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FRAMED BICOBORDISM

by Paul CHERENACK

CAHIERS DE TOPOLOGIE ET 

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXVI-4 (1995)

Resume. La Topologie algébrique a 6t6 a la source de la
th6orie des categories et par le cobordisme Poincar6 en un cer-
ta,in sens a fond6 la topologie algébrique. Ici nous introduisons
le cobordisme dans un cadre cat6gorique. En remplacant les
sous-variétés encadr6es par des applications encadr6es, nous
6tendons la construction de Thom dans le cadre du cobor-
disme. Hardie a introduit la cat6gorie des paires d’homotopie
pour étudier 1’homotopie des groupes d’applications continues.
Ici, nous consid6rons la cat6gorie des paires de cobordisme et
6tendons la construction de Thom dans ce cas. Boardman et
Steer comparent les constructions de cobordisme encadr6 aux
constructions en cohomotopie. Nous 6tendons ces correspon-
dances au cas des paires pour les suspensions. Finalement,
utilisant le travail de Hardie et Jansen, nous d6terminons cer-
tains groupes de cobordisme encadr6 stables.

Introduction.

In §0 we make our basic definitions and prove some fundamental
results. We first replace and extend the notion of framed manifold
by introducing the notion of framed mapping, essentially using the
Thom construction as motivation. In the same way the notion of
framed cobordism of framed maps is introduced. Here, however, we
are forced to use the reals R instead of the unit interval I and drop,
for manifolds with boundary appearing in the definition of framed
cobordism between framed maps, the requirement that submanifolds
are neatly imbedded. We show, modelled on a proof in Hirsch [6]
that framed cobordism of framed maps is essentially just homotopy.
Some of the fundamental results shown in §0 seem to be known but for
lack of an explicit reference we prove them here. We then introduce
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the homotopy pair category due to Hardie [6] and, correspondingly
but with some necessary change, the cobordism pair category. We
extend Thom’s bijection relating framed cobordism classes in a smooth
manifold X to the cohomotopy of X in the enlarged situation described
ill §0. Let P be a point of 5l" , the k sphere. Then, Thorn’s construction
tells us, without much difficulty, that there is a bijection

where PCOBk(X, P) is a set of proper framed maps replacing the
set of framed submanifolds of X modulo framed cobordism in each
case and IIk(X, 00) is the cohonlotopy of X. This result extends to

the case where P is replaced by an arbitrary framed submanifold of X
provided that the boundary of X is compact. The non-based version of
this result follows more simply. Extending to the pair case, we show
in Theorem 1.7: Let 9 : (Ej, U) --+ (Ek, P) be a framed map. Let

f : X -+ Y be a closed embedding where Y does not have boundary
or let f : X-+ Y be a submersion. Suppose that 8X is compact or U
is a one point set. There is a bijection

where CPC k(f , g) is a subset of the hom-set CPC(F , g) of the cobor-
dism pair category CPC and HPC( f, g) is the hom-set in the ho-

motopy pair category HPC. No counterexamples have been found to
show that this result does not hold for arbitrary X , Y and f . In §2
we extend this last result to the case where g : (W, D) --+ (Z, E) is an
arbitrary framed map where D and E are compact. We also obtain a
bijection between the homotopy group IIn(Y, yo) of a smooth manifold
Y (n &#x3E; 0) and a certain class of framed maps from R’ to Y. Next,
in §3, following the pattern developed by Boardman and Steer [1], in
ordinary framed cobordism, we interpret suspension in pair homotopy
in terms of pair cobordism. The methods here are not always straight-
forward but a more categorical approach sometimes makes them more
natural. This list of interpretations can probably be extended to cor-
respond to that treated in [1]. Finally, in our last section, using the
work of Hardie and Jansen [5], we are able to state explicitly the na-
ture of stable cobordism groups Fk(g) were 9 : E3 -+ E2 is the Hopf
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map. For function spaces the topology we refer to is the Whitney Coo
or strong topology. The notation f ML A means that f is transversal
to A at the points of L. If L is omitted, then A = L. We will refer
the reader to specific parts of Hirsch [6] to justify the more difficult
steps that we take; the reader should refer to [6] for basic definitions

and results which may be used here without reference.

