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CATEGORIES OF CLOSURE SPACES AND
CORRESPONDING LATTICES

by Claude-Alain FAURE

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXV-4 (1994)

Resume: La cat6gorie des espaces avec un op6rateur de fermeture sa-
tisfaisant a 1’axiome de separation TD (et des applications continues) est
6quivalente a une cat6gorie de treillis. En restreignant cette equivalence,
on obtient, premi6rement, une equivalence de categories entre les espaces
topologiques TD et certains treillis, et, deuxi6mement, 1’equivalence bien
connue entre la cat6gorie des g6om6tries et celle des treillis g6om6triques.

For topological spaces the TD-separation axiom appears naturally in many prob-
lems dealing with the algebraic characterization of topological phenomena (cf. for
instance [2] and [10]). In [11] W. J. Thron showed that two TD-spaces having iso-
morphic lattices of closed subsets must be homeomorphic. Moreover, he remarked
that for these lattices the set of completely irreducible elements is order generating
(we say that the lattices are molecular). It is therefore not surprising that the cat-
egory of TD-spaces is actually equivalent to the category of distributive complete
molecular lattices (for a natural choice of morphisms). 

As a matter of fact, one does not use the distributivity at all, and the basic equiv-
alence lies between the category of TD-closure spaces and the category of complete
molecular lattices. Then it appears that the equivalence of categories between the
geometries and the geometric lattices is a special case of this basic equivalence. For
several properties of closure operators we determine which are the corresponding lat-
tice properties; in particular for the Steinitz exchange property and the interesting
weak exchange property of P. R. Jones [9].

There is a symmetry between the topological properties (of a closure space or
a lattice) and the algebraic ones. Many ’algebraic’ results are obtained from ’topo-
logical’ ones by putting the words directed subset in place of finite subset, and
conversely. As an application of this little symmetry principle a direct definition of
the morphisms of locales is given at the end of the paper.

All the proofs are elementary. Some are left as exercise, and some others are
omitted because of the symmetry principle.

Cet article a ete 6crit durant un stage a I’Université de Louvain-la-Neuve (Belgique), financ6 par
une bourse du Fonds National Suisse de la Recherche Scientifique.
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0. PRELIMINARIES

All through this paper L denotes a complete lattice. We write sup A for the
supremum of an arbitrary subset A C L, but VF for the supremum of a finite
subset F C L and U D for the supremum of a directed subset D C L (note that a
finite subset may be empty, contrary to a directed one).

0.1 Definition We recall that an element a E L is completely irreducible if there
exists p  a such that x  a implies x  p.. The element p E L is clearly unique
and denoted by p(a) (for the predecessor of a). An atom of L is an element a E L
with p(a) = 0. We write Irr(L) for the set of completely irreducible elements of L
and A(L) for the subset of Irr(L) formed by the atoms of L.

0.2 Definition An element p E L is called coprime if p  V F for some finite
subset F C L implies that there exists x E F with p  x, and an element c E L is
called compact if c  U D for some directed subset D C L implies that there exists
x E D with c  x. The set of coprime elements of L is denoted by Sp(L) and the
set of compact elements of L by K(L).

0.3 Definition One says that a subset S’ C L is order generating if for every x
in L one has x = sup Is E Ss/s  x}. The lattice L is called atomistic if A(L) is

order generating and molecular if Irr(L) is order generating. And it is called topo-
logical if Sp(L) is order generating and algebraic if K(L) is so.

0.4 Remarks 1) If S C L is order generating, then Irr(L) is contained in S. In
particular, one has A(L) = Irr(L) for every atomistic lattice L. 2) It is well-known
that a complete lattice L is topological if and only if it is isomorphic to the lattice
of closed subsets of some topological space X.

0.5 Definition A closure space X is a set (also denoted by X) with a closure
operator, i.e. a map C : P(X) - P(X) which satisfies 1) A C C(A), 2) A C B
implies C(A) g C(B), 3) C(C(A)) = C(A). A subset E C X is called closed if
C(E) = E. The complete lattice of closed subsets of X is denoted by r(X).

0.6 Definition Let X , Y be two closure spaces. A map f : X - Y is called con-
tinuous if f(C(A)) g C(f(A)) for every subset A C X . One thus gets a category
(the category of closure spaces).

0.7 Definition Let X be a closure space. One says that X is a

a) To-closure space if C(Ø) = 0, and C(x) = C(y) implies x = y;
b) TD-closure space if C(x) B x is closed for every x E X ;
c) T1-closure space if C(Ø) = 0, and C(x) = {x} for every x E X .
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Clearly, any T1-closure space is a TD-closure space, and any TD-closure space is a
To-closure space (note that C(Ø) = O).

