CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

Ronald Brown Philip J. Higgins
 The equivalence of α-groupoids and crossed complexes

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, $\mathrm{n}^{\circ} 4$ (1981), p. 371-386
http://www.numdam.org/item?id=CTGDC_1981__22_4_371_0
© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CAHIE RS DE TOPOLOGIE
ET GEOMETRIE DIFFERENTIELLE Vol. XXII-4 (1981)
3^{e} Colloque sur les categories
DEDIE A CHARLES EHRESMANN
Amiens, Juillet 1980

THE EQUIV ALENCE OF ∞-GROUPOIDS AND CROSSED COMPLEXES

 by Ronald BROWN and Philip J. HIGGINS
INTRODUCTION.

Multiple categories, and in particular n-fold categories and n-categories, have been considered by various authors [8, 11]. The object of this paper is to define ∞-categories (which are n-categories for all n) and ∞-groupoids and to prove the equivalence of categories

$$
(\infty \text {-groupoids }) \longleftrightarrow \text { (crossed complexes) }
$$

This result was stated (without definitions) in the previous paper [3] and there placed in a general pattem of equivalences between categories, each of which can be viewed as a higher-dimensional version of the category of groups.

The interest of the above equivalence arises from the common use of n-categories, particularly in situations describing homotopies, homotopies of homotopies, etc..., and also from the fact that ∞-groupoids can be regarded as a kind of half-way house between ω-groupoids and crossedcomplexes. It is easy to construct from any ω-groupoid a subset which has the structure of an ∞-groupoid and contains the associated crossed complex. [n this way we get a diagram of functors

which is commutative up to natural isomorphism. The reverse equivalence

$$
(\infty \text {-groupoids }) \longrightarrow(\omega \text {-groupoids })
$$

has, however, proved difficult to describe directly.
Earlier results which point the way to some of the equivalences des-
cribed here and in [3] are:
(a) the equivalence between 2 -categories and double categories with connection described in [10],
(b) the equivalences between double groupoids with connections, \mathcal{G}_{-} groupoids (i.e. group objects in the category of groupoids) and crossed modules established in $[4,5]$, and
(c) the equivalence between simplicial Abelian groups and chain complexes proved in [7, 9].

1. ∞-CATEGORIES AND ∞-GROUPOIDS.

An n-fold category is a class A together with n mutually compatible category structures $A^{i}=\left(A, d_{i}^{0}, d_{i}^{1},+\right)(0 \leq i \leq n-1)$ each with A as its class of morphisms (and with d_{i}^{0}, d_{i}^{l} giving the initial and final identities for +). The objects of the category structure A^{i} are here regarded as members of A, coinciding with the identity morphisms of A^{i}. The compatibility conditions are:
(1.1) $d_{i}^{\alpha} d_{j}^{\beta}=d_{j}^{\beta} d_{i}^{\alpha}$ for $i \neq j$ and $a, \beta \in\{0,1\}$;
(1.2) $d_{i}^{\alpha}(x+y)=d_{i}^{\alpha} x+d_{i}^{\alpha} y$ for $i \neq j$ and $a=0,1$,
whenever $x, y \in A$ and $x+y$ is defined.
(1.3) (The interchange law) If $i \neq j$, then

$$
(x+y)+(z+i)=(\underset{j}{x}+\underset{i}{x})+(\underset{i}{y}+t)
$$

whenever $x, y, z, t \in A$ and both sides are defined.
As in [1], we denote the two sides of (1.3) by

The category structure A^{i} on A is said to be stronger than the structure A^{j} if every object (identity morphism) of A^{i} is also an object
of A^{j}. An n-fold category A is then called an n-category if the category structures $A^{0}, A^{1}, \ldots, A^{n-1}$ can be arranged in a sequence of increasing (or decreasing) strength. Different authors choose different orders [8,11]; our exposition will correspond to the order

$$
O b A^{0} \subset O b A^{1} \subset \ldots \subset O b A^{n-1}
$$

Adopting this convention, we now define an o-category to be a class A with mutually compatible category structures A^{i} for all integers $i \geq 0$ satisfying

$$
\begin{equation*}
O b A^{i} \subset O b A^{i+1} \quad \text { for all } i \geq 0 \tag{1.4}
\end{equation*}
$$

The ∞-categories considered in this paper will also satisfy the extra condition

$$
\begin{equation*}
A=\underset{i \geq 0}{\cup} O b\left(A^{i}\right) \tag{1.5}
\end{equation*}
$$

An interesting alternative set of axioms for such $\infty-$ categories, with a more geometric flavour, will be given in Section 2. However, the axioms given above will be used in the later sections for the proof of the main theorem since they make the algebra simpler.

An ∞-groupoid A is an ∞-category satisfying condition (1.5) in which each category structure A^{i} is a groupoid.

Clearly there is a category Cat $^{\infty}$ of $\infty-$ categories in which a morphism $f: A \rightarrow B$ is a map preserving all the category structures. The full subcategory of $C a t^{\infty}$ whose objects are ∞-groupoids is denoted by \mathcal{H}.

