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THE EQUIVALENCE OF ~-GROUPOIDS AND CROSSED COMPLEXES

by Ronald BROWN and Philip J. HIGGINS
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3e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, juillet 1980

INTRODUCTION.

Multiple categories, and in particular n-fold categories and n-cat-

egories, have been considered by various authors [8, 11]. The object of

this paper is to define oo-categories (which are n-categories for all n ) and

oo-groupoids and to prove the equivalence of categories

(oo-groupoids) -&#x3E; ( crossed complexes) .

This result was stated ( without definitions) in the previous paper [3] and

there placed in a general pattern of equivalences between categories, each

of which can be viewed as a higher-dimensional version of the category of

groups.

The interest of the above equivalence arises from the common use

of n-categories, particularly in situations describing homotopies, homotopies
of homotopies, etc..., and also from the fact that oo-groupoids can be re-

garded as a kind of half-way house between w-groupoids and crossed com-

plexes. It is easy to construct from any w-groupoid a subset which has the

structure of an oo-groupoid and contains the associated crossed complex.
In this way we get a diagram of functors

which is commutative up to natural isomorphism. The reverse equivalence

has, however, proved difficult to describe directly.
Earlier results which point the way to some of the equivalences des-
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cribed here and in [3] are: 

(a) the equivalence between 2-categories and double categories with

connection described in [10],

(b) the equivalences between double groupoids with connections, §-
groupoids ( i, e, group objects in the category of groupoids) and crossed

modules established in [4, 5], and

(c) the equivalence between simplicial Abelian groups and chain com-

plexes proved in [7, 9].

1. --CATEGORIES AND 00 -G R 0 U POI D S .

An n-fold category is a class A together with n mutually compatible
category structures Ai = ( A, d0i, dli, + ) ( 0  i  n-1 ) each with A as its

class of morphisms (and with d0i, di giving the initial and final identities
for + ). The objects of the category structure Al are here regarded as mem-

i

bers of A , coinciding with the identity morphisms of Ai . The compatibility
conditions are: 

and

for l and

whenever x, y c A and x + y is defined.
i

( 1 .3 ) (The interchange law) If i = j, then

whenever x, y, z , t E A and both sides are defined.

As in [I], we denote the two sides of ( 1.3 ) by

The category structure Al on A is said to be stronger than the

structure A j if every object (identity morphism) of A i is also an object
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of Ai. An n-fold category A is then called an n-category if the category

structures A0, A1 , ... , An-1 can be arranged in a sequence of increasing

( or decreasing) strength. Different authors choose different orders [8,11] ;
our exposition will correspond to the order

Adopting this convention, we now define an --category to be a class A

with mutually compatible category structures Ai for all integers i &#x3E; 0 sat-

isfying

The oo-categories considered in this paper will also satisfy the extra con-

dition

An interesting alternative set of axioms for such oo-categories, with

a more geometric flavour, will be given in Section 2. However, the axioms

given above will be used in the later sections for the proof of the main the-

orem since they make the algebra simpler.

An oo-groupoid A is an oo-category satisfying condition ( 1.5 ) in

which each category structure A’ is a groupoid.

Clearly there is a category Catoo of oo-categories in which a mor-

phism ft A - B is a map preserving all the category structures. The full

subcategory of Catoo whose objects are oo-groupoids is denoted by K.

2. THE RELATION OF oo-GROUPOIDS TO w-GROUPOIDS.

In this section we explore a direct route from m-groupoids to oo-

groupoids and use it to reformulate the definitions of oo-groupoids and 00-

categories. This account is intended to show how oo-groupoids fit into the

pattern of equivalences established in [1,3] ; it will not be needed in later

sections.

We recall from [1] that an w-groupoid G is a cubical set with some

extra structures. In particular, each Gn carries n groupoid structures Q)
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with G 1 as set of objects. The face maps d0i, ai ; Gn -&#x3E; G 1 give the

initial and final objects for the groupoid @ , and the degeneracy map Ci,

(i: Gn-1 -&#x3E; Gn embeds Gn-1 as the set of identity elements of @i. Adopting
the conventions of Section 1, we write

and

The axioms for w-groupoids now ensure that the groupoid structures

are mutually compatible. Thus for n &#x3E; 0 , Gn carries the structure of n-fold

category (with inverses) and Ej : Gn -1 -&#x3E; Gn embeds Gn-1 as (n -1 )-fold
subcategory of the (n-1 )-fold category obtained from Gn by omitting the

j-th category structure.

