Ross Street

Correction to “Fibrations in bicategories”

<http://www.numdam.org/item?id=CTGDC_1987__28_1_53_0>
Given homomorphisms of bicategories $J: A \to \text{Cat}$ and $S: A \to K$, the bilimit (J, S) of S indexed by J can be constructed using biproducts, cotensor biproducts and biequalizers. However, the construction described in Section 1 (1.24), page 120, of the paper "Fibrations in bicategories" (these Cahiers, XXI-2, 1980, 111-160) is wrong. I am grateful to Max Kelly for noticing this error. He also recognized that (J, S) could be constructed if K admitted some further bilimits of a simple kind. In fact, no further bilimits are needed: I shall show that they can be constructed from those at hand.

Certain small categories Iso, End, Aut, T will be required. A functor from one of these into a category amounts to an isomorphism, endomorphism, automorphism, composable pair of isomorphisms, respectively, in the category. Notice that Iso, T are equivalent to 1 while Aut is not.

The biequifier of 2-cells

$$\theta, \varphi: f \Rightarrow g : A \to B$$

in K is an arrow $h: X \to A$ which, for all objects X, induces an equivalence of categories between $K(K, X)$ and the full subcategory of $K(K, A)$ consisting of those $a: K \to A$ for which $\theta a = \varphi a: fa \Rightarrow ga$. (If θ, φ are invertible this is the same as the biequivinerter of θ, φ as used later (4.2) in the paper.) The biequifier of an endo-2-cell

$$\gamma: f \Rightarrow f : A \to B$$

is the biequifier of γ and the identity of f. If γ is invertible, the biequifier of θ, φ is the biidentifier of $\gamma^{-1} \theta$. So to construct biequifiers of invertible pairs it suffices to construct biidentifiers of auto-2-cells.
Consider an auto-2-cell \(y: f \Rightarrow f: A \rightarrow \text{Aut}, B \) be the arrows corresponding to the automorphisms \(y, \lambda \) in \(K(A, B) \). Let \(h: H \rightarrow A, \sigma: \gamma h = f h \) be the biequalizer of \(\gamma, f \). Let \(k: K \rightarrow A, \tau: \tau k = \tau h \) be the biequalizer of \(\tau, f \). Let \(a: \text{Aut}, B \rightarrow B \) be induced by the unique functor \(1 \rightarrow \text{Aut} \). There exist \(l: H \rightarrow K \) and \(v: kl = h \) rendering \(\sigma \) isomorphic to \(\tau l \) by definition of \(K \). Similarly, we obtain \(d: A \rightarrow K \) and \(kd = \lambda k \) rendering \(\lambda \) isomorphic to \(\tau d \). Now form the bi-pullback

\[
\begin{array}{ccc}
P & \xrightarrow{\nu} & H \\
\downarrow u & & \downarrow l \\
A & \xrightarrow{a} & K
\end{array}
\]

of \(d, l \); this is just the biequalizer of the two arrows from the biproduct of \(A, H \) into \(K \) which use \(d, l \) and the projections. I claim \(u: P \rightarrow A \) is the bi-identifier of \(y: f \Rightarrow f \). Since bilimits are defined representably, we only need to check the construction in \(\text{Cat} \). Then \(K \) can be taken to be the category of pairs \((a, \tau) \) where \(a \) is an object of \(A \) and \(\tau: fa = fa \) in \(B \), while \(H \) can be taken to be the full subcategory of \(K \) consisting of the pairs \((a, \sigma) \) with \(\sigma ya = \sigma \). Since \(\sigma \) is invertible, the last equation implies \(\sigma a = 1 \). Also \(l \) is the inclusion and \(d \) takes \(a \) to \((a, 1, a) \). With this we see that the objects of \(P \) are pairs \((\sigma, \rho) \) where

\[
\rho: a \simeq a' \text{ in } A, \ (a, \sigma) \in H \text{ and } \xi \rho \sigma = \xi \rho.
\]

This last condition implies \(\sigma = 1_{\text{reflex}} \), and, since \(y \) is natural, \(\gamma a = 1 \).

So \(P \) is equivalent to the full subcategory of \(A \) consisting of those \(a \) with \(\gamma a = 1 \).

(The above construction with \(\text{Aut} \) replaced by \(\text{End} \) yields the bi-identifier of any endo-2-cell \(y \).)