2. THE RELATION OF ∞-GROUPOIDS TO ω-GROUPOIDS.

In this section we explore a direct route from ω-groupoids to ∞ groupoids and use it to reformulate the definitions of ∞-groupoids and ∞ categories. This account is intended to show how ∞-groupoids fit into the patterm of equivalences established in [1,3] ; it will not be needed in later sections.

We recall from [1] that an ω-groupoid G is a cubical set with some extra structures. In particular, each G_{n} carries n groupoid structures $\underset{i}{\oplus}$
with G_{n-1} as set of objects. The face maps $\partial_{i}^{0}, \partial_{i}^{l}: G_{n} \rightarrow G_{n-1}$ give the initial and final objects for the groupoid $\underset{i}{\oplus}$, and the degeneracy map ϵ_{i}, $\epsilon_{i}: G_{n-1} \rightarrow G_{n}$ embeds G_{n-1} as the set of identity elements of $\underset{i}{\oplus}$. Adopting the conventions of Section 1, we write

$$
\eta_{i}^{\alpha}=\epsilon_{i} \partial_{i}^{\alpha}: G_{n} \rightarrow G_{n}
$$

and

$$
O b^{i}\left(G_{n}\right)=\epsilon_{i} G_{n-1}=\left\{x_{\epsilon} G_{n} \mid \eta_{i}^{\alpha} x=x \text { for } a=0,1\right\}
$$

The axioms for ω-groupoids now ensure that the groupoid structures

$$
\left(G_{n}, \eta_{i}^{0}, \eta_{i}^{l}, \underset{i}{\oplus}\right), \quad i=1,2, \ldots, n
$$

are mutually compatible. Thus for $n \geq 0, G_{n}$ carries the structure of n-fold category (with inverses) and $\epsilon_{j}: G_{n-1} \rightarrow G_{n}$ embeds G_{n-1} as ($n-1$)-fold subcategory of the ($n-1$) -fold category obtained from G_{n} by omitting the j-th category structure.

Now there is an easy procedure for passing from an n-fold category A to an n-category induced on a certain subset S of A. Let

$$
A^{i}=\left(A, d_{i}^{0}, d_{i}^{l},+i\right), \quad i=0,1, \ldots, n-1,
$$

be the n category structures on A. Write

$$
B^{i}=O b\left(A^{i}\right) \cap O b\left(A^{i+1}\right) \cap \ldots \cap O b\left(A^{n-1}\right), \quad 0 \leq i \leq n-1,
$$

and define

$$
S=\left\{x_{\epsilon} A \mid d_{i}^{\alpha} x_{\epsilon} B^{i} \text { for } 0 \leq i \leq n-1, a=0,1\right\}
$$

The compatibility conditions (1.1)-(1.3) imply that each B^{i} is an n-fold subcategory of A and hence that S is also an n-fold subcategory of A, with category structures $S^{i}=\left\{S, d_{i}^{0}, d_{i}^{l},+\right\}$. But, for $x \in S, d_{i}^{\alpha} x \in B^{i} \cap S$, so $O b\left(S^{i}\right) \subset B^{i} \cap S$; conversely, if $y \in B^{i} \cap S$ then $y \in B^{i} \subset O b\left(A^{i}\right)$, so $d_{i}^{a} y=y$. Thus $O b\left(S^{i}\right)=B^{i} \cap S$. Since $B^{0} \subset B^{1} \subset \ldots \subset B^{n-1}$; it follows that S is an n-category.

Before applying this procedure to the n-fold category G_{n}, we renumber the operations to conform with conventions adopted in Section 1. krio

$$
+ \text { for } \underset{n-i}{\oplus} \text { on } G_{n} \text { and } d_{i}^{\alpha} \text { for } \eta_{n-i}^{a}: G_{n} \rightarrow G_{n}
$$

Then G_{n} is an n-fold category with respect to the structures

Also

$$
A^{i}=\left(G_{n}, d_{i}^{0}, d_{i}^{1},+\underset{i}{+}\right), \quad i=0,1, \ldots, n-1
$$

$$
\begin{aligned}
B^{i} & =O b\left(A^{i}\right) \cap O b\left(A^{i+1}\right) \cap \ldots \cap O b\left(A^{n-1}\right) \\
& =\epsilon_{n-i} G_{n-1} \cap \epsilon_{n-i-1} G_{n-1} \cap \ldots \cap \epsilon_{1} G_{n-1}=\epsilon_{1}^{n-i} G_{i}
\end{aligned}
$$

We therefore define

$$
\begin{aligned}
S_{n} & =\left\{x \in G_{n} \mid d_{i}^{\alpha} x \in \epsilon_{1}^{n-i} G_{i} \text { for } 0 \leq i \leq n-1, a=0,1\right\} \\
& =\left\{x \in G_{n} \mid \partial_{j}^{\alpha} x \in \epsilon_{1}^{j-1} G_{n-j} \text { for } 1 \leq j \leq n, a=0,1\right\},
\end{aligned}
$$