Now there is an easy procedure for passing from an n-fold category
A to an n-category induced on a certain subset S of A . Let

be the n category structures on A . Write

and define

The compatibility conditions ( 1.1 ) - ( 1.3) imply that each 
i is an n-fold

subcategory of A and hence that S is also an n-fold subcategory of A ,
with category structures Si = S, d0i , d1i , + } . But, for x c S, dai x E Bi n S,

th at S is an n-c ate gory,

Before applying this procedure to the n-fold category Gn , we re-
number the operations to conform with conventions adopted in Section 1.

’i ricr
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Then G. is an n-fold category with respect to the structures

Also

lke therefore define

and deduce that, for each n &#x3E; 0 , Sn is an n - fold category with respect to

the structures ( Sn , d0i, d1i, +i ), 0  i  n -1. These structures are in fact

all groupoids. One verifies easily that the family (Sn )n &#x3E; 0 admits all the

face operators dBi of G and also the first degeneracy operator E1 in each

dimension. Since (1 embeds Gn-1 in Gn as (n-1 )-fold subcategory omit-

ting @, it embeds Sn-1 in Sn as ( n-1 )-subcategory omitting + . In other

words, it preserves the operations +, Q  i  n-2 and its image is the set

of identities of +n-1. It follows that if we define

1 1

then the operations ( for fixed i ) in each dimension combine to give a

groupoid structure H i = (H, d0i, d1i , +i) on H. Also Ob (Hi) is Hi , the

image of si in H . Thus we have

(2.1) PROPOSITION.// G is an w-groupoid, then G induces on H the

structure o f --groupoid. 0

Clearly, the structure on H can also be described in terms of the

family S = ( S ) The neatest way to do this is to use the operators
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Since S admits c and all dai , there are induced operators

If x f Sn , we have dan-i x = En-i-1y1 for some y E Gi and this y is unique,
since E 1 is an injection. The effect of Dq is to pick out this i-dimensional

«essential face » y of x , because

If we pass to H = lim-&#x3E; Sn , the operators Ei induce the inclusions

Hi c_ H and the operators Dq induce the dai : H -&#x3E; H , since, for x E ,Sn,
we have da x n 1"y, where y = Dai X.

It is easy now to see that the definition of oo-category given in Sec-

tion 1 (including condition (1.5 )) is equivalent to the following. A (small)
.-category consists of

( 2.2) A sequence S = (Sn )n&#x3E; 0 of sets.

( 2.3 ) Two familes of functions

satisfying the laws

( 2.4 ) Category structures + on 5 ( 0  i  n -1 ) for each n &#x3E; 0 such

that + i has Si as its set of objects and D q, D1i, Ei as its initial, final

and identity maps. These category structures must be compatible, that is : 

(i) It i&#x3E; j and a =0,1, then
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whenever the left hand side is defined.

I J

in Sn whenever the left hand side is defined.

( iii ) ( The interchange law) if i f j then

whenever both sides are defined.

The transition from an oo-category A as defined in Section 1 to one

of the above type is made by putting ,Sn = Ob (An) and defining Ei: Si -&#x3E; Sn
( i  n ) to be the inclusion map and Dai : Sn -&#x3E; Si to be the restriction of

dq: A - A.
We note finally that, starting from an w-groupoid G, the oo-groupoid

S = (Sn)n &#x3E; 0 described above contains the associated crossed complex

C = y G defined in [ 1 ] by the rule

The equivalence of categories

established in [1] therefore factors through (oo-groupoids ). We shall show

below th at the factor

is an equivalence, with inverse

Hence

is an equivalence. By results in [2], any w-groupoid is the homotopyoj-

groupoid p ( x ) of a suitable filtered space X . Defining the homotopy oo-

groupoid of X to be o ( x ) = ç p ( x ) , we deduce that an y ( small) oo -group-
oid is of the form or(X) for some X .
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3. THE CROSSED COMPLEX ASSOCIATED WITH AN oo-GROUPOID.

