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COMBINATORIAL-GEOMETRIC ASPECTS

OF POLYCATEGORY THEORY:

PASTING SCHEMES AND HIGHER BRUHAT ORDERS

(LIST OF RESULTS)

by M.M. KAPRANOV and V.A. VOEVODSKY

CAHIERS DE TOPOLOGIE

ET GÉOMETRIE DIFFERENTIELLE

CATEGORIQUES

VOL. XXXII-1 (1991)

RESUME: Nous 6tudions la combinatoire et la topologie
des ’sch6mas de composition’ n-categoriques introduits
par M. Johnson. Ces schemas ont certaines relations
avec polytopes convexes, leurs triangulations, les arra-

ngements d’hyperplans et les matroïdes orient6s. En

particulièr, nous presentons une description
n-catégorique des ’ordres de Bruhat supen’eurs’ intro-
duits par Y.I. Manin and V.V. Schechtman pour 1’etude
des generalisations « supérieures’ des equations de Yang-
Baxter.

This talk is devoted to detailed study of free n-

categories and their relations with more "classical" geomet-
ric objects. Among these objects we list convex polytopes,
their triangulations, configurations of hyperplanes, oriented
matroids, and so-called "higher Bruhat orders", introduced by
Y.I. Manin and V.V. Schechtman.

The base for our study is the notion of a pasting dia-
gram for n-categories introduced by M. Johnson [J]. Though
we feel that much of Johnson’s theory can be substantially
simplified, even in its present state it yields a lot of com-

binatorial objects, some of which are known, and the others
new and unexpected.

§ 1. PASTING SCHEMES.
The notion of a polycategory we use is the "globular"

one ([Sl], [J], [MS], compare also [Gr]), in contrast with
the cubical version [BH]. An n-category is a category en-

riched in the cartesian closed category (n-l)-cat of (n-1)-
categories. Sometimes polycategories in our sense are called
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n-categories, and the cubical ones n-tuple categories. We
shall use the one-sorted point of view on an n-category C ,
identifying it with a set MorC , equipped with mappings
s i ,t i : MorC -&#x3E; MorC , i = 0,1,...,n-1 and the partial com-

positions (a,b) - a*b defined when s i a = t i b . We call

i-morphisms elements a E MorC such that si -1a =
t 1 - 1a = a . Objects are just 0-morphisms.

For any two objects x,y of an n-category C , an (n-1 )-
category Homc(x,y) is defined, whose objects are 1-

morphisms in C from x to y .
Intuitively a pasting scheme is an "algebraic expression

with indeterminate elements" which can be evaluated in an

arbitrary n-category as soon as we have associated, in a com-

patible way, to the indeterminates in the expression concrete

polymorphisms. For example,

Fig. 1

is a pasting scheme. In [J], a combinatorial theory of past-
ing schemes was developed. We shall recall some points of
the theory of [J]. In fact, our approach to pasting schemes
is slightly different from the original one in [J] but in all

important cases they are equivalent. A similar approach has
been developed in [S2]; see also [P] for the 2-dimensional
case.

A pasting scheme is a collection A = (Ai)i &#x3E; 0 of finite

sets such that Ai i = 0 for i » 0 , equipped with binary
relations Bi ,Ei EA i + 1 XAi . Elements of A i will be called,
somewhat abusively, i-cells of A , cf.§ 2. These relations
must satisfy certain conditions, the most important of which
is the following. Let Z [A i ] be the free abelian group gen-
erated by A i . Define the differential a : Ai + 1 -&#x3E; A i by
the formula a(a) = a + (a) - 8- (a), where
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Then aa must be equal to zero, that is,

must be a chain complex. This complex determines A as a

pasting scheme. Let us inductively define families of opera-
tors a(k), a+(k), a-(k) from Z [An] to Z [A n-k] as fol-
lows.