and deduce that, for each $n \geq 0, S_{n}$ is an n-fold category with respect to the structures $\left(S_{n}, d_{i}^{0}, d_{i}^{1},+i\right), 0 \leq i \leq n-1$. These structures are in fact all groupoids. One verifies easily that the family $\left(S_{n}\right)_{n \geq 0}$ admits all the face operators ∂_{i}^{β} of G and also the first degeneracy operator ϵ_{1} in each dimension. Since ϵ_{1} embeds G_{n-1} in G_{n} as ($n-1$) -fold subcategory omitting $\underset{1}{\oplus}$, it embeds S_{n-1} in S_{n} as $(n-1)$-subcategory omitting $\underset{n-1}{+}$. In other words, it preserves the operations,$+ 0 \leq i \leq n-2$ and its image is the set of identities of $\underset{n-1}{+}$. It follows that if we define

$$
H=\lim _{\rightarrow}\left(S_{0} \underset{\epsilon_{1}}{\longrightarrow} S_{1} \subset \underset{\epsilon_{1}}{ } S_{2} \smile \cdots\right),
$$

then the operations + (for fixed i) in each dimension combine to give a groupoid structure $H^{i}=\left(H, d_{i}^{0}, d_{i}^{l},+\right)$ on H. Also $O b\left(H^{i}\right)$ is H_{i}, the image of S_{i} in H. Thus we have
(2.1) PROPOSITION. If G is an ω-groupoid, then G induces on H the structure of ∞-groupoid.

Clearly, the structure on H can also be described in terms of the family $S=\left(S_{n}\right)_{n \geq 0}$. The neatest way to do this is to use the operators

$$
\begin{aligned}
& D_{i}^{\alpha}=\left(\partial_{1}^{a}\right)^{n-i}=\partial_{1}^{a} \partial_{2}^{a} \ldots \partial_{n-i}^{a}: G_{n} \rightarrow G_{i}, 0 \leq i \leq n-1, a=0,1, \\
& E_{i}=\epsilon_{1}^{n-i}: G_{i} \rightarrow G_{n}, \quad 0 \leq i \leq n-1
\end{aligned}
$$

Since S admits ϵ_{1} and all ∂_{i}^{a}, there are induced operators

$$
D_{i}^{a}: S_{n} \rightarrow S_{i}, \quad E_{i}: S_{i} \rightarrow S_{n}, \quad 0 \leq i \leq n-1, \quad a=0,1
$$

If $x \in S_{n}$, we have $\partial_{n-i}^{a} x=\epsilon_{1}^{n-i-1} y$ for some $y \epsilon G_{i}$ and this y is unique, since ϵ_{1} is an injection. The effect of D_{i}^{α} is to pick out this i-dimensional «essential face» y of x, because

$$
D_{i}^{\alpha} x=\partial_{1}^{a} \partial_{2}^{a} \ldots \partial_{n-i-1}^{a}\left(\partial_{n-i}^{a} x\right)=\left(\partial_{1}^{a}\right)^{n-i-1}\left(\epsilon_{1}^{n-i-1} y\right)=y .
$$

If we pass to $H=\lim _{\rightarrow} S_{n}$, the operators E_{i} induce the inclusions $H_{i} \longleftrightarrow H$ and the operators D_{i}^{α} induce the $d_{i}^{a}: H \rightarrow H$, since, for $x_{\epsilon} S_{n}$, we have $d_{i}^{\alpha} x=\epsilon{ }_{l}^{n-i} y$, where $y=D_{i}^{\alpha} X$.

It is easy now to see that the definition of $\infty-$ category given in Section 1 (including condition (1.5)) is equivalent to the following. A (small) ∞-category consists of
(2.2) A sequence $S=\left(S_{n}\right)_{n \geq 0}$ of sets.
(2.3) Two familes of functions

$$
\begin{aligned}
& D_{i}^{\alpha}: S_{n} \rightarrow S_{i}, \quad i=0,1, \ldots, n-1, \quad a=0,1, \\
& E_{i}: S_{i} \rightarrow S_{n}, \quad i=0,1, \ldots, n-1,
\end{aligned}
$$

satisfying the laws
(i) $D_{i}^{\alpha} D_{j}^{\beta}=D_{i}^{\alpha}$ for $i<j, \alpha, \beta=0,1$,
(ii) $E_{j} E_{i}=E_{i}$ for $i<j$,
(iii) $D_{j}^{\beta} E_{i}= \begin{cases}D_{j}^{\beta} & \text { for } j<i \\ 1 & \text { for } j=i \\ E_{i} & \text { for } j>i .\end{cases}$
(2.4) Category structures ${ }_{i}$ on $S_{n}(0 \leq i \leq n-1)$ for each $n \geq 0$ such that ${ }_{i}^{+}$has S_{i} as its set of objects and $D_{i}^{0}, D_{i}^{l}, E_{i}$ as its initial, final and identity maps. These category structures must be compatible, that is:
(i) If $i>j$ and $a=0,1$, then

$$
D_{i}^{\alpha}(\underset{j}{x+y})=D_{i}^{\alpha} \underset{j}{ }+D_{i}^{a} y
$$

whenever the left hand side is defined.

$$
\begin{equation*}
E_{i}(\underset{j}{x+y})=E_{i} x+E_{j} y \tag{ii}
\end{equation*}
$$

in S_{n} whenever the left hand side is defined.
(iii) (The interchange law) if $i \neq j$ then

$$
(x+y)+(z+i)=(\underset{i}{x}+\underset{j}{z})+\underset{i}{(y+t} \underset{j}{ })
$$

whenever both sides are defined.
The transition from an ∞-category A as defined in Section 1 to one of the above type is made by putting $S_{n}=O b\left(A^{n}\right)$ and defining $E_{i}: S_{i} \rightarrow S_{n}$ ($i<n$) to be the inclusion map and $D_{i}^{\alpha}: S_{n} \rightarrow S_{i}$ to be the restriction of $d_{i}^{\alpha}: A \rightarrow A$.

