BUI HUY HIEN
I. SAIN

In which categories are first-order axiomatizable hulls characterizable by ultraproducts?

<http://www.numdam.org/item?id=CTGDC_1983__24_2_215_0>
IN WHICH CATEGORIES ARE FIRST-ORDER AXIOMATIZABLE HULLS CHARACTERIZABLE BY ULTRAPRODUCTS?

by Bui Huy HIEN and I. SAIN

In Andreka-Nemeti [1] the class $STr(C)$ of all small trees over C is defined for an arbitrary category C. Throughout the present paper C denotes an arbitrary category. In Definition 4 of [1] on page 367 the injectivity relation $\models \subseteq (Ob C) \times (STr(C))$ is defined. Intuitively, the members of $STr(C)$ represent the formulas, and \models represents the validity relation between objects of C considered as models and small trees of C considered as formulas. If $\phi \in STr(C)$ and $a \in Ob C$ then the statement $a \models \phi$ is associated to the model theoretic statement «the formula ϕ is valid in the model a». It is proved there that the Los Lemma is true in every category C if we use the above quoted concepts. To this the notion of an ultraproduct $\prod_{i \in I} a_i/U$ of objects $\langle a_i \mid i \in I \rangle \in Ob C$ of C is defined in [1], in [2] and in [7] Definition 12. Then the problem was asked in [1] («Open Problem 1» on page 375) «for which categories is the characterization theorem of axiomatizable hulls of classes of models Mod Th $K = Uf Up K$ true?», where the operators Uf and Up on classes of models is defined on page 319 of the book [3], but here we recall them in Definition 6 of the present paper. Of course, here in the definition of Uf and Up on classes $K \subseteq Ob C$ of objects of C we have to replace the standard notion of ultraproducts of models by the above quoted category theoretic ultraproduct $\prod_{i \in I} a_i/U$ of objects of C, see Definitions 4 and 6 in the present paper.

For the definitions of the class $STr(C)$ and the injectivity relation \models the reader is referred to [1]. We note that the relation \models is defined between objects of C and elements of $STr(C)$.
DEFINITION 1. Let C be an arbitrary category and let $K \subseteq \text{Ob } C$ and $T \subseteq STr(C)$ be arbitrary classes. Let $a \in \text{Ob } C$ and $\phi \in STr(C)$. Then we define:

(i) $K \models T$ iff $(\forall b \in K)(\forall \psi \in T) \; b \models \psi$.

(ii) $K \models \phi$ iff $K \models \{ \phi \}$, and $a \models T$ iff $\{ a \} \models T$.

(iii) $\text{Mod } T \overset{d}{=} \{ b \in \text{Ob } C \mid b \models T \}$.

(iv) $\text{Th } K \overset{d}{=} \{ \psi \in STr(C) \mid K \models \psi \}$.

(v) $a \equiv_{ee} b$ iff $\text{Th } \{ a \} = \text{Th } \{ b \}$.

(vi) $EeK \overset{d}{=} \{ b \in \text{Ob } C \mid (\exists \text{ a } K) \; b \equiv_{ee} a \}$.

In the present paper we characterize those categories in which $\text{Mod } \text{Th } K = Ee \text{Up } K$ holds for all $K \subseteq \text{Ob } C$.

Note that the above introduced notations $\text{Mod } T$ and $\text{Th } K$ are sloppy since the precise notation would be $\text{Mod } C T$ and $\text{Th } C K$ since e.g. $\text{Mod } C T$ is a function of both C and T. We hope that context will help.

Strongly small objects of C were defined in [1], [7] Definition 13 and [2]. We shall use this notion. We note that in the textbook [4] in item 22E there on page 155 strongly small objects were defined under the name strongly finitary objects.

Let (I, \leq) be an arbitrary preordered set, i.e. a small category in which there are no parallel arrows. Diagrams indexed by (I, \leq) will be denoted by

$$<a_i \xrightarrow{b_j} a_j \mid i, j \in I, i \leq j> \quad \text{or shortly} \quad <b_j^i \mid i \leq j \in I>.$$

I.e., let $F : (I, \leq) \to C$ be a functor. Now,

$$F \overset{d}{=} <F(i), F(i) \xrightarrow{b_{ij}} F(j) \mid i, j \in I, i \leq j>.$$

The colimit of this diagram F is denoted by $<b^i_j : F(i) \to b_{i, j}>_{i, j \in I}$, where $<F(i) \xrightarrow{b_i} >_{i \in I}$ is the cocone part and b the object part of the colimit.