Let a E A n be some element and

ine and similarly for a - (k) , so that

a(k) = a + (k)-a - (k). The set of data { E,B,A } is called a

pasting scheme if the multiplicities nb in all 8+(k). and
a - (k) are equal to 1 . We define relations E i ,B i c

A j x Ai for j &#x3E; i setting (a,b) E E i if b enters in
the sum for a - (j-i)(a) . Similarly for Bji . Therefore, we

can say that a pasting scheme is a based chain complex of a

particular kind. We shall use this description in the se-

quel. We shall note dim A , the dimension of A , i.e.
the maximum of i such that A i is non-empty. If a E A i
then we shall write dim a=i. If a E A i + 1 , then we set

B i (a) - {b E A i : (a,b) E Bi } . Similarly for E i .
If A is a pasting scheme and a e A. then we denote

by R(a) the set of all b E A i , i s m such that there
exists a sequence a = al,a2,---,a,- i = b , in which for
each j the pair (aj,aj+1) lies either in Em - j + 1 or in

Bm- j + 1 . Geometrically R(a) is to be thought of as the set

of cells lying in the closure of a (cf. § 2 below).
The really important notion is the notion of a compo-

sable pasting scheme, that is a scheme which is, in Johnson’s
terminology, loop free and well-formed. These conditions
eliminate the following types of behaviour:
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Fig. 2
For a composable pasting scheme A of dimension n ,

an n-category Cat(A) is defined [J]. Its polymorphisms are

composable subpasting schemes (in a natural sense) in A ,
and the compositions are given by the union. In particular,
for any composable pasting scheme A of dimension n we have

composable subpasting schemes s i A,t i A c A of dimension i .

Explicitly,

and further s i ,t i are defined by iterating this construc-

tion. A realisation of a composable pasting scheme A in an

n-category C is an n-functor Cat(A) -&#x3E; C . The "resulting
polymorphism" of such a realisation is the value of this
functor on A e Mor Cat(A) . As shown in [J], Cat(A) is
freely generated (in the sense of Street [S]) by polymorph-
isms of the type R(a) , a e A i , i &#x3E; 0 , which, in this
case, are composable subpasting subschemes. Therefore to

define a realisation of A it suffices to associate, in a

compatible way, to each element Ai i some i-morphism of C .

§2. GEOMETRIC REALISATIONS OF PASTING SCHEMES.
STRUCTURES OF PASTING SCHEMES ON CONVEX
POLYTOPES.

Most of pasting schemes arising in practise come from
some geometric objects, e.g. polytopes. This induces an idea
to consider the geometric realisation of a pasting scheme as

a cellular complex.
Let A be a pasting scheme. The set A = UA 1 is part-

ially ordered by the relation R .

Definition 2.1. The geometric realisation | A | of a pasting
scheme A is the nerve of the category associated to the
poset (A,R) .
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Therefore, | A | is a simplicial complex, whose p-
dimensional simplices correspond to chains x0Rx1,R ... Rxp ,
xi # x j , where yRx means that y E R(x) . To any m and
a E Am we associate a closed subcomplex [a] c A I whose
p-simplices correspond to chains x0Rx1,R ... Rxp, where

XpRa .

Theorem 2.2. If A is a composable pasting scheme of dimen-
sion n , then:
a) IAI - |Sn-1A| - |tn-1A| is homeomorphic to a disjoint

union of several open n-balls.
b) For each m and a E Am the subcomplex [a] is homeo-

morphic to a closed m-ball. Therefore the subcomplexes
of the form [a] , a E Am, m z 0 , form a cellular
decomposition of | A | .

In general, it is very difficult to decide, whether a

given CW-complex is homeomorphic to a ball, or is a topo-
logical manifold, because this amounts to recognising a

sphere among other manifolds. For a 3-sphere this is a clas-
sical problem. The success in our situation comes from con-

sidering additional structure on the complex: the grouping of
the cells lying on the boundary of a given cell, to "begin-
ning" and "end".

Let M c [Rn be a bounded convex polytope of dimension
n , and

be a system of affine projections such that any k-dimensional
facet of M projects injectively to R (we shall call a

system of projections with this property admissible). We
shall suppose that all (Rel are equipped with their standard
orientations. Then the fibres of Pkn, k - 1k become oriented
lines. Denote the composite projection ut - R by pk .

Let Ak(M) be the set of k-dimensional facets of M .
Define on A(M) = UAK(M) a structure of a pasting scheme.
Let r i Ak(M) , A E Ak7kl(M) A c r . Consider the image
pk(r) c (R. . Let H : R -&#x3E; R be an affine-linear function
such that H|pk(A) = 0, H|pk(r) &#x3E; 0 . Say that e e Bk(r)
(resp. A e Ek(r)) if H(t) -&#x3E; +oo (resp. H(t) -&#x3E; (-oo)) when
t tends to the infinity along a fibre of

Pk,k-1 R -&#x3E; Rk-fo in positive direction:



16

Fig. 3

We shall call this pasting scheme A(M,p) .