1. THE EQUIVALENCE OF CATEGORIES

1.1 Lemma One has A(T(X)) g Irr(r(X)) g {C(x)/x £ C(O)} for any closure
space X . Moreover, the latter subset is order generating in r(X ).
Proof. Trivial verification.

1.2 Proposition Let X be a closure space and denote by [x] the equivalence class
of x E X for the equivalence relation z - y iff C(x) = C(y). Then for any point
x £ C(o) the two following hold:

1) C(x) is completely irreducible in T(X) iff C(x) B [x] is closed;
2) C(x) is an atom of T(X) iff C(o) U [x] is closed.

Proof. 1) Suppose that C(x) is completely irreducible in r(X). Denote by P
the predecessor of C(x). If y E C(x) B P, then C(y) g C(x) and C(y) /C P imply
C(y) = C(x). Hence y E [x] and one gets C(x)BP C [x]. Since [x] n P = 0 one has
C(x)B[x] = P. In particular, C(x)B[x] is closed. Conversely, if C(x)B[x] is closed,
then it is obviously the predecessor of C(x).

2) Left as exercise; one shows that C(x) = C(o) U [x].

1.3 Corollary 1) A closure space X is a TD-closure space if and only if it is a
To-closure space and Irr(T(X)) = {C(x)/x E X} (this condition implies that r(X)
is a molecular lattice by 1.1). 2) A closure space X is a T1-closure space if and
only if it is a To-closure space and A(r(X)) = {C(x)/ x EX} (this condition im-
plies that T(X) is an atomistic lattice).
Proof. For a To-closure space one has C(o) = 0 and [x] = {x}.

Therefore, if X is a TD-closure space, then the lattice r(X) is complete and
molecular. Conversely, we shall associate to any complete (molecular) lattice L a
TD-closure space Irr(L) (formed by the completely irreducible elements of L).

1.4 Proposition Let L be a complete lattice. On the set Irr(L) we consider the
operator C = CL defined by CL (A) :- (a E Irr(L)/a  sup A}. Then Irr(L) with
this operator is a TD-closure space. Moreover, if L is an atomistic lattice, then
Irr(L) = A(L) is a T1-closure space.
Proof. Clearly, C is a closure operator on Irr(L). And for any a E Irr(L) the set
C(a)Ba = {b E Irr(L)/ b  a} = C (p(a)) is closed. Finally, if L is atomistic, then
one has C(a) = lb E A(L)/b  a} = {a} for every a E A(L).
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1.5 Proposition For any TD-closure space X the map nx : X-&#x3E; Irr(T(X)) de-
fined by nX(x) = C(x) is a homeomorphism.

Proof. This map is bijective by Corollary 1.3. It remains to show that for every
A C X one has the equality nX(C(A)) = C’(,7.,, (A)), where C’ denotes the operator
on Irr (r(X)) . This follows from the formula sup nX(A) = C(A). 0

1.6 Proposition Let L be a complete molecular lattice. Then for any x E L the
subset nL(x) = {a E Irr(L)/a  x} is closed in Irr(L), and one thus gets an iso-
morphism (of lattices) nL : L -&#x3E; T(Irr(L)).
Proof. Since Irr(L) is order generating one has sup nL (x) = x. Hence nL(x) is

closed in Irr(L). One easily verifies that the map Ci. : T(Irr(L)) -&#x3E; L defined by
I-L (E) = sup E is the inverse of NL. ..

1.7 Definition Let L and M be complete molecular lattices. One says that a map
g : L -&#x3E; M is a morphism if it satisfies

1) g (sup A) = sup g (A) for every subset A C L,
2) g(Irr(L)) C Irr(M).

One thus gets a category (the category of complete molecular lattices).

1.8 Lemma Let f : X -&#x3E; Y be a continuous map between TD-closure spaces.
Then the map g = r f : T(X ) -&#x3E; T(Y) defined by g(E) = C(f(E)) is a morphism of
complete molecular lattices. Moreover, if f = f 2 o f 1, then Tf = r f 2 o T f1.

Proof. 1) If A c T(X) is an arbitrary subset, then g (sup A) = C (f (sup A)) =
C(f (UA)) = C(Uf (A)) = C(Ug(A)) = sup g(A).

2) If C(x) E Irr (r(X)) , then g (C(x)) = C(f(x)) E Irr (r(Y)) because Y is a TD-
closure space, cf. 1.3. The functoriality is clear.

1.9 Lemma Let g : L -&#x3E; M be a morphism between complete molecular lattices.
Then the map f = Irrg : Irr(L) -&#x3E; Irr(M) obtained by restriction of g is continuous.
Moreover, if g = g2 o g 1, then Irr g = Irr g2 o Irr g 1.

