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WEDGE PRODUCT OF FORMS IN
SYNTHETIC DIFFERENTIAL GEOMETRY

by M. Carmen MINGUEZ

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

CATEGORIQUES

Vol. XXIX - 1 (1988)

RÉSUMÉ. En Geometric Différentielle Synthétique, nous

définissons le "wedge" produit de formes lorsque les p-formes
sont des fonctions définies sur les p-tangentes Dp -&#x3E; M. Ce pro-
duit vérifie les propri6t6s alg6briques usuelles de meme que la

formule de Leibniz. Nous comparons les p-formes et les p-cochai-
nes cubiques, A l’aide d’un homomorphisme défini par intégration,
ainsi que les "wedge" et "cup" produits sur des cubes infinitési-
maux. Un homomorphisme similaire entre le complexe de de Rham
et le complexe des cochaines singuli6res est def ini; cet homo-

morphisme devient un morphisme entre R-alg6bres quand il

descend A la cohomologie.

1 , WEDGE PRODUCT.

We suppose the Axiom K-L, (Axiom 1 in [1]) and we refer the

reader to 151 for the calculations.

There are several ways of introducing the notion of form (dif-

ferential form) in the synthetic context (see [1]). The closest with

the classical one is:

(1.1) A quasi-classical p-form wh’ on M is a law which to any p-tuple
(t1,...,tp) of tangents to M (at the same point) associates an element

w- (t1,..., tp) e R such that

(*) This work was supported by CAICYT, the spanish organization for the
advancement of research,
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It is obvious to give the wedge product of a quasi-classical p-
form w- and a quasi-classical q-form 8- by direct translation of the
classical notion, that is (n = p+q)

It seems that it is not possible to define a quasi-classical
(p+1)-form dw- which corresponds to concept of exterior differential
except when we can use coordinates on M. For this we consider a

wider notion of form given in [2] (also [1]).

DEFIBITION 1. A p-form on M is a map 6): MDP -&#x3E; R which is

(i) homogeneous:

where

(ii) alternating:

where

We will write Ap(M) for the R-module of p-forms on M. The

differential exterior operator d: A»(M) A Ap+1 (M) is built making true
the "Infinitesimal Stokes Theorem" (see [1]). But, for this kind of

forms the wedge product is not obvious, we attempt to give a defini-
tion.

By restricting T; Dp -&#x3E; M to the p "axes" through Q E Dp we

obtain a p-tuple of tangent vectors at T (Q). Let k: MoP-&#x3E; MD xM ... xmMD be

this map. Each quasi-classical p-form defines a p-form by composi-
tion o) = w-ok, (This correspondence becomes a bijection for a large
class of objects M, see (21, [41.)

Now we give a definition of wk8 compatible with the above

comparison, that is satisfying

DEFINITION 2. We will call wedge product of w E Ap(M) and 0 E A,9(M)

to the (p+q)-form given by
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where n = p+q, T is a n- tangent on M, ai : Dp -&#x3E; DPxD Q is a-(b) = (d,Q)
and a-: D q -&#x3E; D PxD 9 is a- (d) = (0,d) .

PROPOSITION 3. The map A: Ap (M)x Aq (M) -&#x3E; Ap+q (M) is bilinear, asso-

ciative, anticommutative (8 k w = (-1) pq w A 8) and functorial (f*(wA 8) =

f4W A f*8 for every f: M 4 N).

and y: R° A R is the second projection R° = RxR), then we obtain an

explicit expression of dw. Writting Diú) = yowDoMo J) and by applying
Axiom K-L we bave that

PROPOSITION 4 (Leibniz’s Formula). For each p-form w and q-form 8 on

M , we ha ve

PROOF (Sketch). For any,. : D-1 1 -&#x3E; M and j = 1,..., n+1, as x is a

derivation we get to

On the other hand

but, if we take into account that

where j = o- (1) and 0’ i.f c Sn is canonically built from o- (we note that

a. and a, are different in each side), we obtain that

Using the anticommutativity of the wedge product we get a simi-
lar expression for wAd8 (r). #
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To make a comparison between the wedge product of forms and

the cup product of cubical cochains, we take the following digression
in 171, Ch. IV:

An infinitesimal n-cube (a n-tangent with a point h E Dn) can hf-

regarded as a finite n-cube, in fact we have the map ø: MDn xDn -&#x3E; MI I

given by

If we suppose that M has the extension property

(E) "The canonical map Mo1n -) MD" is an epic",

we can prove that for evey n--form w and

fied
11

that is

where p: A"(X) A Cn(M) is the integration homomorphism given on the

generators Y: In -&#x3E; M of C "(M ) by

On the complex of cubical cochains C*(M) we have the following
cup product (131, Ch. VI, VIII): Let c E CP(M), c’ E CII(M) and x: In A M

(n = p+q), then it is defined by

where H is the complementary set of K in [n] = {1,2,...,n} and if we

put ø k: K -&#x3E; (p] for the unique bijective, order-preserving map, AHY:
I P fl M and BKi: I Q -&#x3E; M are given by:

PROPOSITION 5. Let M have the property (E) (*). Then for each w in

(*) See Note at the end of the paper.
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Ap(M) and 0 in Aq(M) we have-

PROOF. First we note that, with the above notations, taking into

account that w and 0 are alternating, we have:

Then, by (1.6), it is enough to show that for each 1’: D" -&#x3E; M and

,L e D 11 we have

We obtain easily that

and also that

with

but, applying the Axiom K-L to the map p (8) (Bko; (T,-)): Dn -&#x3E; R we will

for some a e R. Hence

which, substituted in (1.7), gives us (1.9).

We could go further taking into account that

verifies the conditions in [1], Prop. 14.4.1. Then there exists a

unique n-form Q such that
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Thus wA 8 is the unique n-form verifying (1,8) ,

2, THE DE RHAM HOMOMORPHISM.

Moerdijk and Reyes construct in [6] the de Rham cohomology of

M, Hp (M), and the complex of singular chains {S. (M), 6} Now, we

consider the dual complex which we will note (S-(M), 6):

(we will identify an element of Sn(M) with a map f: MAn A R, where

is the standard n-simplex). As usually, we can build the singular co-
homology, Hs-(M), of M.

By integration of a n-form w on a n-simplex 0": An -&#x3E; M through
the map

we define

which is a morphism of complexes (because of Stokes Theorem) and

derives in a homomorphism called "de Rham homomorphism":

The cup product on S-(M) is def ined by

(here a-&#x3E;: Ap -i An is a-&#x3E;(X) = (X,0) and a-&#x3E;: A, -&#x3E;) An is a- (X) = (0,x)),
and induces a product on the de Rham cohomology (because of

Leibniz’s formula) which we will write:
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THEOREM 1. The de Rham homomorphisme pR: HR* (M) -&#x3E; Hs° (M) js multjpli-
cative, tha t is, it commutes with ext and cup.

PROOF (Sketch). It is sufficient to get a homotopy o: cup o®pR -4 pR oext,
that is a family of R-linear maps

natural in M and verifying

We build on by induction beginning with ;1 = 0. Now, if ; n-1 (X) exists,
let

be given by

and, for every Q E (@A) n(M) and 0° : An-1-&#x3E; M, we define

where

is a homotopy constructed after a contraction of An-1 is fixed and

is induced from y.
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NOTE ADDED IN PROOF.

The referee and the author have subsequently eliminated the need
for assuming Proporty (E) in the formula (16) (so in Proposirion 5): 

firstly we reduce the question to the case where w is a n-form on D"

and T is the generic tangent idon. In this case (1.6) follows

considering the restriction of w to D (n+1)n and proving that any
function g: (D (n+ 1» " -&#x3E; R which is homogeneous and alternating (in a

certain sense) is a restriction of the n-form k dx1...dxn on R" for

some unique k E R".

Note that the technique of the generic n-tangent forces us to

abandon property (E), since the object M = D" does not satisfy such
property.
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