We note finally that, starting from an ω-groupoid G, the ∞-groupoid $S=\left(S_{n}\right)_{n \geq 0}$ described above contains the associated crossed complex $C=\gamma G$ defined in [1] by the rule

$$
\left.C_{n}=\left\{x_{\in} G_{n} \mid \partial_{i}^{\alpha} x_{\in \in}\right]_{1}^{n-1} G_{0} \text { for all }(a, i) \neq(0,1)\right\}
$$

The equivalence of categories

$$
\gamma:(\omega-\text { groupoids }) \longrightarrow(\text { crossed complexes })
$$

established in [1] therefore factors through (∞-groupoids). We shall show below that the factor

$$
a:(\infty-\text { groupoids }) \longrightarrow(\text { crossed complexes })
$$

is an equivalence, with inverse

$$
\beta:(\text { crossed complexes }) \longrightarrow(\infty-\text { groupoids }) .
$$

Hence

$$
\zeta=\beta \gamma:(\omega \text {-groupoids }) \longrightarrow(\infty \text {-groupoids })
$$

is an equivalence. By results in [2], any ω-groupoid is the homotopy ω groupoid $\rho(\mathrm{X})$ of a suitable filtered space X . Defining the homotopy ∞_{-} groupoid of X to be $\sigma(\mathrm{X})=\zeta \rho(\mathrm{X})$, we deduce that any (small) ∞-groupoid is of the form $\sigma(\mathrm{X})$ for some X .

3. THE CROSSED COMPLEX ASSOCIATED WITH AN ∞-GROUPOID.

Let H be an ∞-groupoid in the sense of Section 1 . Then H has groupoid structures $\left(H, d_{i}^{0}, d_{i}^{l},+\right.$) for $i \geq 0$ satisfying the compatibility conditions (1.1), (1.2), (1.3) and the conditions
(3.1) $H_{i} \subset H_{i+1}$ for $i \geq 0 ; H=\underset{i \geq 0}{\cup} H_{i}$
where $H_{i}=d_{i}^{0} H=d_{i}^{l} H$ is the set of identities (objects) of the i-th groupoid structure. The conditions (3.1) enable us to define the dimension of any $x \in H$ to be the least integer n such that $x_{\epsilon} H_{n}$; we denote this integer by $\operatorname{dim} x$. It is convenient to picture an n-dimensional element x of H as having two vertices $d_{0}^{a} x$, two edges $d_{l}^{\alpha} x$ joining these vertices, two faces $d_{2}^{\alpha} x$ joining the edges, and so on, with x itself joining the two faces $d_{n-1}^{\alpha} x \in H_{n-1}$. (The actual dimensions of the faces $d_{i}^{\alpha} x$ may of course be smaller than i.)

Some immediate consequences of the definitions are
(3.2) (i) For each $x \in H, d_{j}^{0} x=d_{j}^{1} x=x$ if $j \geq \operatorname{dim} x$.
(ii) If $i<j$ then $d_{i}^{\alpha} d_{j}^{\beta}=d_{j}^{\beta} d_{i}^{\alpha}=d_{i}^{\alpha}$ for $\alpha, \beta=0, l$.
(iii) If $i<j$ then $d_{i}^{\alpha}(x+y)=d_{i}^{\alpha} x=d_{i}^{\alpha} y$ for $a=0,1$, whenever $x+\underset{j}{y}$ is defined.
Here (ii) follows from (i), since $\operatorname{dim}\left(d_{i}^{\alpha} x\right) \leq i<j$, and (iii) follows from (ii) since, for example,

$$
d_{i}^{a}(x+\underset{j}{y})=d_{i}^{\alpha} d_{j}^{0}(x+y)=d_{i}^{a} d_{j}^{0} x=d_{i}^{\alpha} x .
$$

We shall show that any ∞-groupoid H contains a crossed complex $C=\alpha H$, as described in Section 2. First we recall from [1] the axioms for a crossed complex.

A crossed complex C (over a groupoid) consists of a sequence

$$
\ldots \quad C_{n} \xrightarrow{\delta} C_{n-1} \longrightarrow \ldots \rightarrow C_{2} \xrightarrow{\delta} C_{1} \xrightarrow[\delta^{1}]{\stackrel{\delta^{0}}{\longrightarrow}} C_{0}
$$

satisfying the following axioms:
(3.3) C_{1} is a groupoid over C_{0} with δ^{0}, δ^{1} as its initial and final maps. We write $C_{1}(p, q)$ for the set of arrows from p to $q\left(p, q \in C_{0}\right)$ and $C_{1}(p)$ for the group $C_{1}(p, p)$.
(3.4) For $n \geq 2, C_{n}$ is a family of groups $\left\{C_{n}(p)\right\}_{p \in C_{0}}$ and for $n \geq 3$ the groups $C_{n}(p)$ are Abelian.
(3.5) The groupoid C_{1} operates on the right on each $C_{n}(n \geq 2)$ by an action denoted $(x, a) \ngtr x^{a}$. Here, if $x \in C_{n}(p)$ and $a \in C_{1}(p, q)$ then $x^{a} \epsilon C_{n}(q)$. (Thus $C_{n}(p) \approx C_{n}(q)$ if p and q lie in the same component of the groupoid C_{1}.)