DEFINITION 2 (Nemeti-Sain [7], page 556). An object a is strongly small (for short s. small) if the functor $\text{Hom}(a, \cdot)$ is continuous (i.e. preserves direct limits).

NOTATION. s. small objects will be denoted by Θ-s. $\Theta \xrightarrow{\text{L}}$ means that
dom(f) is s. small and we use \(f \rightarrow \emptyset \) similarly.

REMARK. From the above definition it follows that the object \(a \) is s. small iff for any directed diagram \(\langle b^i \rangle \mid i \leq j \in I \rangle \) with colimiting cocone
\[c \cong \langle \langle b^i \rangle_{i \in I}, b \rangle, \]
conditions (i) and (ii) below are satisfied:

(i) Every morphism \(f: a \rightarrow b \) cofactors through the cocone \(c \).

(ii) To any pair
\[a \xrightarrow{p/q} \]
such that \(b^i \cdot p = b^i \cdot q \) for some \(i \in I \),
there exists a \(j \in I \) such that \(b^i_j \cdot p = b^i_j \cdot q \).

We note that limits and colimits are always small in this paper. E. g., \(Hom(\emptyset, -) \) does not necessarily preserve large direct limits.

An object is called small if it satisfies (i) of the above remark.

DEFINITION 3. Let \(C \) be an arbitrary category. We say that \(C \) has only set-many nonisomorphic strongly small objects iff there is a set \(B \subset Ob C \) such that every strongly small object of \(C \) is isomorphic to some element of \(B \).

NOTATIONS connected to products: The product \(P_{i \in I} a_i \) of a family of objects \(\langle a_i \rangle_{i \in I} \) will also be (ambiguously) denoted by \(P_I \). We use the notation \(\pi^I_i \) for the \(i \)-th member of the cone of projections belonging to the product \(P_I \). I. e., the «product cone» is \(\langle P_I, \langle \pi^I_i \rangle_{i \in I} \rangle \). By the definition
of a product, a cone \(<f_i : d \to a_i>_{i \in I} \) induces a unique morphism \(f : d \to P_I \), such that the diagrams

\[
\begin{array}{ccc}
 d & \xrightarrow{f} & P \prod_{i \in I} a_i \\
 f_i & \downarrow & \pi_i \\
 a_i & & \\
\end{array}
\]

commute for each \(i \in I \) (provided that the product exists). We shall denote this induced morphism \(f : d \to P_I \) by \(\prod_{i \in I} f_i \). Sometimes, though, it is better to write \(\prod c = \prod d, f_i >_{i \in I} \). E.g. \(\prod d, \emptyset \) is the unique element of \(\text{Hom}(d, e) \) where \(e \) is the terminal object \(P_{i \in I} a_i \).

Definition 4 ([1, 2, 7, 8]). Let \(a_i >_{i \in I} \) be a family of objects. Let \(U \) be a set of subsets of \(I \) (i.e., \(U \subseteq \mathcal{P}I \) is arbitrary). Now, consider all the products \(P_X \left(\prod_{i \in X} a_i \right) \) for the sets \(X \in U \). If \(X, Y \in U \) and \(Y \supset X \) then the morphism induced by the cone of projections of \(P_Y \) into the product \(P_X \) is denoted by \(\pi^Y_X \). I.e. \(\pi^Y_X = \prod_{i \in X} \pi^Y_i \). By this we have defined a diagram of products and projections:

\[
< \pi^Y_X : P_Y \to P_X \mid X, Y \in U, Y \supset X>.
\]

Note that this diagram is indexed by the poset \((U, \supset) \). (This poset consists of \(U \) ordered by the inverse \(\supset \) of the inclusion relation \(\subseteq \).) The colimit of the above diagram is denoted by

\[
< \pi^Y : P_Y \to (\prod_{i \in I} a_i / U) >_{Y \in U}.
\]

If \(U \) is a filter, then \(\prod_{i \in I} a_i / U \) is called a reduced product of \(<a_i>_{i \in I} \).

If \(U \) is an ultrafilter, then \(\prod_{i \in I} a_i / U \) is called an ultraproduct.

