D

canon) ~ q~ . q ~
T q

Hence for 2:X=QD_* W, one has for each q : T - Q the corresponding

T ~q’q~ - X ~ A~. .
Suppose tz, ~, t2 , q, , q2 are given and let Q C.~ (~~ be the subspace of

those motions q for which q( ti ) = qi , i = 1, 2. Then the action

.Tt~( ~ q = ft t2~( , ~ q q ~ dt1 1

may be considered as a morphism 
*

A where A - ~ ~ T ,
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The gradient grad(,~ ) = dA 0 ,j is then a morphisme AD (which fac-
tors through Ai (A) ~ AD ). The object of 2-possible motions is then

the subobject of 0 where grad(J) vanishes. The Lagrangian equations
of motion then follow as usual. (See Courant- Hilbert, Vol. 1, pages 184-

185.) Note that when B is a continuous body, the Lagrangian

~:EBxD -~ I/

may very well depend on the underlying placement of a state, or even on

higher spatial derivatives.
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