G. M. Kelly

A note on the generalized reflexion of Guitart and Lair

Cahiers de topologie et géométrie différentielle catégoriques, tome 24, no 2 (1983), p. 155-159

<http://www.numdam.org/item?id=CTGDC_1983__24_2_155_0>
A NOTE ON THE GENERALIZED REFLEXION OF GUITART AND LAIR

by G. M. KELLY *

By a weak reflexion of a locally-small category \mathcal{A} onto a full subcategory \mathcal{B} we mean the assigning to each $A \in \mathcal{A}$ of a small projective cone π_A, with vertex A and with base in \mathcal{B}, such that $\mathcal{A}(\pi_A, B)$ is a colimit-cone in Set for each $A \in \mathcal{A}$ and each $B \in \mathcal{B}$. When each π_A has its base indexed by a discrete category, π is a multi-reflexion in the sense of Diers [1]; it is an actual reflexion if moreover each of these discrete categories is 1.

For example, let \mathcal{A} be the category of commutative rings. When \mathcal{B} consists of local rings, a weak reflexion is given by taking for π_A the cone of localizations $A \rightarrow A_p$ of A; its base is indexed by the ordered set of prime ideals p of A. When \mathcal{B} consists of the fields, a multi-reflexion is given by the discrete cone $A \rightarrow A/m$ where m runs through the maximal ideals of A. When \mathcal{B} consists of the rings A with $2A = 0$, an actual reflexion is given by $A \rightarrow A/2A$.

Guitart and Lair study in [4] the existence of weak reflexions when \mathcal{B} is given as follows. We have a set $\Theta = \{ \theta_\beta \}$ of projective cones

$$\theta_\beta : \Delta N_\beta \rightarrow T_\beta : \mathcal{L}_\beta \rightarrow \mathcal{A}$$

in \mathcal{A}, where ΔN_β denotes the functor constant at N_β; and \mathcal{B} consists of those $A \in \mathcal{A}$ for which each $\mathcal{A}(\theta_\beta, A)$ is a colimit-cone in Set. They further restrict themselves to the special case in which each generator of each cone θ_β is an epimorphism in \mathcal{A}.

Each of the examples above is of this kind. For local rings there are two cones θ_1 and θ_2 in \mathcal{A}; θ_1 is the pushout diagram of the two (epi-morphic) maps

* The author gratefully acknowledges the assistance of the Australian Research Grants Committee.
\[\mathbb{Z}[x, y]/(xy - 1) \to \mathbb{Z}[x] \to \mathbb{Z}[x, y]/((1 \cdot x)y - 1), \]

while 0₂ is the cone of vertex 0 over the empty diagram. For fields there are again two cones: 0₂ as above and 0₃ the discrete cone

\[\mathbb{Z} \to \mathbb{Z}[x] \to \mathbb{Z}(x). \]

For rings with \(2A = 0 \), there is a single cone 0₄ whose base is indexed by 1, namely \(\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \).

We suppose henceforth that 0₃ is given as above. We recall that, for a regular cardinal \(\alpha \), an object \(A \in \mathcal{A} \) is called \(\alpha \)-presentable if \(\mathcal{A}(A, -) : \mathcal{A} \to \text{Set} \) preserves \(\alpha \)-filtered colimits. Guitart and Lair sketch in [4] a rather complicated proof by transfinite induction of the following:

There is a weak reflexion \(\pi \) of \(\mathcal{A} \) onto \(\mathcal{B} \) if \(\mathcal{A} \) is cocomplete, if each \(L^\beta \) is small, and if there is a regular cardinal \(\alpha \) such that each \(N^\beta \) and each \(T^\beta_\mathcal{L} \) is \(\alpha \)-presentable. Moreover \(\pi \) can be taken to be a multi-reflexion if each \(L^\beta \) is discrete.

