ROSWITHA HARTING

Locally injective G-sheaves of abelian groups

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, n° 2 (1981), p. 115-122

<http://www.numdam.org/item?id=CTGDC_1981__22_2_115_0>
The problem of the existence of enough injective abelian group objects in an elementary topos with a natural number object leads to the construction of the internal (parametrized) coproduct of abelian group objects [4]. From certain properties of this parametrized coproduct we earlier derived some further consequences [5], among them the surprising result that «all internal notions of injectivity for abelian group objects are equivalent».

In the following summary we shall apply this result to $Shv(X)^{G^{op}}$, the topos of set-valued sheaves on a topological space X with a left action of a group-valued sheaf G.

We require the following results and definitions [4, 5] (where \mathcal{E} denotes an elementary topos with natural number object and $Ab(\mathcal{E})$ the category of abelian group objects in \mathcal{E}).

(0.1) **Theorem and Definition.** For any object X in \mathcal{E} the functor $X^*: Ab(\mathcal{E}) \to Ab(\mathcal{E}/X)$ has a left adjoint $\Theta_X: Ab(\mathcal{E}/X) \to Ab(\mathcal{E})$ which respects monomorphisms and is faithful.

For $A(x) \in Ob\ Ab(\mathcal{E}/X)$ the abelian group object $\Theta_X A(x)$ in \mathcal{E} is called parametrized coproduct of $A(x)$. (We use «parametrized» to emphasize that the indexing object is in general not just a set but for example a set with an action of a group on it.)

A consequence of this theorem is the following proposition [5]:

(0.2) **Proposition.** If $Ab(\mathcal{E})$ has enough injectives, then so does $Ab(\mathcal{E}^A)$ for any internal category A in \mathcal{E}.

In the following the internal Hom-functor $Ab(\mathcal{E})^{op} \times Ab(\mathcal{E}) \to Ab(\mathcal{E})$
is denoted by \(\text{Hom}(\cdot, \cdot) \). For \(A, B \) abelian group objects in \(\mathcal{E} \), \(\text{Hom}(A, B) \) is the abelian group object in \(\mathcal{E} \) that internalizes the abelian group of group-morphisms from \(A \) to \(B \).

(0.3) **DEFINITION.** An abelian group object \(B \) in \(\mathcal{E} \) is called

(i) internally injective if for every monomorphism \(A \rightarrow C \) in \(\text{Ab}(\mathcal{E}) \), \(\text{Hom}(C, B) \rightarrow \text{Hom}(A, B) \) is an epimorphism in \(\mathcal{E} \).

(ii) locally injective if for every diagram of the form

\[
\begin{array}{ccc}
A & \xrightarrow{m} & C \\
\downarrow f & & \\
B & & \\
\end{array}
\]

in \(\text{Ab}(\mathcal{E}) \) there exists a cover \(U \rightarrow 1 \) of \(\mathcal{E} \) and a morphism \(g: U^*C \rightarrow U^*B \) in \(\text{Ab}(\mathcal{E}/U) \) such that

\[
\begin{array}{ccc}
U^*A & \xrightarrow{U^*m} & U^*C \\
\downarrow U^*f & & \downarrow g \\
U^*B & & \\
\end{array}
\]

commutes.

(0.4) **PROPOSITION.** The following conditions on an abelian group object \(B \) in \(\mathcal{E} \) are equivalent (for (iii) we suppose that \(\text{Ab}(\mathcal{E}) \) has enough injectives):

(i) \(B \) is locally injective.

(ii) For every diagram of the form

\[
\begin{array}{ccc}
A & \xrightarrow{m} & C \\
\downarrow f & & \\
B & & \\
\end{array}
\]

in \(\text{Ab}(\mathcal{E}) \) there exist a cover \(U \rightarrow 1 \) of \(\mathcal{E} \) and a morphism \(g: U \rightarrow \text{Hom}(C, B) \) in \(\mathcal{E} \)

such that the diagram
(iii) There exists a cover \(U \rightarrow 1 \) of \(\mathcal{E} \) such that \(\eta_B : B \rightarrow B^U \) is an injective effacement [2]. Here \(\eta : \text{id}_{\text{Ab}(\mathcal{E})} \rightarrow \pi_U.\pi_U^* \) denotes the unit of the adjunction \(\pi_U^* \dashv \pi_U \), and the abelian group object structure of \(B^U \) is induced by that of \(B \).

(A monomorphism \(m : A \rightarrow C \) in \(\text{Ab}(\mathcal{E}) \) is an injective effacement iff for every monomorphism \(f : A \rightarrow B \) in \(\text{Ab}(\mathcal{E}) \) there exists a morphism \(g : B \rightarrow C \) in \(\text{Ab}(\mathcal{E}) \) such that \(g \cdot f = m \).)