0. Basic definitions in framed bicobordism.

Let f : X -+ Y be a smooth map of manifolds. We assume at the
outset that all of our manifolds have empty boundary. Suppose that U
(resp., V ) is a framed submanifold of X (resp., Y) such that f -1 (V) --
U and f m V. We do not assume that U or V are compact. Then, we
write

and call f a framed map if via f the framing on V pulls back to the
framing on U. The pair (X, U) is sometimes referred to as an inframed
submanifold of X (meaning U is framed in X). We change the usual
definition of framed cobordism which uses the unit interval in order
to avoid talking later about boundaries of boundaries. Thus, two
inframed manifolds (X, U) and (X, U’ ) are framed cobordant if and
only if there is an inframed submanifold (X x R, U* ) such that (X x
0, (X X 0)nU*) (resp., (X X 1, (X X 1)NU*) ) is an inframed submanifold
with framing induced from U* isomorphic to (X, U) (resp., (X, U’ )).

Letf : (X, U) -&#x3E; (Y, V) and g : (Y, V) -&#x3E; (Z, W) be framed maps.
Then, f -1 ( g -1 ( W ) ) = U and g o f m W . Furthermore, via 9 o f the
framing on W pulls back to the framing on U. Thus, ordinary compo-
sition makes framed maps into a category FR, the category of framed
maps. The definition here corresponds roughly with a definition in
Stong [10,p.17]. Let f : (X, U) - (Y, V) and g: (X, U’ ) -&#x3E; (Y, V’)
be framed maps. We say that f and g are framed cobordant or just
cobordant and write f cob g if there is a framed cobordism between
(Y, V) and (Y, V’ ) and, for some framed cobordism V* from V to V’,
there is a framed cobordism U* from U to U’ and a framed map
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such that F X R|X x0 = f and F X Rlxx1 = g . Note that instead of
writing the identity on R we simply write R . Equivalently, one could
use here the closed unit interval instead of the reals. For manifolds

with boundary, R must be used (not I), we require that, for maps
suck as /, the submanifold U and V are neatly imbedded in X and
Y (see [8]),respectively, but unfortunately must drop the requirement
that U* and V* be neatly imbedded in X X R and Y X R, respectively.
In the next result we relate cobordism to homotopy.

Proposition 0.1. Suppose that X and Y are inframed manifolds
without boundary.
a) Framed maps f and g from X to Y are framed cobordant (using

I instead of R) with U* neatly irnbedded in X X I if and only if
there is a neat cobordism between the codomains of f and g and
a homotopy G : X x I - Y x I such that G(x, 0)= (f (x), 0),
G(x, 1) - (g(x),1) and G(x, t) = (G’(x, t), t) for a continuous
function G’ : X X I --+ Y. The cobordism between f and g can be
chosen arbitrarily close to G in the strong topology .

b) If F and G define cobordisms (using R) with neatly cobordant
codomains between the framed maps f and g, and F and G a,re
sufficiently close in the strong topology, then F and G are smooth
homotopic to one another.

Proof. a) The one direction is clear. From a result in Thom [11 ]ole
can assume that G’ is Coo and arbitrarily near the original G’ . For a
subset W of a set Z x I we define Wt = W n Z X {t}. One needs to
show that one can find a smooth G of the form G( x, t) = (G’ (x, t), t)
such that G(x, 0) - (f (x), 0) and G(x, 1) = (g(x),1) where G x V*.
The form of G implies that G-1 ( V * ) is a neat inframed submanifold
of X X I with framing induced from the framing of V*.