Theorem 2.3. If M c Rn is a bounded n-dimensional polytope
and p = {Rn- Pn, n-1 Rn-

1 
-&#x3E; ... -&#x3E; R2 P2, 1 R} is an

admissible system of projections, then A(M,p) is a compos-
able pasting scheme.

Example 2.4. Let M = AD be an n-dimensional simplex, and

: A k (An) -&#x3E; A k-1 (An) be the standard simplicial n opera-
tors, j = 0,1,...,k . Namely, denote vertices of e by
(0),(1),...,(n) . Then each facet is determined by a subset
(r c (0,...,n) , , which we write in the increasing order:
CT = { o-0 ... ok}. Then a jo- = {o-0 ... o- j  ... o-k}. The
standard structure of pasting scheme on en considered in

[S1], starts from the usual differential a = E (-1)1a i in
the chain complex of AD. Therefore, for y e Ak (An), we

have

The corresponding n-category Cat(An) was called by Street
the n-th oriental.

Let us give an interpretation of this structure of past-
ing scheme by means of projections. Fix n + 1 real numbers

to&#x3E;...&#x3E;tn E R. Define n + 1 points

These points are in general position since the determinant of
the corresponding matrix is the classical Vandermonde deter-
minant. Therefore the convex hull of v j 

. 

is a n-simplex
which we consider with the given i numeration of vertices.
Consider the projections p i , 1 -1 : (Rl -&#x3E; R1-1 which forgets



17

the last co- ordinate.

Theorem 2.5. The structure of pasting scheme on An given by
the above projections coincides with the combinatorially def-
ined structure used by Street.

Example 2.6. Let

be the n-dimensional cube and api : A k (In) -&#x3E; A k-1 (In), i =

1,2,...,k , p = 0,1 be the standard cubic boundary opera-
tors, see [K]. Explicitly, facets of In have the form

for for

for Let

and a1 ... ak be all elements of Then

The differential in the chain complex of In is given by
a = E(-1 )1+Pa Pi. Therefore, we introduce the relations
Bk, Ek c Ak + 1 (In) x Ak(In) by setting

Theorem 2.7. The relations Bk,Ek define on A(I") the
structure of a composable pasting scheme.

We can deduce this theorem from the other description of
this structure of pasting scheme. Fix real numbers

tl »t2» ", »tn , where » means "sufficiently greater
than". Define vectors v j - (tj,tj2,...,tnj ) E Rn as above and
realize the cube as the Parallelotope with vertices E vi,

i Ej

where J runs over all subsets of {1,...,n}. Define pro-

jections p i , i -1 : R
i 

-&#x3E; Ri-1 as above, by forgetting the
last coordinate. This defines on In some structure of a

composable pasting scheme.

Theorem 2.8. The two described structures of pasting scheme
on In coincide.
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§3. HIGHER ORDERS ASSOCIATED TO A COMPOSABLE
PASTING SCHEME.
Categories of the form Cat(A) , A being a composable

pasting scheme, possess remarkable properties of order, which
we shall now describe.

Definition 3.1.
a) A 1-category C with a finite number of morphisms is
called ordered, if the relation Hom(x,y) # 0 on the set

Ob C is a partial order, and Hom(x,x) is always a single-
ton. A category is called strictly ordered, if it is ordered
and Ob C has unique maximal and minimal elements.
b) Suppose that for k  n the notion of a (strictly) ord-
ered k-category is defined. Say that an n-category C is
(strictly) ordered if:
the relation Hom(x,y) # 0 on Ob C is a partial order (with
unique maximal and minimal elements);
for any x,y E Ob C the (n-I)-category Homc(x,y) is (strictly)
ordered, and Hom(x,x) is a singleton n-category.

If C is a strictly ordered n-category, then we can def-
ine a strictly ordered (n-1 )-category

where Xmin , Xmax E Ob C are maximal and minimal elements.

So we can form g2C = QQC etc.

Theorem 3.2 Let A be an n-dimensional composable pasting
scheme. Then Cat(A) is a strictly ordered n-category.

So, to each composable pasting scheme A we associate a

hierarchy of posets Xk = Ob gkCat(A) . There are natural

surjective maps

Definition 3.3. 
k 

We call the higher ,Stasheff order S(n,k)
the poset Ob n Cat(A") .