The next figure illustrates the definition.
DEFINITION 5. We say that ultraproducts exist in C iff for every set I and for all \(a_i \in \{\text{Ob } C\} \) and for every ultrafilter \(U \) on I the ultraproduct \(P_{i \in I} a_i / U \) exists in C.

DEFINITION 6. Let \(K \subseteq \text{Ob } C \) be arbitrary. Then

(i) \(U p K \triangleq \{ P_{i \in I} a_i / U \mid I \text{ is a set, } \{ a_i \}_{i \in I} \subseteq K, \ U \text{ is an ultrafilter on } I \text{ and the ultraproduct } P_{i \in I} a_i / U \text{ exists in } C \} \).

(ii) \(U f K \triangleq \{ b \in \text{Ob } C \mid U p \{ b \cap K \neq 0 \} \} \).

THEOREM 1. Let C be an arbitrary category. Assume that conditions (i)-(iii) below hold. Let \(K \subseteq \text{Ob } C \) be an arbitrary class. Then

\(\text{Mod Th } K = E e \ U p K. \) (That is: \(\text{Mod Th } = \text{Ee Up } \) on C.)

(i) C has only set-many nonisomorphic strongly small objects.

(ii) Ultraproducts exist in C (the small ones only, Definition 3).

(iii) C has an initial object.

PROOF is that of Theorem 1 in [5]. \(\square \)

Theorems 2, 3 below state that both conditions (i) and (ii) are needed in Theorem 1 above.

THEOREM 2 (necessity of (i) in Theorem 1). There exists a category C in which all ultraproducts exist and C has an initial object, but

\[\text{Mod Th } K \neq E e \ U p K \text{ for some } K \subseteq \text{Ob } C. \]

That is, C satisfies (ii) and (iii) of Theorem 1 but not its conclusion.

PROOF. Let \(\omega \triangleq \{ 1 \} \). Let Ord be the class of all ordinals. Then we have \(\omega \subseteq \text{Ord} \). Let \(\text{Ord} + 1 \triangleq \text{Ord } \cup \{ \omega \} \). Let \(\leq \subseteq \{ \langle \beta, \omega \rangle \mid \beta \in \text{Ord } + 1 \} \). Let \(\leq \subseteq \{ \langle \beta, a \rangle \mid a \in \text{Ord } \text{ and } (\beta \in \omega \text{ or } \beta = a) \} \).

Then \(P \triangleq \langle \text{Ord } + 1, \leq \rangle \) is an ordered class. Hence P may be considered as a category with \(\text{Ob } P = \text{Ord } + 1 \).

FACT 1. The s. small objects of P are exactly the successor ordinals and 0. Hence there is a proper class of nonisomorphic s. small objects. The initial object of P is 0.

LEMMA 2. Let \(\phi \in S T r (P) \). Then \[\text{Ord } \models \phi \Rightarrow \omega \models \phi. \]
PROOF of Lemma 2. Assume $\text{Ord} \models \phi$. By $\phi \in STr(P)$, all objects occurring in ϕ are s. small, hence ω does not occur in ϕ. Since only set-many objects can occur in ϕ we conclude that

$$(\exists \kappa \in \text{Ord})(\text{for every object } a \text{ occurring in } \phi \text{ we have } a < \kappa).$$

Then ϕ is related to κ exactly the same way as it is related to ω. Hence $\kappa \models \phi$ implies $\omega \models \phi$. But $\text{Ord} \models \phi$ implies $\kappa \models \phi$.

COROLLARY 3. $\omega \in \text{Mod Th (Ord)}$.

LEMMA 4. Let $\alpha, \beta \in \text{Ord} + 1$. Then $\text{Th}(\alpha) = \text{Th}(\beta)$ iff $\alpha = \beta$.

PROOF of Lemma 4. Assume $\alpha \neq \beta$. Then $\alpha < \beta$ or $\beta < \alpha$, assume $\alpha < \beta$. Clearly $\langle a + 1, \emptyset \rangle \in STr(P)$ since $a + 1$ is s. small. Then $a \models \langle a + 1, \emptyset \rangle$ while $\beta \models \langle a + 1, \emptyset \rangle$ since $\text{Hom}(a + 1, \beta) \neq 0$ by $a + 1 \leq \beta$.