We use additive notation for all groups $C_{n}(p)$ and for the groupoid C_{1}, and we use the symbol $0_{p} \epsilon C_{n}(p)$, or 0 , for all their identity elements.
(3.6) For $n \geq 2, \delta: C_{n} \rightarrow C_{n-1}$ is a morphism of groupoids over C_{0} and preserves the action of C_{1}, where C_{1} acts on the groups $C_{1}(p)$ by conjugation: $x^{a}=-a+x+a$.
(3.7) $\delta \delta=0: C_{n} \rightarrow C_{n-2}$ for $n \geq 3$ (and $\delta^{0} \delta=\delta^{1} \delta: C_{2} \rightarrow C_{0}$, as follows from (3.6).)
(3.8) If $c \in C_{2}$, then δc operates trivially on C_{n} for $n \geq 3$ and operates on C_{2} as conjugation by c, that is,

$$
x^{\delta c}=-c+x+c \quad\left(x, c \in C_{2}(p)\right)
$$

The category of crossed complexes is denoted by \mathcal{C}.
Given an ∞-groupoid H, we define $C=\alpha H$ by

$$
\begin{aligned}
& C_{0}=H_{0}, C_{1}=H_{1} \text { and } \\
& C_{n}(p)=\left\{x \in H_{n} \mid d_{n-1}^{l} x=p\right\} \text { for } p \in C_{0}, n \geq 2 .
\end{aligned}
$$

It follows from (3.2) (ii) that if $x \in C_{n}(p)(n \geq 2)$ then

$$
\text { for } 0 \leq i \leq n-2, \quad d_{i}^{a} x=d_{i}^{a} d_{n-1}^{1} x=p
$$

Thus we have the altemative characterisation :
$C_{n}(p)=\left\{x \in H_{n} \mid d_{i}^{a} x=p\right.$ for $\left.0 \leq i \leq n-1, a=0,1,(i, a) \neq(n-1,0)\right\}$. For $n \geq 2$, let C_{n} be the family $\left\{C_{n}(p)\right\}_{p \in C_{0}}$ and, for $x \in C_{n}(p)$, define $\delta x=d_{n-1}^{0} x$. Then $\delta x \in C_{n-1}(p)$ since

$$
d_{n-2}^{1} d_{n-1}^{0} x=d_{n-2}^{1} x=p .
$$

This defines $\delta: C_{n} \rightarrow C_{n-1}$ for $n \geq 2$, and we define

$$
\delta^{\alpha}: C_{1} \rightarrow C_{0} \text { by } \delta^{\alpha}=d_{0}^{\alpha}(a=0,1)
$$

Clearly C_{1} is a groupoid over C_{0} with respect to the composition $+{ }_{0}^{+}$. Also for each $p \in C_{0}$ and $n \geq 2, C_{n}(p)$ is a group with respect to each of the compositions $\frac{1}{i}$ for $i=0,1, \ldots, n-2$, with zero element p. If $0 \leq i<j \leq n-2$ and $x, y \in C_{n}(p)$ then the composites

are defined. Evaluating them by rows and by columns we find that

$$
\underset{j}{+} y=\underset{i}{x} y=\underset{j}{+} \underset{i}{ } .
$$

Thus, for $n \geq 3$, these group structures in $C_{n}(p)$ all coincide and are Ab lian. We write $x+y$ for $x+y$ whenever this is defined in H. Then $C_{n}(p)$ is a group with respect to + . By (1.2), $\delta=d_{n-1}^{0}: C_{n}(p) \rightarrow C_{n-1}(p)$ is a morphism of groups for $n \geq 2$. Also $\delta \delta=0$ since for $x_{\epsilon} C_{n}(p)$ and $n \geq 3$,

$$
\delta \delta x=d_{n-2}^{0} d_{n-1}^{0} x=d_{n-2}^{0} x=p
$$

Let $x \in C_{n}(p), n \geq 1$ and let $a \in C_{1}(p, q)$. We define

$$
x^{a}=-a+x+a .
$$

If $n \geq 2$, then

$$
\begin{aligned}
d_{n-1}^{1} x^{a} & =-d_{n-1}^{1} a+d_{n-1}^{1} x+d_{n-1}^{1} a \quad \text { by (1.2) } \\
& =-a+p+a=q .
\end{aligned}
$$

If $n=1$, then $d_{0}^{1} x=d_{0}^{1} a=q$. Thus, in either case, $x^{a} \in C_{n}(q)$ and we obtain an action of C_{1} on C_{n}. This action is preserved by δ since for $n \geq 2$,

$$
\delta\left(x^{a}\right)=-d_{n-1}^{0} a+d_{n-1}^{0} x+d_{n-1}^{0} a=-a+\delta x+a .
$$

(3.9) L emma. If $n \geq 2, x_{\in} C_{n}(p), u \in H_{n}$ and $d_{0}^{0} u=p$, then

$$
-u+x+u=x^{d_{1}^{0} u} .
$$

PROOF. This follows from evaluating in two ways the composite

From (3.9) we see that if $x, c \in C_{2}(p)$, then $-c+x+c=x^{\delta} c$, as required in (3.8). Further, if $x \in C_{n}(p), n \geq 3$ and $c \in C_{2}(p)$, then the composite

is also defined, giving $-c+x+c=x$, so in this case (3.9) implies that $x^{\delta c}=x$.