Examples 3.4.
a) S (n,1 ) is the set of all subsets of an n-element set,

(i.e. of vertices of an n-cube) partially ordered by
inclusion. It has 2n elements.

b) Elements of S(n,2) are identified with triangulations of
a planar convex (n+1)-gon which we shall denote
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M(n+1,2) . Namely, number the vertices by 0,1,...,n in
circular order. Let T be a triangulation of M(n+1,2) .
Lift each triangle of T with vertices i,j,k, to the

corresponding triangle in A . It is clear that we thus
obtain all films from 0 cat(An) , cf. [S1] .

It is well-known that the triangulations of M(n+1,2) are

in bijection with bracketings of n factors. Their number
is the Catalan number

Cn = (2n - 2)!/(n-1)!(n-1)!(n-1) .

These bracketings are vertices of an (n-3)-dimensional poly-
tope constructed by J. Stasheff [Sta], which explains our

terminology.
Denote by M(n+1,k) = pk(An) the image of the simplex

under the projection to Rk defined in the example 2.4. In
other words, M(n+l,k) is the convex hull of n+1 points lying
on the Veronese curve in Rk given by {(t,t ,...,t ) ,
t E R}. It is classically called the cyclic polytope and is
of importance in general theory of convex polytopes, since
its face numbers possess some extremal properties, see [Gru]
and references therein.

Theorem 3.4. Elements of the poset QkCat(An) are in bijec-
tion with triangulations of the cyclic polytope M(n+l,k)
which do not add new vertices.

Remark 3.5. It would be interesting to construct a natural

polytope with the set of vertices S (n,k) , thus generali-
sing the Stasheff polytope. In fact, in [Gt:K1-2] for any
convex polytope Q c R 0 and any set A c R containing all
vertices of Q , a new convex polytope P(Q,A) c IR A was

defined, whose vertices are in bijection with those triangu-
lations of Q with vertices in A , which are regular, i.e.
admit a strictly convex piecewise-linear function. This

polytope was called the secondary polytope for (Q,A) , cf.
also [BFS].

Unfortunately, we do not know whether all triangulations
of M(n+l,k) are regular. It seems that the answer is

negative.

§4. FREE N-CATEGORY GENERATED BY A N-CUBE AND
HIGHER BRUHAT ORDERS.
In the course of study of higher-dimensional generali-
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sations of the Yang-Baxter equation, Yu.I. Manin and V.V.
Schechtman introduced in [MS 1-3] posets B(n,k) called the

higher Bruhat orders. The set B(n,1 ) is the symmetric
group S n with its weak Bruhat order, and B(n,k+1 ) is a

certain quotient of the set of maximal chains in B(n,k) .
In [MS 1-3] various connections of B(n,k) with geometry
were indicated. Among them k are the connection with configur-
ations of hyperplanes in R in general position and the
structure of the convex closure of a generic orbit of S n in
". We shall not recall here the original definition of
B(n,k) but instead formulate our interpretation. Consider
the cube In with the structure of pasting scheme introduced
in § 2.

Theorem 4.1. There is an isomorphism of posets

B(n,k) = Ob 6kCat(In) .

By using mutations of elements of higher Bruhat orders

(analogues of multiplications of permutations by trans-

positions), in [MS3] a (n-1)-category s n was defined, whose
set of objects is the symmetric group S n .

Theorem 4.2. There is an isomorphism of (n-1 )-categories

s n - nCat(ID) .

From this theorem we easily deduce one conjecture of [MS
3]. Let Pn 5; tp" be the (n-1 )-dimensional permutohedron. By
definition, Pn 

Rn 
is the convex hull of the orbit of a point

(x1 &#x3E; ... &#x3E;Xn) E !R" under the natural action of the group
S n . Each face of Pn is isomorphic to a product of several

permutohedra of smaller dimension, and some are single permu-
tohedra, see [B], [Mi]. We call them indecomposable faces.

Theorem 4.3. There is a natural bijection between indecom-
posable k-morphisms of Sn and indecomposable k-dimensional
faces of P n .

The proof is based on the fact that Pn can be viewed
as the "derived polytope" of I", see §5. 

k ..
Consider the projection P k : In -&#x3E; Rk introduced in §2.

Denote Z(n,k) its image. It is natural to call this polytope
the cyclic zonotope, since by zonotopes one usually means

polytopes which are affine images of a cube (every polytope
is clearly the affine image of a simplex).
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Theorem 4.4. Elements of B(n,k) are in bijection with

subcomplexes (i.e. closed subsets which are unions of facets)
E c In such that pk : E -&#x3E; Z(n,k) is a bijection.