Clearly, all reduced products exist in P since suprema and infima of subsets of $(\text{Ord} + 1)$ do exist in $(\text{Ord} + 1, \leq)$. Obviously, $\text{Up Ord} = \text{Ord}$, in P since by ultraproducts we understand ultraproducts of sets of objects only. Hence by Lemma 4 we have $Ee \text{Up Ord} = \text{Ord}$ in P. Thus

$$\text{Mod Th Ord} = \text{Ord} + 1 \neq \text{Ord} = Ee \text{Up Ord}$$

is proved to hold in P. QED of Theorem 2.

THEOREM 3. There is a category C and a class K of objects of C such that (i) and (iii) of Theorem 1 hold as well as (I) and (II) below:

(I) $\text{Mod Th } K \supset Ee \text{Up } K$.

(II) Let Up^ω denote the formation of weak ultraproducts which were introduced in [11] under the name «universal ultraproducts». Then

$$\text{Mod Th } K \supset Ee \text{Up}^\omega K.$$
Let \(K = \{ A \in \text{Ob} C \mid |A| < \omega \} \). We claim that

\[\text{Up}^w K = K \quad \text{and} \quad \text{Ee} K = K, \quad \text{hence} \quad \text{Ee Up}^w K = K. \]

But an object \(A \) is s. small in \(C \) iff \(|A| < \omega \). Since the formula \(<A, O> \) is not valid in \(K \) and since there are no other non-trivial formulas, we have \(\text{Mod} Th K = \text{Ob} C \). Obviously \((i)\) and \((ii)\) of Theorem 1 hold in \(C \).

If \(C \) is an arbitrary category and \(K \subseteq \text{Ob} C \), then

\[\text{Mod} Th K \supset \text{Ee Up} K \supset \text{Uf Up} K \quad \text{(by [1])}. \]

Proposition 4. The conditions of Theorem 1 are not the best possible, namely: There exists a category \(C \) such that all three conditions \((i), (ii)\) and \((iii)\) of Theorem 1 fail but the conclusion of Theorem 1 is true.

Proof. Let \(C \) be a large discrete category. That is \(\text{Ob} C \) is a proper class (not a set) and the only morphisms are identities. Then every object of \(C \) is s. small. Thus there is a proper class of nonisomorphic s. small objects. Further ultraproducts do not exist in \(C \), since there are no non-identity morphisms. Let \(K \subseteq \text{Ob} C \). We claim that \(\text{Mod} Th K = K \). Let \(a \in \text{Ob} C \). Assume \(a \nless K \). Then \(<a, 0> \in \text{S Tr}(C) \), namely \(<a, 0> \) is the one-element tree with root \(a \) and no branches. Clearly

\[a \nless <a, 0> \quad \text{and} \quad (\forall b \in \text{Ob} C)(b \neq a \Rightarrow b \lessdot <a, 0>). \]

Thus \(K \lessdot <a, 0> \) proving that \(a \nless \text{Mod} Th K \). \(\Box \)

Problems. (i) Improve Theorem 1. Find a sharper characterization of those categories in which \(\text{Mod} Th = \text{Ee Up} \).

(ii) Under what conditions is \(\text{Mod} Th = \text{Uf Up} \) true?

(iii) Is there a category \(C \) satisfying \((i)\) and \((ii)\) of Theorem 1 in which \(\text{Mod} Th K \neq \text{Ee Up} K \) for some \(K \subseteq \text{Ob} C \)? This is solved by I. Sain affirmatively, see [5] Theorem 2.

For the category \(\text{Lf}_a \) of locally finite cylindric algebras, see [6] or in the textbook on representable cylindric algebras [3] page 321. The following is a corollary of results in [6] and Theorem 1 above. For a motivation we note that \(\text{Lf}_a \) is exactly the class of algebras obtained from classical first-order theories, as it was proved in Proposition 1 of [6].

224
COROLLARY 5. Let a be any ordinal and $K \subseteq L_f a$ be arbitrary. Then in the category $L_f a$ we have $\text{Mod Th } K = \bigcup K$.

PROBLEM. Is $\text{Mod Th } K = \bigcup K$ true in $L_f a$?

For a comprehensive study of our subject see [9]. The fact that $S Tr(C)$ corresponds exactly to the class of first-order formulas is proved in [10].

REFERENCES.

2. ANDREKA, H. & NEMETI, I., Formulas and ultraproducts in categories, Beiträge zur Algebra und Geometrie 8 (1979), 133-151.

Mathematical Institute of the Hungarian Academy of Sciences
Reáltanoda u. 13-15
H-1053 BUDAPEST. HUNGARY