Next, following Hirsch (see [8,p.75]), for smooth manifolds X and
Y, a COO mapping class on (X, Y) by definition is a function T on the
set of tuples (L, U, V) where.U is open in X X I, V is open in Y X I
and L is a closed subset of U . Let Coo ( U, V ) * * be the set

if defined }
where Coo(U,V)* is the set
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We will first assume that T(L, U, V) = Y L(U, V) C C°°(U, V)** for
all ( L , U, V ) .

Next, we require a localization axiom: if f2 C Y(Li, Ui, Vi) =
Y Li(Ui, Vi), f E COO(U, V)**, L C ULi and f = f2 on a neighborhood
of Li, then f E Y L(U, V).

We finally require that T be rich: there are open covers VX and
VY of X x I and Y X I such that, for K C U compact, one has
YK(U, V) is dense in Coo(U,Y)* * for the weak topology. Let now

YL(U,V) = {F E Coo(U,V)**|F XLnU V* n V}.
One can show readily that T satisfies the localization axiom. Let

VX consist of open sets of the form U’ X J where U’ is an open
coordinate neighborhood in X and J is an open interval or a half

open sub-interval of I with the included endpoint 0 or 1. Let VY be
an atlas of open subsets for Y x I which define submanifold charts on

V*. We prove the following lemma which shows that T is rich.

Lemma 0.2. Let K be a compact set in a submanifold. U of X x I,
V* a submanifold. of Rn X I with boundary., and W C R’ X I an

open subset. Then, Y K(U, W) is dense in COO(U, W)** for the weak
topology on both sets.

Proof. Since Coo(U, W)** is open in COO(U, Rn X I)** , one can assume
that W = Rn X I. Thus, one needs to show that if g E Coo ( U, Rn xI)**,
then g is in the closure of YK(U, Rn X I). Multiplying by a suitable
"bump" function one can replace g by an a,rbitra,rily close function
k which can be extended to an open coordinate neighborhood U’ of
X x R and thus, after change of coordinate on LT’ and W , view k as
a map k= (k’, 1) : R m+1-&#x3E; Rn+1 with V* C Rn+1. Let L1 denote
the collection of (m + 1) x 1 rmatrices viewed as R m+1. Consider
a niap M : Rm+1 x L1 -&#x3E; Rn+1 defined by setting M(x,t,A) =
(k’(x, t) + Ax, t). It is not difficult to see that M is a submersion and
hence transversal to V* on K X L1. By Thom’s Tra,nsversality Lemma
there is a C E L1 , arbitrarily small, such that the map Mc, which is
M restricted to A = C, is transversal to V* on K x C. Thus, there
is a map Iz = {h,’ 1) : Rm+1 -&#x3E; Rn+1, where h’(x, t) = k’(x, t) + C1x,
transversal to V* on K with C arbitrarily small and hence h arbitrarily
close to k. Since, restricted to t = 0 and t = 1, k is transversal to V
and V’, respectively, one readily sees that k is transversal to V* on a
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neighborhood N af t, = 0 and t = 1 on K. If h is chosen sufficiently
close to k, then one can find a "bump" function b which is 1 outside
N, 0 on t = 0 and 1 and such that p = bh + (1 - b)k is transversal
to V* on K and at the same time agrees with k on t = 0 and t = 1.

Since then pE YK(U, W) and can be chosen arbitrarily close to k,
we are done.

