CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

G. J. Ellis

C. RODRIGUEZ-FERNANDEZ

An exterior product for the homology of groups with integral coefficients modulo p

Cahiers de topologie et géométrie différentielle catégoriques, tome 30, nº 4 (1989), p. 339-343

<http://www.numdam.org/item?id=CTGDC_1989__30_4_339_0>

© Andrée C. Ehresmann et les auteurs, 1989, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

VOL. XXX-4 (1989)

AN EXTERIOR PRODUCT FOR THE HOMOLOGY OF GROUPS WITH INTEGRAL COEFFICIENTS MODULO *p*

by G. J. ELLIS¹ and C. RODRIGUEZ-FERNANDEZ

RÉSUMÉ. Les auteurs généralisent la suite exacte à 8 termes de groupes d'homologie entière obtenue par Brown et Loday en une suite exacte de groupes d'homologie à coefficients dans \mathbb{Z}_p , où p est un entier non-négatif.

In this article we generalize Brown and Loday's eight term exact sequence in integral group homology [2] to an exact sequence in group homology with coefficients in \mathbb{Z}_p , where p is any nonnegative integer.

Let G be a group with a normal subgroup N, and consider $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ as a trivial G-module. We prove

THEOREM 1. There is a natural exact sequence

$$\begin{array}{l} H_{3}(G,\mathbb{Z}_{p}) \longrightarrow H_{3}(G/N,\mathbb{Z}_{p}) \longrightarrow \operatorname{Ker}(\partial: N\Delta^{p}G \rightarrow G) \longrightarrow H_{2}(G,\mathbb{Z}_{p}) \\ \longrightarrow H_{2}(G/N,\mathbb{Z}_{p}) \longrightarrow N/N \#_{p}G \longrightarrow H_{4}(G,\mathbb{Z}_{p}) \longrightarrow H_{4}(G/N,\mathbb{Z}_{p}) \longrightarrow 0. \end{array}$$

Here $N = {}_{p}G$ denotes the subgroup of N generated by the elements [n,g] and n^{P} , for $g \in G$, $n \in N$. (When x, y are elements of a group, we write $[x,y] = xyx^{-1}y^{-1}$ and $xy = xyx^{-1}$.)

The group $N\Delta^{p}G$ is a new construction. It is generated by the symbols $n \wedge g$ and $\{n\}$ for $n \in \mathbb{N}$, $g \in G$, subject to the relations

(1) $n \wedge g h = (n \wedge g)(g n \wedge g h),$

(2) $n m \wedge g = ({}^{n}m \wedge {}^{n}g)(n \wedge g),$

¹ This author would like to thank the University of Santiago de Compostela for its hospitality during the preparation of this article.

$$(3) n \wedge n = 1,$$

(4)
$$\{n\}(m \land g)\{n\}^{-1} = {}^{nP}m \land {}^{nP}g,$$

(5)
$$\{nm\} = \{n\} \begin{pmatrix} p^{-1} \\ \prod_{i=1}^{p^{-1}} (n^{-1} \wedge (n^{1-p+i}m)^i) \end{pmatrix} \{m\},$$

(6)
$$[\{n\},\{m\}] = n^{P_{\wedge}}m^{P},$$

(7)
$$\{[n,g]\} = (n \land m)^P$$

for $g, h \in G$, $m, n \in N$. Note that if N = G, then (2) and (7) are redundant.

Clearly $N\Delta^{p}G$ is functorial in N and G.

The homomorphism $\partial: N\Delta^{p}G \rightarrow G$ is defined by

 $\partial(n \wedge g) = [n,g] \text{ and } \partial\{n\} = n^{P}.$

It is routine to check that ∂ is a well-defined homomorphism, and that its image is $N \texttt{*}_{p} G$.

As an immediate consequence of Theorem 1 we have

COROLLARY 2. There is an isomorphism

 $H_2(G,\mathbb{Z}_p) \approx \text{Ker}(\partial: G\Delta^p G \rightarrow G)$

Also, for any presentation $R \rightarrowtail F \twoheadrightarrow G$ of G, there is an isomorphism

$$H_3(G,\mathbb{Z}_p) \approx \text{Ker}(\partial: R\Delta^p F \to F)$$
.

In order to prove Theorem 1 we need the following

LEMMA 3. If F is a free group, then ∂ induces an isomorphism $F\Delta^{p}F \approx F \#_{p}F$.