Proof. Easy verification.

1.10 Theorem The category of TD-closure spaces (and continuous maps) is equiv-
alent to the category of complete molecular lattices (and morphisms).
Proof. It is enough to verify that the homeomorphisms qx of Proposition 1.5 and
the isomorphisms 17,, of Proposition 1.6 yield natural transformations.

1.11 Corollary The category of T1-closure spaces (and continuous maps) is equiv-
alent to the category of complete atomistic lattices (and morphisms.
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2. RESTRICTIONS OF THE EQUIVALENCE (I)

In this section we shall prove that the equivalence of Theorem 1.10 restricts to
an equivalence between the category of TD-spaces (= TD-topological spaces) and
the category of distributive complete molecular lattices. The two following lemmas
are classical results.

2.1 Lemma For any closure space X the following are equivalent:
1) C is topological, i.e. C(UF) = U C(F) for every finite subset F C P(X),
2) F(X) is closed under finite unions,
3) {C(x)/x E X} C Sp(T(X)).

2.2 Lemma For any complete molecular lattice L the following are equivalent:
1) L is topological, i.e. Sp(L) is order generating,
2) L is distributive,
3) Irr(L) C Sp(L).

2.3 Proposition If a closure space X is topological, then r(X) is a distributive
lattice. And if a complete molecular lattice L is- distributive, then Irr(L) is a topo-
logical space. Hence the category of T D-spaces is equivalent to the category of
distributive (or topological) complete molecular lattices.

Proof. The first assertion is trivially verified. Let F C P (Irr(L)) be any finite
subset. If a E C(U 0), then a  sup(U F) = v sup 0, and since a E Irr(L) is a

coprime element there exists a set A E 0 with a  sup A. Therefore a E C(A) C
U C(0) and this proves that Irr(L) is topological.

2.4 Corollary Let X and Y be T D-spaces. If the lattices T(X) and r(Y) are iso-
morphic, then X and Y are homeomorphic (Theorem 2.1 in [11]).

2.5 Corollary Let X be a To-space and Y a sober TD-space. If the lattices F(X)
and r(Y) are isomorphic, then X and Y are homeomorphic (compare to Theorem
2.3 in [11]).
Proof. We recall that a topological space Y is sober if and only if it is a To-space
and {C(y)/y E Y I = Sp(r(Y)). By 1.3 one gets Irr(r(y)) = Sp (r(Y)) . But then
Irr (T(X)) = Sp (T(X)) implies Irr (T(X)) = {C(x)/x E X 1, and X is also a (sober)
TD-space. So one can use the preceding corollary.

2.6 Example On the set N = N U {oo} one takes as closed subsets N and all finite
subsets of N. Then N is a sober space but not a TD-space, and it follows that N
cannot be homeomorphic to its Ti-subspace N. However, the inclusion f : N -&#x3E; N

yields an isomorphism T f : T(N) -&#x3E; r(N) (cf. Example 2.1 in [11]).
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We also deduce that the category of T1-spaces is equivalent to the category of
distributive complete atomistic lattices. The following remark gives a characteriza-
tion of those lattices which correspond to T 2-spaces.

2.7 Definition Let L be a lattice with 0. An element w E L is called weakly co-
prime if V F = 1 for some finite subset F C L implies that there exists x E F with
w  x. The set of weakly coprime elements of L is denoted by W(L).

2.8 Remark Let X be any topological space. One easily shows that a closed sub-
set A C X is a weakly coprime element of r(X) if and only if no two points of A
can be separated (by disjoint open neighbourhoods). Therefore X is a T2-space if
and only if it is a To-space and A(T(X)) = W(T(X)).

Finally, we give the ’algebraic version’ of Proposition 2.3.

2.9 Lemma For any closure space X the following are equivalent:
1) C is algebraic, i.e. C(A) = U{C(B)/B C A finite,
2) C(U D) = U C(D) for every directed subset D C P(X),
3) T(x) is closed under directed unions,
4) {C(x)/x £ X} C K(T(X)).

2.10 Lemma For any complete molecular lattice L the following are equivalent:
1) L is algebraic, i.e. K(L) is order generating,
2) L is A-continuous, i.e. A distributes over directed suprema,
3) Irr(L) C K(L).

2.11 Proposition If a closure space X is algebraic, then T(X) is a A-continuous
lattice. And if a complete molecular Iattice L is A-continuous, then Irr(L) is an al-
gebraic closure space. Hence the category of algebraic T D-closure spaces is equiva-
lent to the category of A-continuous (or algebraic) complete molecular lattices (the
proposition is proved as for Proposition 2.3).