We globalize the last lemma:

Lemma 0.3. With the strong topology, L closed and
Y rich, TL(X x I, Y x I) is open and dense in COO(X x I, Y x I)**.
Proof. Since the result (see [8]) holds for a fixed parameter t E I and
I is compact, openess is clear. Let f E C°O(X x I, Y x I)** . Suppose
that i and j range over A. Following [8], let N = N( f ; O, w, 1(, E) be a
strong basic neighborhood of f with O = {Oi, Ui} a locally finite atlas
on X x I, I(i C Ui compact sets whose union contains L, W= (wi ; Vi}
a family of charts on Y x I such that f(Ki) C Vi and E - 1,E-1. Fix

j E A. Let E - uj rl f -1(Vj) and note that Ilj C E. As T is

rich, Y1Bj(E, Vj) is dense in COO(E, Vj)**. Choosing a COO function A
with values in I, compact support and 1 near Kj, for g C YKj ( E, Vj )
Sufficiently close to f|E and appropriate identification of Vj, one can
define h(x, t) = f (x, t) + n(x,t)[(g(x, t) - f (x, t)] if x E E and f (x, t)
otherwise. Then, as g --+ f| E, h --+ f in the strong topology. Thus,
one can choose h C N and as h - g near kj, h C Y Kj (X x I, Y x I). It

is not difficult to see that Coo(X x I, Y x I)** is a wea,kly closed subset
of Coo (X x I, Y x I) and hence Baire. But, then TL(X X I, Y x I)= 
nj YKj (X X I, Y x I) is dense in C°"(X x I, Y x 1)**. The proof of
Lemma 0.3 is complete.

From Lemma 0.2 and 0.3 it follows that Y XxI(X X I, Y x I) is
dense in COO(X x I, Y x I)** in the strong topology. Thus, arbitrarily
near G in the strong topology, there is a F E Yx xI(X x I, Y x I)
with the property that F is transversal to V*. The proof of part a) of
Proposition 0.1 is complete.

b) Let F and G define cobordisms between f and g, and F be
sufficiently close to G in the strong topology. This implies, in particu-
la,r, that G and F agree outside some compact set. From [8,p.38] one

knows that, for a-manifolds (smooth manifolds with possible bound-
ary) M and N, the set Diff(M, N) of diffeomorphisms from M to
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N is open in C oo (M, dM, N, dN )-{f E Coo(M,N)|f(dM) CdN).
Thus, restricting to boundary preserving smooth maps and proceed-
ing as in [4,p.76], one sees that there is a tubular neighborhood of the
graph of F (with F the zero section followed by projection to Y) such
that G is a section of this tubular neighborhood followed by projection
to Y.

Since F and G agree on X x 1 U X x 0 and preserve boundary
(t = 0 and t = 1), there is a C°° homotopy between F and G obtained
by deforming along the fibres of the tubular neighborhoods.

This completes the proof of Proposition 0.1.

Proposition 0.4. Let X and Y be manifolds with boundary.
a) Framed rnaps f and g from X to Y are framed cobordant using R

if and only if there is a cobordism (not necessarily neat) between
the codomains of f and g and a homotopy G : X x I - Y x
I such that G (x, 0) = (f ( x ), 0), G ( x, 1) = (g(x),1) and G(x, t) =
(G’(x,t),t) for some continuous function G’ : X X I - Y. The

cobordism between f and g can be chosen arbitrarily close in the
strong topology to G.

b) If F and G define cobordzsms with cobordant codomains between
the framed maps f and g, and F and G are sufficiently close, then
F and G are homotopic to one another and hence by the preceding
statement cobordant.

Proof. For a) one proceeds as in the proof of Proposition 0.1 but,
in Lemma 0.3, one must use the argument that Hirsch [8] gives for
manifolds with boundary with small modification. The proof of b)
follows from the following lemma. One can not apply the argument of
Proposition 0.1, part b) since neither F nor G is known to preserve
boundary.

We state two lemmas which will be useful later.

Lemma 0.5. Let g, f : X --+ Y be continuous maps between C°°
manifolds with, boundary. If g is suf, ficiently near to f for the .strong
topology, then g can be chosen homotopic to f .
Proof. Suppose first that Y has no boundary. Embed Y in RP and
give Y the structure of a Riemannian manifold. If g is sufficiently near
f , then f and g differ on some compact set K. Cover f (K) by finitely
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many geodesica,lly convex open sets Ui [3,p.328] diffeomorphic to R’2
where between any two points in a, given Ui there is a unique geodesic.
This is possible since f(K) is compact. Notice that the intersection

of finitely many geodesically convex open sets is again a geodesically
convex open set. Suppose that g is sufficiently near f and thus for some
x where f ( x ) and g(x) differ, f (x) and g(x) belong to Ui for some i .