For such E the images of facets of E form a cubil-

lage of Z(n,k) (analogue of triangulation). In particular,
to the maximal and minimal elements of B(n,k) correspond
subcomplexes E which are sk(In) and tk(In) . To visua-
lize these subcomplexes (or their images under pk ) one has

tok draw the cyclic configuration of n affine hyperplanes in
Rk: 

Then we form the cell decomposition of IRk dual to the de-

composition induced by this configuration. This new decom-

position is in fact a cubillage and is cotbinatoiially equiv-
alent to Pk(Sk(I")) ’ For example, S2(l ) looks as fol-
lows :

Fi g. 4

More generally, let E Z In represent an element of B (n,k) .
Consider the cell decomposition of Z(n,k) , dual to the
cubillage induced by Pk (E) . If we look at its (k-1)-
dimensional skeleton, we obtain a configuration of n poly-
hedral hypersurfaces in Z(n,k) . These hypersurfaces inter-
sect each other as if they were hyperplanes in general posi-
tion. In other words, they define an oriented matroid [FL],
[BS]. Let us recall necessary definitions.

Definition 4.5. An oriented matroid is a system
M = (E,C,*) , where E is a finite set, * : E -&#x3E; E ,
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x -&#x3E; x* is a fixed point-free involution, c s 2E is a

family of subsets (called positive circuits) satisfying the
conditions:

(i) If S E e and T c S , then T = S .
(ii) If 

0 
S E e 

Q. 
and {x*,x E S }, then S* E e and

S 0 S* =Q. 
(iii) If S,T e r:, x E S 0 T*, S # T , then there is

CeC such that C c (S v T) - {x,x*} .
A basic example is given by the set E of non-zero

vectors in a real vector space such that for x E E we have
(-x) e E . Define x*=-x for x E E . Define c to con--

sist of subsets C c E minimal such that:
a) C n C* = Q
b) There are as E R+ , see such that E as,S = 0 .

seS
Not any oriented matroid is realisable, i.e. comes from

a system of vectors as above.
From the "dual" point of view elements of an oriented

matroid would represent half-spaces in Rn arising as comple-
ments to hyperplanes of an (imaginary, non-existent in

general) configuration. Instead 
_1 

of half-spaces containing 0,
one can imagine hemispheres in S" , the unit sphere.

One of the main results of [FL] is that oriented mat-

roids correspond to configurations formed by not necessary
genuine hemispheres, but by so-called pseudo-hemispheres,
that is, by subcomplexes in S homeomorphic to discs and
invariant under the involution. This is achieved by "geomet-
ric realisation" similar to our construction in §2. Such a

configuration may, however, be not stretchable.

Definition 4.6. An oriented matroid M = (E,c,*) is said to

have type F(n,k) , if card(E) = 2n , for each s E C we

have card(C) = k+1 , and for each subset X c E ,
card(X) = k+ 1 there is a decomposition X = Y u Z ,
Y n Z =Q such that Y u Z* E e .

. 
Intuitively, such a matroid should represent a configur-

ation of n hyperplanes in R in general position. Not

every matroid of type F(n,k) is realisable. In the paper
of Ringel [R] there is an example of a non-realisable orien-
ted matroid of type F(9,3) , see also [BS].

Definition 4.7. The cyclic oriented matroid of rank k on

n directions is the oriented* matroio C(n,k) in which E
consists of symbols 61,6,...,6n,6n, the involution
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interchanges s i and 6i and c is formed by subsets

Z I - {6i ,iE I, i is even, 6* i, E I, i is odd } and Z I
for all (k+l)-element subsets I c {1,...,n } .

The oriented matroid C(n,k) is realisable by configur-
ation of hyperplanes dual to the vertices of the cyclic poly-
tope (see § 2).

A cell of an oriented matroid M is, by definition, a

cell of the cell decomposition of the sphere induced by the

configuration of pseudo- hemispheres corresponding to M .
Cells can be defined in a purely combinatorial way, see [FL].

Definition 4.8. A marking of an oriented matroid M is a

complete flag Z = (Zoc ... cZ, -1) of cells of M . (Here
r-1 is the dimension of the sphere, i.e. r is the rank of
M .)

Example. Define a marking of the cyclic oriented matroid
C(n,k) which we shall call the standard one. Let us view

elements 6i ,6i as hemispheres in Sk-1 . Then set

where we set s 0 = 6n .