PROOF. Recall from [2] that $N \wedge G$ is the group generated by the symbols $n \wedge g$ for $g \in G$, $n \in N$, subject to relations (1), (2), (3). There is thus a homomorphism $\iota: N \wedge G \rightarrow N \Delta^P G$, $n \wedge g \vdash n \wedge g$. By (4) the image of ι is normal in $N \Delta^P G$. On taking G = N = F we thus have a commutative diagram

where ∂ " is induced by ∂ , and where ∂ ' is the isomorphism proved in [2] (see [3] for an algebraic proof of this isomorphism).

AN EXTERIOR PRODUCT FOR THE HOMOLOGY ...

The homomorphism ∂ " is clearly surjective, and hence has a splitting since pF^{ab} is free abelian and $F\Delta^{P}F/Im(\iota)$ is abelian by (6). This splitting is surjective because of (5). Therefore ∂ " is an isomorphism. Since the rows of the diagram are both short exact, it follows that $\partial: F\Delta^{P}F \rightarrow F \#_{D}F$ is an isomorphism.

In [1] the following natural exact sequence

$$\begin{array}{l} H_{3}(G,\mathbb{Z}_{p}) \longrightarrow H_{3}(G/N,\mathbb{Z}_{p}) \longrightarrow \operatorname{Ker}(L_{0}V_{1}^{p}(\alpha) \rightarrow G) \longrightarrow H_{2}(G,\mathbb{Z}_{p}) \\ \longrightarrow H_{2}(G/N,\mathbb{Z}_{p}) \longrightarrow N/N \#_{p}G \longrightarrow H_{1}(G,\mathbb{Z}_{p}) \longrightarrow H_{1}(G/N,\mathbb{Z}_{p}) \longrightarrow 0. \end{array}$$

is obtained. Thus to prove Theorem 1 it suffices to exhibit an isomorphism $\approx\colon N\Delta^{p}G \to L_{0}V_{1}^{p}(\alpha)$ such that

commutes.

For any surjection $\epsilon\colon F{\rightarrow}G$ with F a free group let S be the kernel of the composite homomorphism

$$F \xrightarrow{\epsilon} G \xrightarrow{\alpha} G/N$$
.

Let $i: S' \rightarrow S$ be an isomorphism. Let T be the kernel of

$$\begin{pmatrix} \varepsilon i \\ \varepsilon \end{pmatrix} : \mathbf{S}^* \mathbf{F} \longrightarrow \mathbf{G}.$$

Then it is shown in ([1], Propositions 6.4 and 8.1) that

$$L_{0}V_{1}^{P}(\alpha) = \frac{(S'^{S'*F}) *_{P}(S'*F)}{((S'^{S'*F}) *_{P}T)((T \cap S'^{S'*F}) *_{P}(S'*F))}$$

As in [1] let $\mu: G \to F$ be any set theoretic section of $\varepsilon: F \to G$. Then μ induces a section $N \to S \approx S'$; under this section we denote the image of $n \in N$ by $\mu(n)' \in S'$. Let

$$D = ((S'^{S'*F}) *_{p} T) ((T \cap S'^{S'*F}) *_{p} (S'*F)).$$

With this notation, we have

LEMMA 4. There is a homomorphism $h: N\Delta^{P}G \rightarrow L_{0}V_{1}^{P}(\alpha)$ defined by $h(n \land g) = [\mu(n)', \mu(g)]D, \quad h(\{n\}) = (\mu(n)')^{P}D.$ **PROOF.** We need to show that h preserves the relations (1)-(7). By [1] clearly h preserves (1)-(3). Relation (4) is preserved because

$$\mu^{(n_m)} \in \mathbf{S}^{\cdot \mathbf{S}^* * \mathbf{F}}, \ ((\mu^{(n)})^P \mu^{(g)})^{-1} \mu^{(n^P g)} \in \mathbf{T} \\ ((\mu^{(n)})^P \mu^{(m)})^{-1} \mu^{(n^P m)} \in \mathbf{T} \cap \mathbf{S}^{\cdot \mathbf{S}^* * \mathbf{F}}$$

from which we see that

$$h({}^{nP}m \wedge {}^{nP}g) = (\mu(n)')^{P}[\mu(m)', \mu(g)](\mu(n)')^{P}D = h(\{n\}(g \wedge m)\{n\}^{-1}).$$

Relation (5) is preserved because

 $\frac{(n^{-1})!}{(n)!} \in T \cap S'S'*F$

and
$$\mu(n) \in \mathbf{S}^{\mathbf{S}^{*}*\mathbf{F}}, \ \mu(n^{\mathbf{1}-p+i}m)^{i}(\mu(n))^{\mathbf{1}-p+i}\mu(m))^{-1} \in \mathbf{T}$$

which implies

$$h(\{n\} \Big(\prod_{i=1}^{p-1} (n^{-1} \wedge (n^{1-p+i}m)^i) \Big) \{m\} = (\mu(n)^{*} \mu(m)^{*})^{p} \mathbb{D}.$$