Let qr be the unique geodesic from f (x) to g(x). Let d(u, v) be the
topological metric corresponding to the Riemannian metric on Y. If

F(x, t) is the point on 7x with d(f(x), F(x, t)) = td(.f(x), g(x)), then
F(x, t) is continuous (see [3,p.328]) and defines a homotopy between
f and g .

Suppose mow tliat Y has boundary 8Y. Put a collar C on OY so
that Y U G’ is a manifold without boundary and there is a continuous
map ( : Y U C --+ Y where ((y) = y if y E Y and ((y) is the projection
of y onto 8Y if y E C. The maps f and g define lnaps f’, g’ : X
Y U C. If f a,nd g are sufficiently close, then f((x) and g(x) will lie
in some geodesically convex open subset of Y U C, even if f (x) and
g(x) belong to OY, and one can then, as above, find a homotopy
F’ : X x I --+ Y U C’ between f’ and g’. The homotopy ( o F’ is then
the required homotopy between f alld g.

To avoid encumbering detail, the preceding lemma will be used
often without reference.

Lemma 0.6. Let f : X - Y be a (resp., proper) continuous map
between C° manifolds where the boundary aX of X is compact. Sup-
pose that U is cz neat compcxct inframed submanifold of Y. Then, there
is a (resp., proper) map h : X - Y arbitrarily close in the strong
topology and hence homotopic to f such that h x U and h-1 (U) is a

neat submanifold. of X.
Note that this result holds if U is a one point set without the

requirement that OX be compact. See [1].
Proof. We assume that f is proper and find a h which is proper.
The other case of the lemma follows without difficulty from this case.
Since C’(i9X, Y) is dense in C°(dX, Y) and the set of all maps in
Coo(dX, Y) transversal to U forms an open dense subset of
Coo(dX,Y), one can choose a g E Coo(dX,Y) sufficiently close to
flax and hence homotopic to f|ax such that g is proper, smooth
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and g x U. The manifold Y is given the structure of a, Riemannian
manifold. One chooses two sufficiently small closed collars C1 and C2
on 8X with C1 c C2 and the fibres of C] extending to the fibres of
C2 such that if S and T are points of C2 not in Cl in the same fibre,
then, with g close enough to f |ax, gop’ (S’) (where p’ is the projection
of C2 onto dX ) and f (T) can be joined by a unique geodesic. Suppose
that S E (C2 - C1)cl n C1, T E C2 - Cint 2, where int (resp., cl) denotes
the topological interior (resp.,closure) operator, and Q is a point on a
fibre of C2 containing both S and T. Suppose that Q is a s-th of the
distance from S to T for a suitable orthogonal structure on the collar
C2. We then let k° : X --+ Y be the continuous map which is equal to
g o p’ on C1, which is equal f on the complement of C2 and sends a point
such as Q to the point a s-th of the distance from g o p’(Q) to f (Q)
along a geodesic joining these points. By taking C2 suitably small and
g suitably close to f ldx , one cam make ko : X --+ Y arbitrarily close
to f and hence homotopic to it and proper(see [8,p.38]). Because 8X
is compact, k° is equal to f except on a, compact set. By suitably
smoothing ko, one finds a smooth map k : X --+ Y arbitrarily close to
kO and hence homotopic to it and proper such that klax == g l dx x U.
Since 8X is compact, restriction to 8X defines a continuous map E :
Coo (X, Y)--&#x3E; COO(aX, Y) in the strong topology (see [8,p.64]). The
set of maps B in Coo(dX, Y) transversal to U forms an open subset
of Coo (dX, Y), in the strong topology, and then (E-1 )(B) is open in
COO(X, Y) in the strong topology . Since the set O of proper maps
in COO(X, Y) forms an open subset, k E On (E-1 )(B) and the set of
maps from X to Y transversal to U forms an open dense subset of

COO(X, Y), there is a proper h arbitrarily near k which is homotopic
to k and thus to ko and f in turn such that h X U and h lax x U.