This completes the verification that $C=\left\{C_{n}\right\}_{n \geq 0}$ is a crossed complex, which we denote by $a H$. We observe that this crossed complex is entirely contained in H, and all its compositions are induced by $\underset{0}{+}$, while its boundary maps are induced by the various d_{i}^{0}. The groups $C_{n}(q)$, $C_{n}(p)$ are disjoint if $p \neq q$; the groups $C_{m}(p), C_{n}(p)$ have only their zero element p in common if $m \neq n$.

We now aim to show that H can be recovered from the crossed complex $C=a H$ contained in it. The key result for this is
(3.10) P ROPOSITION. Let H be an $\infty-$ groupoid with associated crossed complex $C=a H$. Let $n \geq 1, x \in H_{n}, d{ }_{0}^{0} x=p$ and $d_{0}^{1} x=q$. Then x can be written uniquely in the form

$$
\begin{aligned}
& \text { (*) } \begin{array}{l}
x=x_{n}+x_{n-1}+\ldots+x_{1}, \text { where } x_{1} \in C_{1}(p, q), x_{i} \in C_{i}(p) \\
\text { for } i \geq 2 \text { and }+ \text { stands for }+.
\end{array} . \quad \text {. }
\end{aligned}
$$

Further, x_{i} is given by

$$
\text { (**) } \quad x_{i}=d_{i}^{l} x-d_{i-1}^{l} x \quad \text { for } 1 \leq i \leq n .
$$

PROOF. If (*) holds then, for $1 \leq i \leq n$,

$$
\begin{aligned}
d_{i}^{1} x & =d_{i}^{1} x_{n}+d_{i}^{1} x_{n-1}+\ldots+d_{i}^{1} x_{i+1}+x_{i}+x_{i-1}+\ldots+x_{1} \\
& =x_{i}+x_{i-1}+\ldots+x_{1}
\end{aligned}
$$

since $d_{i}^{1} x_{j}=p$ for $i<j$. The formula for x_{i} follows, and this proves uniqueness. For existence, let x_{i} be defined by ($\left.{ }^{* *}\right)$. Then

$$
x_{n}+x_{n-1}+\ldots+x_{i}=d_{n}^{1} x-d_{0}^{1} x=x-q=x
$$

Also $x_{i} \in H_{i}$, and

$$
d_{i-1}^{1} x_{i}=d_{i-1}^{1} x-d_{i-1}^{1} x=d_{0}^{0} d_{i-1}^{1} x=p
$$

if $i \geq 2$, that is, $x_{i} \in C_{i}(p)$. Similarly, $x_{1} \in C_{1}(p, q)$.
We now give some basic properties of the decomposition (*) of Proposition (3.10).
(3.11) $d_{i}^{1} x=x_{i}+x_{i-1}+\ldots+x_{1}, \quad-1 \leq i \leq n$.
(3.12) $d_{i}^{0} x=\delta x_{i+1}+x_{i}+x_{i-1}+\ldots+x_{1}=\delta x_{i+1}+d_{i}^{l} x$,

$$
1 \leq i \leq n-1
$$

We have already proved (3.11), and (3.12) is similar.
(3.13) If $z=\underset{0}{x} y$ is defined in H, then

$$
z_{i}=\left[\begin{array}{cc}
x_{1}+y_{1} & \text { if } i=1 \\
x_{i}+y_{i}^{-x_{1}} & \text { if } i \geq 2
\end{array}\right.
$$

PROOF. Clearly

$$
z_{1}=d_{1}^{1} z=d_{1}^{1} x+d_{1}^{1} y=x_{1}+y_{1} .
$$

If $i \geq 2$ then

$$
\begin{aligned}
z_{i} & =d_{i}^{1}(x+y)-d_{i-1}^{1}(x+y)=d_{i}^{1} x+d_{i}^{1} y-d_{i=1}^{1} y-d_{i=1}^{1} x \\
& =x_{i}+d_{i-1}^{1} x+y_{i}-d_{i-1}^{1} x=x_{i}+y_{i}^{-v}
\end{aligned}
$$

by (3.9), where $v=d_{1}^{0} d_{i=1}^{1} x$. If $i=2$, then

$$
v=d_{1}^{0} d_{1}^{1} x=d_{1}^{1} x=x_{1}
$$

If $i \geq 3$, then

$$
v=d_{1}^{0} x=\delta x_{2}+x_{1}
$$

But δx_{2} acts trivially on C_{i} for $i \geq 3$, so the result is true in this case also. \square
(3.14) If $z=x+y$ is defined in H, where $j \geq 1$, then

$$
z_{i}= \begin{cases}y_{i}=x_{i} & \text { if } i<j \\ y_{i} & \text { if } i=j \\ x_{i}+y_{i} & \text { if } i>j\end{cases}
$$