The \(\alpha \)-presentability hypothesis is a strong one; hardly any objects are \(\alpha \)-presentable in the category of topological spaces or in the dual of an algebraic category. By analogy with the case where each \(L^\beta \) is 1 - the «orthogonal subcategory problem» of [2] - this hypothesis should not be needed when the generators of the cones \(\theta^\beta \) are epimorphic: at least if \(\mathcal{A} \) is cowellpowered, which is not a grave restriction. By the same analogy, there should be a simple and direct proof in this case. We now verify that this is so, and that moreover the base of each cone \(\pi^\beta \) may then be taken to be an ordered set.

We refer to [5] for the notion of *strong monomorphism*, and for the fact that epimorphisms and strong monomorphisms constitute a factorization system (see [2]) on \(\mathcal{A} \) if \(\mathcal{A} \) admits finite limits and all intersections of strong monomorphisms, or if \(\mathcal{A} \) admits finite colimits and all cointersections of epimorphisms; certainly, therefore, if \(\mathcal{A} \) is complete and well-powered, or cocomplete and cowellpowered.

Theorem 1. *Let the full subcategory \(\mathcal{B} \) of the locally-small category \(\mathcal{A} \)
be determined as above by a set Θ (not necessarily small) of cones θ_B (not necessarily small), where each generator of each θ_B is epimorphic in \mathfrak{A}. Let epimorphisms and strong monomorphisms constitute a factorization system on \mathfrak{A}, and let \mathfrak{A} be cowellpowered.

For each $A \in \mathfrak{A}$ denote by S_A the small category whose objects are (a set of representatives of) the epimorphisms $p : A \to C$ in \mathfrak{A} with domain A and codomain in \mathfrak{B}, and whose maps $p \to p'$ are the maps $q : C \to C'$ with $qp = p'$; clearly S_A is an ordered set. Let $d_A : S_A \to \mathfrak{B} \subseteq \mathfrak{A}$ be the projection functor sending $p : A \to C$ to C, and let

$$\pi_A : \Delta A \to d_A : S_A \to \mathfrak{A}$$

be the cone whose p-th component is p itself.

Then an object B of \mathfrak{A} lies in \mathfrak{B} if and only if each $\mathfrak{A}(\pi_A, B)$ is a colimit-cone in Set.

Proof. The essential observation is that \mathfrak{B} is closed in \mathfrak{A} under strong subobjects. To see this it suffices to consider a single cone $\theta : \Delta N \to T$ of Θ, with epimorphic generators $\theta_i : N \to T_i$. Let $j : D \to B$ be a strong monomorphism in \mathfrak{A}, with $B \in \mathfrak{B}$. By the diagonal-fill-in property for epimorphisms and strong monomorphisms, the diagram

$$\begin{array}{ccc}
\mathfrak{A}(T_i, D) & \to & \mathfrak{A}(\theta_i, D) \\
\downarrow \mathfrak{A}(T_i, j) & & \downarrow \mathfrak{A}(\theta_i, j) \\
\mathfrak{A}(T_i, B) & \to & \mathfrak{A}(\theta_i, B) \\
\end{array}$$

is a pullback in Set. Since colimits are universal in Set, and since $\mathfrak{A}(\theta_i, B)$ is a colimit-cone in Set, so is $\mathfrak{A}(\theta_i, D)$; so that $D \in \mathfrak{B}$.

It is now easy to see that $\mathfrak{A}(\pi_A, B)$ is a colimit-cone for $B \in \mathfrak{B}$. For let $f : A \to B$, and let f factorize as an epimorphism $p : A \to C$ followed by a strong monomorphism $j : C \to B$. Since $C \in \mathfrak{B}$ by the above, p is a generator of π_A through which f factorizes. If f also factorizes as $g p'$ through another generator $p' : A \to C'$ of π_A, the diagonal-fill-in property applied to $gp' = j p$ gives a $q : C' \to C$ with $qp' = p$ and $j q = g$. Hence $\mathfrak{A}(\pi_A, B)$ is a colimit-cone.
Conversely, if \(\mathcal{A}(\pi_A, B) \) is a colimit-cone for each \(A \), then \(\mathcal{A}(\pi_B, B) \) is a colimit-cone; so that \(I : B \to B \) factorizes as \(I = \eta p \) for some epimorphism \(p : B \to C \) with \(C \in \mathcal{B} \). But then the epimorphism \(p \), being a coretraction, is invertible; and \(B \in \mathcal{B} \).