Let H be an oo-groupoid in the sense of Section 1. Then H has

groupoid structures (H , d0i, d1i, +i ) for i &#x3E; 0 satisfying the compatibility
conditions (1.1 ), ( 1.2 ), ( 1.3 ) and the conditions

where Hi = d? H = d1i H is the set of identities (objects) of the i-th group-
oid structure. The conditions (3.1) enable us to define the dim ension of

any x E H to be the least integer n such that x E Hn ; we denote this in-

teger by dim x . It is convenient to picture an n-dimensional element x of

H as having two vertices da0x, two edges da x joining these vertices, two
faces da2 x joining the edges, and so on, with x itself joining the two faces

dan-1 x E Hn-1. (The actual dimensions of the faces da x may of course be
smaller than i . )

Some immediate consequences of the definitions are

) For each

then

then

whenever x + y is defined. 
i

Here ( ii ) follows from ( i ), since dim ( daj x )  i  j , and ( iii ) follow s from

( ii ) since, for example,

We shall show that any oo-groupoid H contains a crossed complex

C = a H , as described in Section 2. First we recall from [1] the axioms

for a crossed complex.
A crossed complex C ( over a groupoid ) consists of a sequence

satisfying the following axioms:
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( 3.3 ) C1 is a groupoid over Co with d 0, d 1 as its initial and final

maps. We write C1 ( p , q ) for the set of arrows from p to q (p, q l C0 )
and C1 (p ) for the group C1 (p, p).

( 3.4 ) For n &#x3E; 2, Cn is a family of groups {Cn(p)]pEG0 and for n &#x3E; 3
the groups Cn (p ) are Abelian.

( 3.5 ) The groupoid Cl operates on the right on each Cn ( n &#x3E; 2 ) by

an action denoted ( x, a) |-&#x3E; xa . Here, if Xl C n(p) and a E C1 (p, q ) then

XalCn(q). (Thus Cn(p) = Cn (q) if p and q lie in the same component

of the groupoid C 1. )
We use additive notation for all groups C (p ) and for the groupoid C

and we use the symbol 0 p E C n (p ), or 0 , for all their identity elements.

(3.6) For n &#x3E; 2 , s ; C - Cm-1 is a morphism of groupoids over C 0
and preserves the action of C 1 , where C 1 acts on the groups C 1 ( p ) by
c on jugation : x a = - a + x + a’

(3.7) dd = 0: Cn -&#x3E; Cn-2 for n &#x3E; 3 (and d0d= d1d:C2 -&#x3E; C0, as

follows from (3.6).)

(3.8) If c E C2, then d c operates trivially on Cn for n &#x3E; 3 and op-

erates on C2 as conjugation by c , that is,

The category of crossed complexes is denoted by C.

Given an oo-groupoid H , we define C = a H by

It follows from ( 3.2 ) ( ii ) that if x E Cn( p) ( n &#x3E; 2 ) then

Thus we have the alternative characterisation : 

t 
be the family

Then since
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This defines 0: for n &#x3E; 2, and we define

Clearly C 1 is a groupoid over G 0 with respect to the composition
+0 . Also for each p c C0 and n &#x3E; 2, C n(p) is a group with respect to each

of the compositions i for i = 0, 1 , ... , n -2, with zero element p . If

p  i  j  n -2 and x,y( Cn ( p ) then the composites

are defined. Evaluating them by rows and by columns we find that

Thus, for n &#x3E; 3 , these group structures in Cn ( p ) all coincide and are A b-

lian. We write x + y for x + y whenever this is defined in H . Then Cn (p)
is a group with respect to +. By is a

morphism of groups for n &#x3E; 2. Also 00 = 0 since for x E Cn ( p ) and n &#x3E; 3 ,

Let Xf Cn(p ), n &#x3E; 1 and let a E C1(p,q). We define

, 
then

If n = 1 , then , Thus, in either case, x ’c Cn ( q ) and we
obtain an action of C1 on Cn . This action is preserved by 8 since for
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P ROO F. This follows from evaluating in two ways the composite

From ( 3.9 ) we see that if x, c c C2( p ), then -

required in (3.8). Further, if x E Cn (p ), n &#x3E; 3 and c ( C2 (p ), then the

composite

is also defined, giving - c + x + c = x, so in this case (3.9) implies that

xdc = x.
This completes the verification that C = { Cn } n &#x3E; 0 is a crossed

complex, which we denote by a H. We observe that this crossed complex
is entirely contained in H , and all its compositions are induced by +, 

0

while its boundary maps are induced by the various d0i. The groups C n (q ),
Cn( p ) are disjoint if p f q ; the groups Cm ( p ), Cn (p ) have only their

zero element p in common if m fi n .