(0.5) Lemma. An abelian group object \(B \) in \(\mathcal{E} \) is internally injective iff for every monomorphism \(m : A \rightarrow C \) in \(\text{Ab}(\mathcal{E}) \) and every generalized element \(f : V \rightarrow \text{Hom}(A, B) \) in \(\mathcal{E} \) there exist an object \(U \), an epimorphism \(h : U \rightarrow V \) and a morphism \(g : U \rightarrow \text{Hom}(C, B) \) in \(\mathcal{E} \) such that

\[
\begin{array}{ccc}
\text{Hom}(C, B) & \xrightarrow{\text{Hom}(m, B)} & \text{Hom}(A, B) \\
g & & f \\
U & \xrightarrow{\text{Hom}(B, U)} & V \\
\end{array}
\]

commutes.

(0.6) Theorem. An abelian group object \(B \) in \(\mathcal{E} \) is locally injective iff \(B \) is internally injective.

In the following we shall study the meaning of this result in the topos \(\mathcal{E} = \text{Shv}(X)^{\text{Gop}} \), where \(X \) denotes a topological space (resp. a locale [7, 9]) and \(G \) a group-valued sheaf on \(X \). Then \(\text{Ab}(\text{Shv}(X)^{\text{Gop}}) \) is the category of abelian group-valued sheaves on \(X \) equipped with a left action of \(G \) compatible with the abelian group structure. So \(\text{Ab}(\text{Shv}(X)^{\text{Gop}}) \) is the category of \(G \)-modules on \(X \), and will be denoted from now on by \(G\text{-Mod}(X) \).
(1.1) SOME REMARKS.

(i) The following diagram of forgetful functors commutes:

\[
\begin{array}{ccc}
G-\text{Mod}(X) & \xrightarrow{V''} & \text{Shv}(X)^{\text{op}} \\
V & \downarrow & \text{Shv}(X) \\
\text{Ab}(\text{Shv}(X)) & \xrightarrow{V'} & \text{Shv}(X)
\end{array}
\]

All these forgetful functors create epimorphisms and monomorphisms, they all have a left adjoint, and they respect injectives \[10\].

(ii) In \(\text{Ab}(\text{Shv}(X))\) the notions of injectivity and internal injectivity coincide \[5\]. For \(A, B\) in \(\text{Ab}(\text{Shv}(X))\) the internal Hom is obtained as follows: for \(U\) open in \(X\), \(\text{Hom}(A, B)(U)\) is defined to be

\[\text{Hom}_{\text{Ab}(\text{Shv}(U))}(A/U, B/U)\].

(iii) \(G-\text{Mod}(X)\) has enough injectives. (This follows immediately from (0.2).)

(iv) In \(G-\text{Mod}(X)\) the internal Hom is obtained as follows: For \(A, B\) \(G\)-modules on \(X\), \(\text{Hom}(A, B)\) is defined to be

\[\text{Hom}(VA, VB)\text{ in } \text{Ab}(\text{Shv}(X))\]

equipped with the following action of \(G\): for \(U\) open in \(X\),

\[
GU \times \text{Hom}_{\text{Ab}(\text{Shv}(U))}(VA/U, VB/U) \to \text{Hom}_{\text{Ab}(\text{Shv}(U))}(VA/U, VB/U)
\]

\((s, h) \mapsto s \circ h\)

is defined by:

\[
(s \circ h)_W(x) = (s/W).h_W((s^{-1}/W).x),
\]

where \(W \subseteq U\), \(W\) open in \(X\) and \(x \in A/W\).

(1.2) PROPOSITION. Let \(B\) be a \(G\)-module on \(X\).

(i) \(B\) is internally injective iff \(VB\) is injective in \(\text{Ab}(\text{Shv}(X))\).

(ii) If \(B\) is internally injective, then \(B^G\) is injective.

PROOF. (i): Suppose \(B\) to be internally injective. To show that \(B\) is injective in \(\text{Ab}(\text{Shv}(X))\), it is sufficient to show that \(B\) is internally injective in \(\text{Ab}(\text{Shv}(X))\) (cf. (1.1) (ii)). So let \(m: A \to C\) be a mono-
morphism in $Ab(\text{Shv}(X))$. Let G operate trivially on A and C; then $m: A \to C$ becomes a monomorphism in $G\text{-Mod}(X)$. Since B is internally injective it follows that $\text{Hom}(C, B) \to \text{Hom}(A, B)$ is an epimorphism in $\text{Shv}(X)^{G^{op}}$, and hence an epimorphism in $\text{Shv}(X)$ (cf. (1.1) (i) and (iv)). So B is injective in $Ab(\text{Shv}(X))$.

The other implication is equally easy.