Using the Thom construction, for some k, one can find a smooth
proper map f" : Y - Ek such that f " is transversal to some point
T and (f")-1(T) = U. This implies that f" o h and f" o hiax are
transversal to T and thus, applying a result in [8,p.31], one sees that
h - 1 (U) ( f" o h) (T) is a neat submanifold of X. This finishes the
proof.

Clearly, the framed cobordism relation cob is then transitive. It
is in some ways like the cobordism in Stong’s paper [9] on cobordism



300

of 1naps. The class of f under framed cobordism is denoted by Lf]. If

[f] and [g] are tuTo framed cobordism classes, their composition [g] o [,f]
is defined by setting [g] o [f] = [g o f] if g o f is defined (and a framed
map). That the composition is well defined follows immediately from
Proposition 0.4. Using this composition the framed cobordism classes
of framed maps form a category COB, the framed cobordism category
which is a quotient of FR. To see this one applies the object-free
definition of category found in Herrlich [7,p.32].

First, notice that the identities and hence objects of COB are
the framed cobordisme classes of the objects of FR. Moreover, sup-
pose that Iu : (X, U) --&#x3E; (X, U) and I’u : (X, U’) - (X, U’) are the
identity framed maps and (X, U) is framed cobordant to (X, U’ ) via an
inframed submanifold U* C X x R. Then, hJ cob IU’ via the framed
map IU*: (X X R, U*) --+ (X X R, U* ). Hence, the identities on COB
contain all the identities between inframed cobordamt submanifolds of

a given manifold.

Second, the hom-sets are small since the framed maps between
two smooth manifolds form a set.

Composition is clearly associative when defined. One needs only
show that the matching condition holds. This follows in an evident

fashion from the following lemma.

Lemma 0.7. Suppose that f : (X, U) -+ (Y, V), g : (Y, V’) -&#x3E; (Z, W)
are framed maps and V is cobordant to V’. Then, there is a framed
map f’ : (X, U’) -&#x3E; (Y, V’) cobordant to f .

Proof. Using transversality results there is a map f’ transverse to V’
arbitrarily close to and hence homotopic to f . To complete the proof
one applies Proposition 0.4.

We present briefly the definition of the homotopy pair category
HPC following Hardie [6] which will with suitable adjustment moti-
vate the definition of the framed cobordism pair category CPC. An
object of the category HPM of homotopy pair mappings is a contin-
uous map. Let f : X - Y and g : W -&#x3E; Z be objects in HPM . A
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morphism in HPM is a square

where a) 0 and 0 are continuous; b) jat is a homotopy between O o f
and g o w; and c) {ht} is the collection of homotopies from 0 o f to
g o W homotopic to ht. One sometimes expresses the morphism from
f to g in HPM as a triple (0, W, fht I) and composition via

with + denoting the joining of the homotopy relations.
To obtain the homotopy pair category HPC we factor out the

relation which identifies two morphisms in HPM from f to g of the
form (O0, W0, I ht 1) and the form (O1, W1, {O1-t 0 f + ht + g o Wt}). A
morphism in HPC is sometimes pictorially represented by the diagram

The category HPC* is formed like HPC but taking topological
spaces with base points, base point preserving maps and homotopies
where {ht} consists of all kt such that there exists a F : X x Xx I x I -&#x3E;Z
with a) F(x, t, o) - h(x, t), b) F(x, t, 1) = k(x, t) and c) F(*,t,s) == *
where * represents the base point.