THEOREM 2. Add to the hypotheses of Theorem 1 the completeness of \(\mathcal{A} \), and suppose each cone \(\theta_B \) to have a discrete base \(\mathcal{L}_B \). Then the restriction of \(\pi_A \) to a suitable full subcategory of \(S_A \) gives a multi-reflexion of \(\mathcal{A} \) onto \(\mathcal{B} \).

PROOF. Since connected limits commute with discrete colimits in \(\text{Set} \), we have \(\mathcal{B} \) closed in \(\mathcal{A} \) under connected limits. For each connected component \(\delta \) of \(S_A \), therefore, the limit of \(d_A|\delta : \delta \to S_A \to \mathcal{A} \) is an object \(E_\delta \) of \(\mathcal{B} \); and the \(\rho : A \to C \) of \(S_A \) induce a map \(r_\delta : A \to E_\delta \). Let this factorize as the epimorphism \(s_\delta : A \to K_\delta \) followed by the strong monomorphism \(k_\delta : K_\delta \to E_\delta \). Then \(K_\delta \in \mathcal{B} \), and \(s_\delta \) is an object of \(S_A \); clearly, the greatest object of the ordered set \(S_A \) which belongs to \(\delta \). It is now evident that any \(f : A \to B \) with \(B \in \mathcal{B} \) factorizes uniquely through some \(s_\delta \), and through one only. \(\square \)

We include for completeness the classical:

THEOREM 3. If each \(\mathcal{L}_B = 1 \) in Theorem 2, \(\mathcal{B} \) is closed under limits in \(\mathcal{A} \), and we get an actual reflexion \(\rho_A \) of \(\mathcal{A} \) onto \(\mathcal{B} \), where \(\rho_A \) is the epimorphic part of the factorization of \(A \to \lim d_A \) into an epimorphism followed by a strong monomorphism. \(\square \)

We end by observing that the cowellpoweredness hypothesis of Theorem 1 does hold in the example to which Guitart and Lair give most prominence - that of the algebras for a mixed sketch \(S \). By this is meant a small category \(\mathcal{S} \) in which are given a small set \(\Phi = \{ \phi_a \} \) of small projective cones and a small set \(\Psi = \{ \psi_\beta \} \) of small inductive cones; unlike Guitart and Lair, we do not ask the \(\phi_a \) to be limit-cones nor the \(\psi_\beta \) to be colimit-cones. The category \(S-\text{Alg} \) of \(S \)-algebras is the full subcategory of \([\mathcal{S}, \text{Set}] \) given by those \(A : \mathcal{S} \to \text{Set} \) for which each \(A\phi_a \) is a limit-cone and each \(A\psi_\beta \) is a colimit-cone. The sketch \(S \) is projective when
the set Ψ is empty; write S_0 for the projective sketch obtained from S by discarding Ψ. It is classical that categories of the form S_0-\mathbf{Alg} are the locally presentable ones of Gabriel-Ulmer [3]; and that such a category is reflective in $[\mathbf{S}, \mathbf{Set}]$, and is therefore complete and cocomplete.

Let $Z : S^{op} \to S_0$-\mathbf{Alg} be the composite of the Yoneda embedding $Y : S^{op} \to [\mathbf{S}, \mathbf{Set}]$ and the reflexion $R : [\mathbf{S}, \mathbf{Set}] \to S_0$-$\mathbf{Alg}$. Clearly $B = S$-\mathbf{Alg} is the full subcategory of $\mathbf{A} = S_0$-\mathbf{Alg} consisting of those objects A such that $\mathbf{A}(\cdot, A)$ sends the projective cone $\theta_B = Z\psi_B$ of \mathbf{A} to a co-limit-cone in \mathbf{Set} for each B. Note that each generator of θ_B is epimorphic if each generator of ψ_B is monomorphic.

Finally, observe that \mathbf{A} is cowellpowered by Satz 7.14 of [3], an account of which in English can be found in Section 8.6 of [6].

BIBLIOGRAPHY.