3. RESTRICTIONS OF THE EQUIVALENCE (II)

We shall determine the lattices which correspond to TD-closure spaces with the
weak exchange property (WEP) or the well-known exchange property (EP). The
next proposition generalizes Proposition 1.2 (and is proved similarly).

3.1 Notations Let E be a closed subset of a closure space X. We denote by
[E, 1] the segment {F E L(X)/E C F C X} and by [x]E the equivalence class of
x E X for the equivalence relation x ~E y iff C(E U x) = C(E U y).
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3.2 Proposition Let X be a closure space and let E C X be a closed subset. Then
for any point x E E the two following hold:

1) C(E U x) is completely irreducible in [E, 1] ifl’ C(E U x) B [X]E is closed;
2) C(E U x) is an atom of [E, 1] iff E U [x]E is closed.

This proposition is used to prove the following characterization of the WEP.

3.3 Proposition For any closure space X the following are equivalent:
1) WEP: if C(A U x) = C(B), then there,exists y E B with x E C(A U y),
2) Irr([E, 1]) = {C(E U x)/x £ E} for every closed subset E C X.

Proof. (1 =&#x3E; 2) We show that C(E U x) is completely irreducible in [E, 1] for ev-
ery x V E. Suppose that C(C(E U x) B (x]E) = C(E U x). Then by hypothesis there
would exist y E C(E U x) B [x],, with x E C(E U y). Thus y E [x],_., and one gets a
contradiction. This proves that C(C(E U x) B [X]E) g C(E U x) B [X]E’

(2 =&#x3E; 1) One may assume that z £ E := C(A). Then C(A U x) is completely irre-
ducible in [E, 1], and since C(A U x)B[x]E is closed one concludes that there exists
y E B n [x]E. So the assertion follows. 

3.4 Remark In [9] P. R. Jones introduced this property, and he showed that ev-
ery algebraic closure space with the WEP satisfies the basis property, i.e. any two

independent subsets with the same closure have the same cardinality.

3.5 Definition A lattice L is called an AC-lattice if it is atomistic and satisfies
the covering law (for atoms):

a) a E A(L) and a  x imply a V x E A([x, 1]).
Similarly, L is called an iVIC-lattice if it is molecular and satisfies the following
covering law (for completely irreducible elements):

b) a E Irr(L) and a  x imply a V x E Irr ([x, 1]).
Note that p(a) V x is not necessarily the predecessor px(a V x) of a V x in [x, 1] (but
it is the case when L is a modular lattice).

3.6 Proposition If a closure space X has the weak exchange property, then T(X)
is an MC-lattice. And if L is a complete MC-lattice, then Irr(L) has the weak ex-
change property.

Proof. 1) By considering E = C(O) in Proposition 3.3 one obtains that r(X) is a
molecular lattice. And it clearly satisfies the covering law.

2) Let A, B C Irr(L) and a E Irr(L) with C(A U a) = C(B). We may assume
that a E E := C(A). Then a  x := sup A and by hypothesis a V x is completely
irreducible in [x, 1]. Since sup B = a V x there exists b E B with b  px (a V x) .
Hence b V x = a V x and one obtains a E C(A U b). ·
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3.7 Remark The preceding proposition provides a large and interesting class of
complete molecular lattices. For instance, the lattice of all subgroups of any finite
p-group, or more generally of any primary N-group, is an MC-lattice (use the main
theorem in [9] and Theorem 4.6 in [8]). But many other examples can be deduced
from the work of P. R. Jones.

We have similar results for the exchange property (left as exercises).

3.8 Proposition For any closure space X the following are equivalent:
1) EP: if x E C(A U y) and x £ C(A), then y E C(A U x);
2) A([E, 1]) = {C(E U x)/x £ E} for every closed subset E C X.

3.9 Proposition If a closure space X has the exchange property, then reX) is
an AC-lattice. And if L is a complete AC-lattice, then Irr(L) = A(L) has the ex-
change property.

Hence the category of geometries (i.e. algebraic T1-closure spaces with EP) is

equivalent to the category of geometric lattices (i.e. algebraic AC-lattices).

3.10 Remark Let E be a closed subset of a closure space X, and denote by X/E
the quotient of XBE by the equivalence relation ""E of 3.1. On X/E we consider
the operator CE (A) = rr{C(rr-1(A) U E)BE), where rr is the canonical projection.
Then X/E is a To-closure space and one easily shows that r(X /E) is isomorphic
to the segment [E,1].