The next bilimit required is the descent object \(\text{Desc}(X) \) of a truncated bicosimplicial diagram

\[
\begin{array}{ccc}
X_0 & \xrightarrow{\delta_0} & X_1 \\
\downarrow \delta_1 & & \downarrow \delta_2 \\
X_1 & \xrightarrow{\delta_1} & X_2
\end{array}
\]

\(\sigma_{1,i}: \delta_1 \delta_{i-1} = \delta_1 \delta_i \) for \(i < j \), \(n_i : 1 \simeq 1 \delta_i \)
in a bicategory K. When K is Cat, the category $\text{Desc}(X)$ has objects pairs (x, θ) where x is an object of X_0 and $\theta: \delta_0 x \simeq \delta_1 x$ in X, such that

$$1\theta = \mu_1 \mu_0^{-1}, \quad \sigma_{12, \delta_1 \theta, \sigma_{01}} = \delta_2 \theta, \sigma_{02, \delta_0 \theta},$$

and has arrows $\chi: (x, \theta) \to (x', \theta')$ where $\chi: x \to x'$ is an arrow of X_0 such that $Q_1 \delta_0 \chi = \delta_1 \chi \theta$. For a general K, the descent object of X consists of an object D, an arrow $h: D \to X_0$ and an invertible 2-cell $\omega: \delta_0 h \simeq \delta_1 h$ inducing an equivalence between $K(K, D)$ and $\text{Desc}(K(K, X))$. Notice that X can be regarded as a homomorphism from an appropriate category A into K and, if we take $J: A \to \text{Cat}$ to be the functor amounting to the diagram

$$1 \leftarrow \text{Iso} \rightarrow T$$

the bilitmit (J, X) is equivalent to $\text{Desc}(X)$.

The descent object can be constructed using biequalizers and bidentifiers of auto-2-cells. First, take the biequalizer

$$h: H \to X_0, \quad \theta: \delta_0 h \simeq \delta_1 h,$$

of δ_0, δ_1, then the biequifier $k: K \to H$ of the two invertible 2-cells

and then, the biequifier $m: M \to L$ of the two invertible 2-cells

Then $L, hkm, \theta km$ form $\text{Desc}(X)$.

The bilimit (J, S) can be obtained as the descent object $\text{Desc}(X)$ where

$$X_0 = \Pi I_a \ (JA, SA), \quad X_1 = \Pi I_{a,b} \ (A(A_B) \times JA, SB),$$

55
In (1.25) it was stated that indexed pseudo-limits in a 2-category could be constructed from cotensor products, products and equalizers. This is certainly true since pseudo-limits are particular indexed limits and all indexed limits can be so constructed (see [14], using the Bibliography of the paper). The proof outlined in (1.25) was a modification of (1.24). Using the corrected (1.24), we can squeeze out more from the method. Many naturally occurring 2-categories have iso-inserters. The iso-inserter of the diagram $f, g: A \rightarrow B$ is its limit (not pseudo-limit) indexed by the diagram

$$
1 \rightarrow \text{Iso} \quad \text{in Cat.}
$$

An iso-inserter is a biequalizer but not conversely. The strict descent object of a truncated simplicial object X (this time μ_{x}, σ_{x}, are identities) is defined as for the descent object except that we insist on an isomorphism between $K(K, D)$ and $\text{Desc}(K(K, X))$, not merely an equivalence. It can be constructed using an iso-inserter and identifiers of auto-2-cells (the latter are defined as were bidentifiers except that we ask for an isomorphism in the representation property). Then $\text{psdlim}(J, S)$ is the strict descent object for X as before with biproducts and cotensor biproducts replaced by their "non-bi" versions. However, it does not seem possible to construct identifiers of auto-2-cells using a "non-bi" version of the construction of bidentifiers. The object P we are led to does support an idempotent whose splitting gives the identifier; but this is already true of the iso-inverter of γ^{-1}, f. So products, cotensor products, iso-inserters, and, either identifiers of auto-2-cells or splittings of idempotents, imply all indexed pseudo-limits.

I would like to stress that I am currently using the word "weighted" in preference to "indexed" in this context.

Finally, there is a typographical error in (4.2) on page 140. The functors between 1 and Iso should have their directions reversed.