PROOF. First note that $d_{j}^{1} x=d_{j}^{0} y$ and hence $d_{0}^{0} x=d_{0}^{0} y=p$, say. If $i<j$, then

$$
\begin{aligned}
z_{i} & =d_{i}^{l}(x+y)-d_{i-1}^{l}(x+y) \\
& =d_{i}^{l} x-d_{i-1}^{l} x=d_{i}^{l} y-d_{i-1}^{l} y, \quad \text { by (3.2) (iii) } \\
& =x_{i}=y_{i} .
\end{aligned}
$$

If $i=j$, then $z_{i}=d_{i}^{1} y-d_{i-1}^{1} y=y_{i}$.
If $i=j+1$, then $z_{i}=\left(d_{j+1}^{1} x+d_{j+1}^{1} y\right)-d_{j}^{1} y$

$$
=\left[\begin{array}{ll}
d_{j+1}^{1} x & -d_{j}^{1} y \\
d_{j+1}^{1} y & -d_{j}^{1} y
\end{array}\right] \quad \begin{aligned}
& \longrightarrow
\end{aligned}
$$

But

$$
\begin{aligned}
d_{j+1}^{l} x-d_{j}^{l} y & =x_{j+1}+d_{j}^{1} x-d_{j}^{l} y \\
& =x_{j+1}+d_{j}^{0} y-d_{j}^{l} y=x_{j+1}+d_{j}^{0} y_{j+1}
\end{aligned}
$$

and $d_{j+1}^{l} y-d_{j}^{l} y=y_{j+1}$, so

$$
\begin{aligned}
z_{i} & =\left[\begin{array}{cc}
x_{j+1} & d_{j}^{0} y_{j+1} \\
p & y_{j+1}
\end{array}\right] \quad \square 0 \\
& =x_{j+1}+y_{j+1}
\end{aligned}
$$

If $i \geq j+2$, then

$$
\begin{aligned}
z_{i} & =\left[\begin{array}{cc}
d_{i}^{1} x & -d_{i-1}^{1} x \\
d_{i}^{1} y & -d_{i=1}^{1} y
\end{array}\right] \\
& =x_{i}+y_{i}=x_{i}+y_{i},
\end{aligned}
$$

These results show that the ∞-groupoid structure of H can be recovered from the crossed complex structure of $C=a H$, a fact which we
make more precise in the next section. We observe that all the equations (3.11)-(3.14) and (**) of (3.10) remain valid for values of i and j greater than the dimensions of x, y, z if we adopt the convention that, for $i>\operatorname{dim} x$, $x_{i}=d_{0}^{0} x$.

4. THE EQUIVALENCE OF CATEGORIES.

We have constructed, for any ∞-groupoid H, a crossed complex αH, and this construction clearly gives a functor $a: \mathcal{H} \rightarrow \mathcal{C}$. We now construct a functor $\beta: \mathcal{C} \rightarrow \mathcal{H}$.

Let C be an arbitrary crossed complex. We form an ∞-groupoid $K=\beta C$ by imitating the formulas (3.10)-(3.14). Let K be the set of all sequences

$$
\begin{aligned}
x=\left(\ldots, x_{i}, x_{i-1}, \ldots, x_{1}\right), & \text { where } x_{1} \in C_{1}, x_{i} \in C_{i}\left(\delta^{0} x_{1}\right) \\
& \text { and } x_{i}=0 \text { for all sufficiently large } i
\end{aligned}
$$

As for polynomials, we shall write

$$
x=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right) \text { if } x_{i}=0 \text { for all } i>n
$$

We define maps $d_{i}^{a}: K \rightarrow K$ by

$$
\begin{aligned}
& d_{0}^{0} x=\left(\ldots, 0_{p}, 0_{p}, \ldots, 0_{p}\right), \quad p=\delta^{0} x \\
& d_{0}^{1} x=\left(\ldots, 0_{q}, 0_{q}, \ldots, 0_{q}\right), \quad q=\delta^{1} x, \\
& d_{i}^{1} x=\left(x_{i}, x_{i-1}, \ldots, x_{1}\right), \quad i \geq 1, \\
& d_{i}^{0} x=\left(\delta x_{i+1}+x_{i}, x_{i-1}, x_{i-2}, \ldots, x_{1}\right), \quad i \geq 1 .
\end{aligned}
$$

It is easy to verify the law (1.1). (The crossed module law $\delta \delta=0$ is needed to prove $d_{i}^{0} d_{i+1}^{0}=d_{i+1}^{0} d_{i}^{0}$.) Also, writing $K_{i}=d_{i}^{1} K=d_{i}^{0} K$ for $i \geq 0$, we have

$$
K_{i} \subset K_{i+1}(i \geq 0) \text { and } \underset{i \geq 0}{\cup} K_{i}=K
$$