From Propositions 3.3 and 3.8 we also obtain the following result:

3.11 Proposition A closure space X has the weak exchange property if and only
if X/E is a TD-closure space for every closed subset E of X . And X has the ex-
change property if and only if X/E is a T1-closure space for every closed subset E
of X (left as exercise) .

4. CONCLUDING REMARKS

(1) Morphisms of projective geometries

For two projective geometries X and Y the continuous maps f : X-&#x3E; Y can be
described by natural geometric conditions:

a) if x, y, z are collinear in X, then f x, f y, f z are collinear in Y.

b) if moreover y # z and f y = f z, then f x = f y.
More generally, A. Fr6licher and the author introduced morphisms of projective
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geometries as partially defined maps f : X B E -&#x3E; Y satisfying similar geometric
conditions, cf. 3.1.1 in [4]. The following example shows that it is very natural to

consider morphisms which are not everywhere defined:

4.1 Example Every semilinear map h : V -&#x3E; W between vector spaces determines

a map Ph : P(V) BP(ker h) -&#x3E; P(W), [v] i-&#x3E; [h v], which is a morphism of projective
geometries (cf. Proposition 3.2.2 in [4] for details).

4.2 Remark The corresponding morphisms of projective lattices g : L -&#x3E; M are

obtained by considering in place of the condition g(A(L)) 9 A(M) (cf. 1.7) the
weaker g(A(L)) 9 A(M) U {0}.

4.3 Theorem Let V, W be vector spaces and let f : P(V) B E -&#x3E; P(W) be a mor-
phism of projective geometries with a non-degenerate image (i.e. the image contains
at least three non-collinear points). Then there exists a semilinear map h : V -&#x3E; W

such that f = Ph.

Proof. Theorem 5.4.1 in [5].

(2) The symmetry principle

There is an evident symmetry between the ’topological’ lemmas 2.1 and 2.2
and their ’algebraic’ version 2.9 and 2.10. They are obtained from each other by
exchanging finiteness and directedness. Therefore coprime elements correspond to
compact elements, distributivity corresponds to A-continuity, etc. Of course, this
symmetry principle has obvious limits. For instance, there is no equivalent to the
formula sup A = U{VB/B C A finite} or to Zorn’s lemma. However, it can be
used to obtain certain elementary results; in the following we shall use it to charac-
terize the morphisms of locales.

4.4 Definition Let L, M be complete lattices. A Galois connection between L and
M is a pair of monotone maps g : L -&#x3E; M and h : M -&#x3E; L (called adjoint maps)
satisfying gx  y iff x  h y (for all x E L and y E M).

4.5 Proposition Let g : L -&#x3E; M and h : M -&#x3E; L be two adjoint maps. Then the
following conditions are equivalent:

1) h(U D) = U h(D) for every directed subset D C M,
2) gx  U D implies x  U h(D),
3) if U C L is Scott-open, then i g(U) is also Scott-open.

Moreover, if L is an algebraic lattice, all these conditions are equivalent to

4) g(C(L)) C IC(M).
Proof. Theorem IV.1.4 and Proposition IV.1.11 in [6]..
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The ’dual’ notion of a Scott-closed subset is an ideal. So we introduce:

4.6 Definition Let L be a complete lattice. A subset A C L is called an anti-
ideal if it satisfies the two following conditions:

1) x E A and x  y imply y E A,
2) if VF E A for some finite subset F C L, then there exists x E A n F.

Therefore A is an anti-ideal of L if and only if LB A is an ideal.

4.7 Proposition Let g : L -&#x3E; M and h : M -&#x3E; L be two adjoint maps. Then the
following conditions are equivalent:

1) h(V F) = V h(F) for every finite subset F C M,
2) gx  V F implies x  V h(F),
3) if A C L is an anti-ideal, then I g (A) is also an anti-ideal.

Moreover, if L is a topological lattice, all these conditions are equivalent to

4) g(Sp(L)) g Sp(M).
Proof. (3 =&#x3E; 1) Consider the anti-ideal A={x E L/x  Vh(F)}.

4.8 Definition We recall that a locale L is a complete lattice which satisfies the
distributive law x A sup A = sup (x A A) (for all x E L and A C L), and that a map
g : L -&#x3E; M between locales is a morphism if it has an adjoint h : M -&#x3E; L which

preserves finite infima.

4.9 Corollary A map g : L -&#x3E; M between locales is a morphism of locales if and
only if it preserves arbitrary infima and antifilters:

1) g(AB) = Ag(B) for every subset B C L,
2) if A C L is an an tifilter, then tg(A) is aIso an antifilter.

Proof. The adjoint h : M -&#x3E; L preserves suprema and finite infima.
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