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R2SUMfi. Les auteurs g6n6ralisent la suite exacte a 8 ter-

mes de groupes d’homologie entiere obtenue par Brown et
Loday en une suite exacte de groupes d’homologie a coef-
ficients dans ZP, ou p est un entier non-n6gatif.

In this article we generalize Brown and Loday’s eight term
exact sequence in integral group homology [2] to an exact se-

quence in group homology with coefficients in Zp, where p is

any nonnegative integer.

Let G be a group with a normal subgroup N, and consider
Zp=Z/pZ as a trivial G-module. We prove

THEOREM 1. There is a natural exact sequence

Here N**pG denotes the subgroup of N generated by the

elements [n,g] and nf’, for g E G, n E N. (When x,y are ele-

ments of a group, we write [x,y] = xy x-1y-1 and ’ w- = xi- x- 1.)

The group NAPG is a new construction. It is generated by
the symbols nAg and Inl for n E N, g E G, subject to the rela-
tions

1 This author would like to thank the University of Santiago de
Compostela for its hospitality during the preparation of this ar-

ticle.
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for g, h E G, m, n E N. Note that if N = G, then (2) and (7) are

redundant.

Clearly NAPG is functorial in N and G.

The homomorphism 1: NAPG-G is defined by

It is routine to check that 6 is a well-defined homomorphism,
and that its image is NUpG .

As an immediate consequence of Theorem 1 we have

COROLLARY 2. There is an isomorphism

Also, for aw presentation R &#x3E;- F - G of G, there is an isomor-

phism

In order to prove Theorem 1 we need the following

LEMMA 3. If F is a free group, then 6 induces an isomorphism
FAPF rr F#PF.
PROOF. Recall from 121 that NAG is the group generated by the
symbols n A g for g E G, n E N, subject to relations (1), (2), (3).
There is thus a homomorphism i: N A G- N APG, n A g + nAg. By
(4) the image of i is normal in NAPG. On taking G = N = F we
thus have a commutative diagram

where 8" is induced by d, and where 1’ is the isomorphism pro-
ved in [21 (see [3] for an algebraic proof of this isomorphism).
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The homomorphism 8" is clearly surjective, and hence has a

splitting since pFab is free abelian and FAPF/lm(L) is abelian by
(6). This splitting is surjective because of (5). Therefore 1" is an

isomorphism. Since the rows of the diagram are both short

exact, it follows that d: FAPF-F#pF is an isomorphism. ·

In [I] the following natural exact sequence

is obtained. Thus to prove Theorem 1 it suffices to exhibit an

isomorphism rr:NAPG-L0VP1(a) such that

commutes.

For any surjection s: F-G with F a free group let S be
the kernel of the composite homomorphism

Let i : S’-S be an isomorphism. Let T be the kernel of

Then it is shown in ([1], Propositions 6.4 and 8.1) &#x3E; that

As in [1] let (1: G-F be an), set theoretic section of E:

F-G. Then (1 induces a section N-Srr S’; under this section we
denote the image of n E N by u ( n)’ E S’ . Let

With this notation, we have

LEMMA 4. There is a homomorphism h:NApG-L0V1P(a) defined

by
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PROOF. We need to show that h preserves the relations (1)-(7).

By [1] clearly h preserves (1)-(3). Relation (4) is preserved be-
cause

from which we see that

Relation (5) is preserved because

and

which implies

Since

we have

Relation (6) is preserved because we have

Clearly relation (7) is preserved. o

Consider the homomorphism

By Lemma 3 we have a homomorphism cp: S"#PS* =S’APS’-NAPG
defined by

We therefore have a set theoretic map g: S’S*F#p(S’*F)-NAPO
defined as follows (cf. [1], 8.12): 

LEMMA 5. The composite function



343

is a homomorphism, and induces a homomorphism

PROOF. The first homomorphism is clear, and certainly D is in

the kernel of the first homomorphism. By Lemmas 4 and 5 we

have a commutative diagram

where h’ is the restriction of hc, and is an isomorphism by Sec-
tion 8 of 111. Clearly LoVO(a) lies in the kernel of 4J, and so 4J
induces a splitting of h . But 4J is surjective and hence h is an

isomorphism. It follows that h is an isomorphism. It is readily
seen that the above diagram (*) commutes. So Theorem 1 is pro-
ved.
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