Since

$$(\mu(nm)')^{-P}(\mu(n)'\mu(m)')^{P} \in T \cap S'^{S'*F}$$

we have

$$h(\{n\} \Big(\prod_{i=1}^{p-1} (n^{-1} \wedge (n^{1-p+i}m)^i) \Big) \{m\} = (\mu(nm)^{\cdot})^p \mathbb{D} = h(\{nm\}).$$

•

Relation (6) is preserved because we have

 $(\mu(n)')^{P}(\mu(n^{P})')^{-1} \in \mathbb{T} \cap \mathbb{S}'^{\mathbb{S}'*\mathbb{F}} \text{ and } \mu(n^{P})' \in \mathbb{S}'^{\mathbb{S}'*\mathbb{F}}, \ \mu(m^{P})^{-1}(\mu(m)')^{P} \in \mathbb{T}.$

Clearly relation (7) is preserved.

Consider the homomorphism

$$d = \begin{pmatrix} \varepsilon i \\ \varepsilon \end{pmatrix} : \mathbf{S} * \mathbf{F} \longrightarrow \mathbf{G}.$$

By Lemma 3 we have a homomorphism $\phi\colon S' \divideontimes_P S' \approx S' \Delta^P S' \to N \Delta^P G$ defined by

$$\varphi([s'_1, s'_2]) = d(s'_1) \wedge d(s'_2), \ \varphi((s')^P) = \{d(s')\}$$

We therefore have a set theoretic map $g: S^{S'*F} = g(S^{F}) \rightarrow N\Delta^{P}G$ defined as follows (cf. [1], 8.12):

$$\inf \prod_{i=1}^{n} s_i f_i \in \mathbf{S}^{\mathbf{S}^* \mathbf{F}} \mathbf{*}_{P}(\mathbf{S}^* \mathbf{F}) \text{ then } \prod_{i=1}^{n} s_i \in \mathbf{S}^* \mathbf{*}_{P} \mathbf{S}^* \text{ and we can define}$$
$$g(\prod_{i=1}^{n} s_i f_i) = \left(\prod_{i=1}^{n-1} (d(\prod_{j=1}^{i} s_j) \wedge d(\prod_{j=1}^{i} f_j))(d(\prod_{j=1}^{i} s_j) \wedge d(\prod_{j=1}^{i+1} f_j))^{-1}\right) \varphi(\prod_{i=1}^{n} s_i).$$

LEMMA 5. The composite function

$$\mathbf{S}^{\mathbf{S}^{*}\mathbf{F}}\mathbf{\sharp}_{p}(\mathbf{S}^{*}\mathbf{F}) \xrightarrow{g} \mathbf{N}\Delta^{p}\mathbf{G} \xrightarrow{} \mathbf{N}\Delta^{p}\mathbf{G}/\iota(\mathbf{N}\wedge\mathbf{G})$$

AN EXTERIOR PRODUCT FOR THE HOMOLOGY ...

is a homomorphism, and induces a homomorphism

$$\psi: L_{\Pi} V_{\Gamma}^{P}(\alpha) \longrightarrow N \Delta^{P} G / \iota(N \wedge G).$$

PROOF. The first homomorphism is clear, and certainly D is in the kernel of the first homomorphism. By Lemmas 4 and 5 we have a commutative diagram

where h' is the restriction of $h\iota$, and is an isomorphism by Section 8 of [1]. Clearly $L_0 V_1^0(\alpha)$ lies in the kernel of ψ , and so ψ induces a splitting of \bar{h} . But ψ is surjective and hence \bar{h} is an isomorphism. It follows that h is an isomorphism. It is readily seen that the above diagram (*) commutes. So Theorem 1 is proved.

REFERENCES.

- 1. J. BARJA & C. RODRIGUEZ, Homology groups $H_n^q(-)$ and eight-term exact sequences, *Cahiers Top. et Géom. Diff. Cat.* XXXI (1990).
- 2. R. BROWN & J.-L. LODAY, Van Kampen Theorems for diagrams of spaces, *Topology* 26 (3) (1987), 311-335.
- 3. G.J. ELLIS, Non-abelian exterior products of groups and exact sequences in the homology of groups, *Glasgow Math. J.* 29 (1987), 13-19.

Mathematics Department University College GALWAY IRELAND Departamento de Algebra Universidad de SANTIAGO DE COMPOSTELA ESPAGNE