Suppose now that we are given $x, y \in K$ such that $d_{0}^{1} x=d_{0}^{0} y$, that is, $\delta^{1} x_{1}=\delta^{0} y_{1}$. We define

$$
\underset{0}{x} y=\left(\ldots, x_{n}+y_{n}^{-x}, \ldots, x_{2}+y_{2}^{-x_{1}}, x_{1}+y_{1}\right)
$$

which is an element of K. Similarly, if $j \geq 1$ and $d_{j}^{1} x=d_{j}^{0} y$, that is,
$x_{i}=y_{i}$ for $i<j$ and $x_{j}=\delta y_{j+1}+y_{j}$, we define

$$
\left(x_{j}+y\right)=\left(\ldots, x_{n}+y_{n}, \ldots, x_{j+1}+y_{j+1}, y_{j}, y_{j-1}, \ldots, y_{1}\right)
$$

again an element of K. In each case it is easy to see that the composition ${ }_{j}$ defines a groupoid structure on K with K_{j} as its set of identities and d_{j}^{0}, d_{j}^{l} as its initial and final maps. The law (1.2) follows trivially from these definitions if $\alpha=1$ or if $i<j$. If $a=0$ and $i>j$, it reduces immediately to one of the following equations:

$$
\begin{aligned}
& \delta y_{i+1}+x_{i}=x_{i}+\delta y_{i+1}, \quad i>j \geq 1 \\
& \delta\left(y_{i+1}^{-x}\right)+x_{i}=x_{i}+\left(\delta y_{i+1}\right)^{-x_{1}}, \quad i \geq 2 \\
& \delta\left(y_{2}^{-x}\right)+x_{1}=x_{1}+\delta y_{2}
\end{aligned}
$$

These are all easy consequences of the laws for a crossed complex. The interchange law (1.3) is proved in a similar way to complete the verification that $K=\beta C$ is an ∞-groupoid. The construction is clearly functorial.
(4.1) THEOREM. The functors $\alpha: \mathcal{H} \rightarrow \mathcal{C}$ and $\beta: \mathcal{C} \rightarrow \mathcal{H}$ defined above are invers e equivalences.

PROOF. Given an ∞-groupoid H, the ∞-groupoid $K=\beta a H$ is naturally isomorphic to H by the map

$$
\left(\ldots, x_{n}, x_{n-1}, \ldots, x_{1}\right) \nLeftarrow \ldots+x_{n}+x_{n-1}+\ldots+x_{1}
$$

(the sum on the right being finite since $x_{r}=0$ for large r). This is a consequence of Proposition (3.10) and the relations (3.11)-(3.14).

On the other hand, if C is a crossed complex, $H=\beta C$ and $D=$ $\alpha \beta C$, then H_{n} consists of elements $x=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$ and hence

$$
D_{n}=\left\{x \in H_{n} \mid d_{n-1}^{1} x \in H_{0}\right\}
$$

consists of elements $x=\left(x_{n}, 0_{p}, 0_{p}, \ldots, 0_{p}\right)$, where $x_{n} \epsilon C_{n}(p)$. It is easy to see that the map $C_{n} \rightarrow D_{n}$ defined by

$$
c \mapsto(c, \underbrace{p_{p}, 0_{p}, \ldots, 0_{p}}_{n-1}), \quad c \in C_{n}(p)
$$

gives a natural isomorphism $C \rightarrow \alpha \beta C$.

REFERENCES.

1. R. BROWN \& P.J. HIGGINS, On the algebra of cubes, J. Pure \& Appl. Algebra, 21 (1981), 233-260.
2. R. B ROWN \& P.J. HIGGINS, Colimit theorems for relative homotopy groups, J. Pure \& Appl. Algebra 22(1981), 11-41.
3. R. BROWN \& P.J. HIGGINS, The equival ence of ω-groupoids and cubical T complexes, This issue.
4. R. BROWN \& C.B. SPENCER, @-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Akad. v. Wet. 79 (1976), 296.
5. R. BROWN \& C.B. SPENCER, Double groupaids and crossed modules, Cahiers Top. et Géom. Diff. XVII-4 (1976), 343-362.
G. M. K. DAKIN, Kan complexes and multiple groupoid structures, Ph. D.Thesis University of Wales, 1977.
6. A. DOLD, Homology of symmetric products and other functors of complexes, Ann. of Math. 68 (1958), 54-80.
7. A. \& C. EHRESMANN, Multiple functors II, III, Cahiers Top. et Géom. Diff. XX (1978), 295-333, 387-443.
8. D. M. K AN, Functors involving c.s.s. complexes, Trans. A.M.S. 87 (1958), 330.
9. C.B. SP ENCER, An abstract setting for homotopy pu shouts and pullbacks, Cahiers Top. et Géom. Diff. XVIII-4 (1977), 409-430.
10. O. WYLER, Multiple functor categories, Mimeographed Notes, Camegie-Mellon University, 1972.
R. BROWN:

School of Mathematics and Computer Science
University College of N. Wales
B ANGOR LL57 2UW, U.K.

[^0]
[^0]: P.J. HIGGINS:

 Department of Mathematics
 Science Laboratories
 South Road
 DURHAM DH1 3LE.
 U.K.