(ii): Let

\[
\begin{array}{ccc}
A & \xrightarrow{m} & C \\
\downarrow f & & \downarrow \\
B^G & & \\
\end{array}
\]

be a diagram in $G\text{-Mod}(X)$ and suppose B to be internally injective. We have a sequence of natural bijections between the following sets:

\[
\begin{array}{rcl}
A & \to & B^G \text{ in } G\text{-Mod}(X) \\
G & \to & V^*(\text{Hom}(A, B)) \text{ in } \text{Shv}(X)^{G^{op}} \\
1 & \to & \overline{V}^*(\text{Hom}(A, B)) \text{ in } \text{Shv}(X) \\
1 & \to & \overline{V}^*(\text{Hom}(VA, VB)) \text{ in } \text{Shv}(X) \\
VA & \to & VB \text{ in } Ab(\text{Shv}(X)).
\end{array}
\]

So $f: A \to B^G$ determines, and is determined by, a morphism $\overline{f}: VA \to VB$ in $Ab(\text{Shv}(X))$. B is supposed to be internally injective, so, by (i), VB is injective in $Ab(\text{Shv}(X))$. Hence there is a morphism h in $Ab(\text{Shv}(X))$ such that

\[
\begin{array}{ccc}
VA & \xrightarrow{V_m} & VC \\
\downarrow \overline{f} & & \downarrow h \\
VB & & \\
\end{array}
\]

commutes. As above h determines a morphism $\hat{h}: C \to B^G$ in $G\text{-Mod}(X)$, and it is easy to verify that $\hat{h}m = f$. So B^G is injective in $G\text{-Mod}(X)$.

(1.3) REMARK. Let ΔZ be the ring-valued sheaf on X associated to the
constant presheaf with value Z. Then $U \mapsto \Delta Z(U)[GU]$ defines an abelian group-valued presheaf with the usual left action of G, where we denote by $\Delta Z(U)[GU]$ the group-ring over GU. The associated sheaf is a G-module on X and is denoted by $Z[G]$. Some obvious calculations show that there is a natural isomorphism

$$\text{Hom}(Z[G], A) \cong A^G.$$

In the following the composite

$$A \xrightarrow{\eta_A} A^G \xrightarrow{=} \text{Hom}(Z[G], A)$$

is again denoted by η_A (cf. (0.4)(iii)).

(1.4) PROPOSITION. Let B be a G-module on X. The following conditions on B are equivalent:

(i) $\text{Hom}(Z[G], B)$ is an injective G-module on X.

(ii) There exists an epimorphism $D \twoheadrightarrow 1$ in $\text{Shv}(X)^{\text{op}}$ such that B^D is an injective G-module on X.

(iii) $\eta_B : B \Rightarrow \text{Hom}(Z[G], B)$ is an injective effacement in $G\text{-Mod}(X)$.

(iv) There exists an epimorphism $D \twoheadrightarrow 1$ in $\text{Shv}(X)^{\text{op}}$ such that $\eta_B : B \Rightarrow B^D$ is an injective effacement in $G\text{-Mod}(X)$.

(v) B is injective in $\text{Ab}(\text{Shv}(X))$.

(vi) B is internally injective in $G\text{-Mod}(X)$.

(vii) There exists an open cover of X, $X = \bigcup_{i \in I} U_i$, such that B/U_i is injective in $\text{Ab}(\text{Shv}(U_i))$ for every $i \in I$.

PROOF. (iii) \Rightarrow (iv) \Rightarrow (1.1)(iii), (0.4)(iii), (0.6) \Rightarrow (vi) \Rightarrow (1.2)(ii)

\Rightarrow (i) \Rightarrow (iii).

(ii) \Rightarrow (iv) \Rightarrow (i) \Rightarrow (ii).

(vi) \Rightarrow (1.2)(i) \Rightarrow (v) \Rightarrow (vi).

So they are all equivalent.

(1.5) REMARK. If X is reduced to a point, then $\text{Shv}(X)^{\text{op}}$ is the topos
of G-sets, $Ab(Shv(X))^{G^{op}}$ is the category of left $\mathbb{Z}[G]$-modules, and $Ab(Shv(X))$ is the category of abelian groups. For two $\mathbb{Z}[G]$-modules A, B the internal Hom, $Hom(A, B)$, is the abelian group of all \mathbb{Z}-linear maps from A to B equipped with the following G-action:

$$(s \circ f)(x) = sf(s^{-1}x) \quad \text{for} \quad s \in G, \quad f \in Hom_{\mathbb{Z}}(A, B), \quad x \in A.$$

$\eta_B : B \rightarrow Hom(\mathbb{Z}[G], B)$ is here defined by

$\eta_B(b)(s) = b \quad \text{for every} \quad s \in G.$

We remark that in the above case the Proposition (1.4) remains true if G is replaced by a monoid M and consequently $Hom(\mathbb{Z}[G], B)$ by B^M (cf. [3]).
REFERENCES.

Mathematisches Institut
Universitätsstr. 1
D-4000 DÜSSELDORF. R. F. A.