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BOOLEANIZATION
by B. BANASCHEWSKI and A. PUL TR

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVII-1 (1996)

R6sum6 : Cet article est une etude des aspects diff6rents de la

procedure qui associe a un cadre L l’algèbre de Boole compléte BL
des 616ments r6guliers a = a**. En particulier, nous 6tudions des
applications entre cadres qui induisent des homomorphismes entre
ces Booleanizations, et des proprietes de quelques foncteurs associ6s
comprenant des homomorphismes faiblement ouverts. De plus, nous
consid6rons des propri6t6s de limites et colimites dans le contexte de
ces homomorphismes.

Recall that the well-known result in topology that the regular open
subsets of any space form a complete Boolean algebra naturally ex-
tends to arbitrary frames, as originally observed by Glivenko [11] and
later put in proper perspective by Isbell [13]. This associates with each
frame L the complete Boolean algebra 93L, consisting of the elements
a = a**, together with the homomorphism BL : BL ---+ L taking each
element a to its double pseudocomplement a**. This paper studies
various aspects of this Booleanization. In particular, we investigate
maps (not necessarily homomorphisms) between frames which induce
a homomorphism between their Booleanization so that the correspon-
dence L - 93 L become functorial, or even a reflection. The frame

homomorphisms arising in this context, called weakly open here are
familiar from topos theory (Johnstone [15 ) and have a natural topo-
logical origin connected with the Gleason cover (Mioduszewski - Rudolf
[18]). We show that the reflection given by. Booleanization for both
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the category Frmwo of all frames and weakly open homomorphisms
and the corresponding category of completely regular frames, does not
have a left adjoint. This is of interest because in the case of uniform
frames there is indeed such an adjoint, provided by completion (Ba-
naschewski - Pultr [8]). Finally, concerning general properties of the
category Frmwo, we prove that it has products and coequalizers, the
former inherited from the category given by all frame homomorphisms
but the latter not. It fails to have equalizers (Niederle [19]) ; in ad-
dition, we establish that certain frame coproducts are coproducts in
Frmwo while others are not.

0. Preliminaries

0.1 A frame is a complete lattice L satisfying the distributivity law
a n V S = Vla 1B tit E S} for all a E L and ,S’ C L, and a frame
homomorphism h : L --+ M is a map preserving all finitary meets
including the top 1, and arbitrary joins including the bottom 0. The
resulting category will be denoted by

Frm.

Thus, for instance, the lattice QX of open sets of a topological space
is a frame, and if f : X - Y is a continuous map, Qf : QY - QX
defined by Qf (U) = f -1 ( U ) is a frame homomorphism. For general
facts concerning frames, see [14], [23].

0.2 Another example of a frame is a complete Boolean algebra.
Note that frame homomorphisms between Boolean algebras coincide
with complete Boolean homomorphisms, that is, they also preserve
complements and arbitrary meets. On the other hand, although each
frame is a Heyting algebra since the distributivity ensures the existence
of an operation a --+ b for which a^ b  c iff a  b - c, frame
homomorphisms do not generally preserve the operation ---+, let alone
arbitrary infinite meets.

0.3. The pseudocomplement of an element x of a frame L is x* -
V{y | y A x = 0}, which is the largest y such that y A x = 0. One
has x  x** and x*** - x* . We write x  y if x* V y - 1, and
x  - y if there are x r for each rational r between 0 and 1 such that
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x = xo, y = x, and zr « xs whenever r  s. A frame is said to be

regular ( completely regular) if

A frame L is called compact if for each subset C C L such that V C = 1
there is a finite E C C such that already V E = 1.

0.4. A frame homomorphism h : L --&#x3E; M is called dense if h(a) = 0
implies a = 0. An element x E L is dense if x** = 1. A compactification
of a frame L is a dense surjection K --+ L with compact regular K.

0.5. The system of all congruences on a frame L is again a frame
and will be denoted by CL. The mapping V : L --&#x3E; ILL associating
with a E L the congruence V(a) = I(x, y) x V a = y V a} is a one-
one frame homomorphism and each A(a) is complemented in CL; in
fact, if A(a) _ {(x,y) I x A a = y A a} then V(a) V A(a) = 1 and
V(a) A A(a) = 0 (see [14]).

0.6. For any frame L, the subset

is a complete Boolean algebra, with meet as in L and join (V/ ai)**,
called the Bool eanization of L. We will denote join in 93L by

The map

given by f3L(X) = x** is a frame homomorphism. Obviously it is a
dense surjection. (See [11], [13].)