We now aim to show that H can be recovered from the crossed com-

plex C = a H contained in it. The key result for this is

( 3.10 ) PROPOSITION. L et H be an oo-groupoid with associated cross-

ed complex C = a H . L et n &#x3E; 1, x f Hn , d 00 x = p and d 10x = q , Then

x can be written uniquely in the form

for i &#x3E; 2 and + stands for + .
0

Further, x i is given by

P ROO F. If (*) holds then, for 1  i  n,
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since d1i xi = p for i  j . The formula for xi follows, and this proves un-

iqueness. For existence, let x i be defined by (**). Then

Also xi( Hi, and

if i &#x3E; 2, that is, xi E Ci (p ). Similarly,

We now give some basic properties of the decomposition (*) of

Proposition (3.10).

We have already proved ( 3.11), and ( 3.12) is similar. 0

( 3.13 ) I f a - x + y is de ftned in H , then
0

P ROO F. Clearly

If i &#x3E; 2 then

by ( 3 ,9 ), where , then

«

If i &#x3E; 3, then

But d x 2 acts trivially on Ci for i &#x3E; 3, so the result is true in this case

also. o

(3.14) lf z = x + y is de fined in H , where j &#x3E; 1, then
i
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P ROOF. First note that d1j x = d0j y and hence

i  j , th en

If i = j, then

If i = j+1, then z

But

and so

If i &#x3E; j + 2 , then

These results show that the oo-groupoid structure of jj can be re-

covered from the crossed complex structure of C = a H , a fact which we
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make more precise in the next section. We observe that all the equations

( 3.11 ) - ( 3.14 ) and (**) of ( 3.10 ) remain valid for values of i and j greater

than the dimensions of x, y, z if we adopt the convention that, for i &#x3E;dim x,

xi = d00x.

4. THE EQUIVALENCE OF CATEGORIES.

We have constructed, for any oo-groupoid H, a crossed complex a H,
and this construction clearly gives a functor a : H -&#x3E; C . We now construct

a functor 0 : C , K .
Let C be an arbitrary crossed complex. We form an oo-groupoid

K = 03B2 C by imitating the formulas (3.10)-(3.14). Let K be the set of all

sequences

x = ( ... , xi , xi-1 , ... , x1), where x 1 f C l’ , xi E Ci( d0x1 ),
and xi 0 for all sufficiently large i ,

A s for polynomials, we shall write

if xi = 0 for all i &#x3E; n .

We define maps dai: K - K by

It is easy to verify the law (1.1 . (The crossed module law dd = 0 is

needed to prove d 0i d0i+1 = d 0i+1 d0i.) Also, writing

for i &#x3E; 0, we have

Suppose now that we are given x, y E K such that d

We define

which is an element of K. Similarly, if j &#x3E; 1 and 4 , 
that is,
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, 
we define

again an element of K . In each case it is easy to see that the composition

+ j defines a groupoid structure on K with K i as its set of identities and

d , d j 1 as its initial and final maps. The law ( 1.2) follows trivially from
i I

these definitions if a = I or if i  j. If a = 0 and i &#x3E; j , it reduces im-

mediately to one of the following equations : 

These are all easy consequences of the laws for a crossed complex. The

interchange law (1.3) is proved in a similar way to complete the verifica-

tion that K = /3 C is an oo-groupoid. The construction is clearly functorial.

(4.1) THEOREM. The functors a : H -&#x3E; e and (3: e -+ K de fin ed above
are inverse equivalences.

P ROO F. Given an oo-groupoid H , the oo-groupoid K = /3 a H is naturally

isomorphic to H by the map

(the sum on the right being finite since x r = Q for large r ). This is a con-

sequence of Proposition (3.10) and the relations (3.11)-(3.14).

On the other hand, if C is a crossed complex, H = (3 C and D =

a /3 C, then Hn consists of elements x = (xn, xn-1 ,..., x1) and hence

consists of elements x = (xn,0p,0p, ... ,0p), where xn£Cn(P). It is

easy to see that the map C n -&#x3E; Dn defined by

gives a natural isomorphism C -&#x3E; a /3 C. 0
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