If B is a cell of an oriented matroid M , then de-
note by S(B) the unique pseudosphere in Sr-1 of dimension
dim(B) which is the intersection of some pseudohemispheres
of the configuration. By M|S(B) we denote the oriented
matroid of rank dim(B) + 1 defined by the configuration of

pseudohemispheres induced on S(B) .

Theorem 4.9. The set B(n,k) is in bijection with the set
of marked oriented matroids (M,Z) of rank k+1 such that:

(i) M has the type F(n+1 , k+1) .
(ii) The restriction Mis(z k-1) &#x3E; is isomorphic to the cy-

clic oriented matroid C(n,k) .
(iii) The marking of C(n,k) = M j s (zk-1) is the standard one.

For k = 3 any oriented matroid of type F(n+1,3)
admits a marking satisfying (ii) - (iii). This 

n 
corresponds

to the numeration of affine (pseudo)-lines in Rn by the
increase of the slopes. For k&#x3E;3 such a marking is not
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always possible.
Using this theorem we can easily disprove the conjecture

from [MS2] that B(n,2) classifies the combinatorial types
of arrangements of n lines in general position in (R2,
none of which is parallel to the fixed line. To do this, we

can take the Ringel’s example [R], [BS] of non-stretchable

configuration of 9 pseudo-lines in (R2, thus obtaining an

element of B(9,2) which cannot be represented by a configu-
ration of lines.

In general, one can construct from an arbitrary marked
oriented matroid a composable pasting scheme.

1 
The connection between the simplex An and the cube

10-1 (see § .5 below) yields a natural surjective (n-1 )-functor
Cat(In-1) -&#x3E; nCat(An) . This leads to a connection between
higher Bruhat and Stasheff orders.

Theorem 4.10. For each n,k there exists a monotone sur-

jective map f : B(n,k) -&#x3E; S(n+1,k+1) such that for each
a,b E B(n,k) we have a s b if and only if f(a)  f(b) .

It follows from this property that f takes the maximum
and minimum of B(n,k) to the maximum and minimum of
S(n+l,k+1) .

§5 TWO PROBLEMS
5.1 The derived pasting scheme. If A is a composable past-
ing scheme of dimension n then the (n-l)-category nCat(A)
in general is not free, i.e. not of the form Cat(B) for
some composable pasting scheme B . In fact, the 2-
dimensional associativity in Cat(A) produces non-trivial
relations in i2Cat(A) . It is natural to look for some "free
cover" of nCat(A) which would have the form Cat(B) . In
this case, vertices of B should correspond to maximal paths
in A . It is natural to call such a B (if it exists) the
derived pasting scheme of A and denote it i2A . Let us

define the graded poset i2A setting (CA)k to be the set

of all sequences (ao, ..., ar) , r &#x3E; 0 of cells of A such
that:

and for
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We say that if there is a sequence

such that for any and any

we have b j e R(av) .
This poset should be the poset of cells of the pasting

scheme S2A we are looking for. The sequences of cells

satisfying the condition 1) can be called 0-composable. In
the same way we can define posets S2PA for p &#x3E; 1 . By
definition, a k-dimensional cell of CpA is a composable
pasting subscheme T c A such that:

1’ ) The polymorphism in- Cat(A) represented by T can be
obtained from "elementary" polymorphisms R(a) , corre-

sponding to cells of A , by using only operations
*,..., *.
o p- 1

2) z max(dim(a)-p,O) = k , where Tmax is the set of

a ET max
cells of T that are maximal (with respect to R) .
For p = 1 we obtain the previous definition.

Problem. Investigate the possibility of endowing the graded
posets QnA with the structure of composable pasting schemes
such that the order corresponds to the relation R .

There are some cases when this construction works well.
The most important cases are:

but for the permutohedron Pn the construction behaves bad-

ly. The role of the permutohedron as an approximation to the

space of paths in the cube was known to R J Milgram [Mi].
Also Q2(An) is the (poset of faces of) the Stasheff poly-
tope [Sta]. Similarly, the 0 P(,,n) should be the "higher
Stasheff polytopes" and should be connected with the second-

ary polytope of a cyclic polytope [GZK1-2], [BFS].

5.2 Enumeration problem. Calculate the cardinality of the
sets B(n,k) and S(n,k) . For S(n,k) these are "higher"
analogs of the classical Catalan numbers.
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