0.7. In the last section we will make a few points on coproducts of
frames. The reader can learn more about them e.g. in [14].
From category theory, only basics (as, say, in the first half of [17])

are assumed.
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1. Booleanization as a functor

1.1. Although the construction 93 and the homomorphisms BL :
L ---+ 93L are canonical in some sense, and BL even has a certain
universality property as the least dense surjection ([13]), one cannot
extend 93 to a functor on Frm behaving naturally with respect to the
BL. The following extends the fact on spaces from [15] (Lemma 3.2)
for general frames :

Proposition. Let p : L---&#x3E; M be a frame homomorphism. Then there
is a homomorphism 0 : BL -&#x3E; 23M such that

commutes iff for each a

PROOF: If 0 exists then p(a)** hence
also cp(a** )** _ 1jJ( a****) = v(a** ), and finally cp(a** ) :5 cp(a** )**
=V(a** )= cp(a)** . On the other hand if the condition is satisfied, it is
easy to check that the formula v(a)=cp(a)** determines a homomor-
phism BL --+ BM with the desired property. D

Homomorphisms cp such that cp(a** )  cp(a)** will be called weakly
opens. As QL is onto, 0 in the diagram above is uniquely determined.
We will denote it by %p. Thus, we have the formula

1.2. The condition in 1.1 makes good topological sense. Its spa-
tial counterpart has appeared in the literature under various names :
skeletal in [18], demi-open in [12]. We prefer the term weakly open as
it appears to us to be a particularly natural weakening of the openness
condition (compare (7) below with 1.3); it should be noted, however,
that this term has been used in [15] for what is called nearly open in
[21] - see (1.3.1) below.
The following statement which summarizes some of the discussion

from [7] may be useful.
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Theorem. The following conditions on a frame homomorphism cp are
equivalent :

(1) cp is weakly open,
(2) cp(a**)** = cp(a)**,
(9) cp(a*)*  cp(a)**,
(4) cp(a*)* = cp(a)**,
(5) for each dense a, cp(a) is dense.

If p = Qf for a continuous f : X - Y, this is, further, equivalent to
(6) for each non-void open V C X, int f[V] is non-void,
(7) for each open V C X there is an open U C Y such that f[V] =

U.

1.3. Of course, Bcp can be defined for any choice of morphisms
satisfying a condition stronger than weak openness ; notably for

(1.3.1) nearly open homomorphisms, satisfying

which corresponds for spaces to the condition that, for each
open U, f[U] is dense in some open set - see [21],

(1.3.2) feebly opens homomorphisms, the p : L - M such that there is
a mapping 0 : M --&#x3E; L such that

(a) 0(b) =A 0 for b # 0, and
(B) cp(a) A b  cp(c) implies a ̂ w(b)  c

(for spaces this corresponds to the condition that, for each open
U, there is an open set dense in f [U] - see [9]),

(1.3.3) open homomorphismes, that is, complete Heyting homomorph-
isms (see [7], [16]) which corresponds for spaces to the condition

for each open U, f[U] is open.
Although the feebly open homomorphisms fit well into the topo-

logical picture, their algebraic nature seems to differ from that of the
other three. They probably merit a separate study ; in this article we
will mention them only in passing.
The categories of frames with weakly open, nearly open, feebly open,

and open homomorphisms will be denoted respectively by
Frmwo, Frmno, Frm/o, Frmo.
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Thus, if BFrm is the category of Boolean frames, that is, complete
Boolean algebras, we have :

For any of the categories C above, B can be extended by the formula
from 1.1 to a functor

Note also that if L, M are Boolean, any frame homomorphism cp : L -
M is complete Heyting ; thus,
!8Frm is a full subcategory of any of the C.

1.4. The question naturally arises whether we could not make 93
functorial by restricting the objects rather than the morphisms - to be
immediately dismissed, since we have :

Proposition. If a frame L has the property that all p : L --&#x3E; B into

Boolean B are weakly open then L is Boolean.

PROOF: Consider the composition

As each V(a) is complemented, cp is one-one. Now if cp(a**)  cp(a)**,
we have V(a**)  V(a), hence (V is one-one) a**  a, that is, a** = a.
M

_

2. Booleanization as reflection

2.1. Lemma. (see [15], p.227) Each dense surjective homomor-
phisms cp : L - M is nearly open.

PROOF: Take a E L. Choose a b E L such that cp(a)* = p(b). We
have 0 = cp(b) n cp(a) = cp(b A a). By density, b A a = 0, that is, b  a*
and we conclude that cp(a)* = cp(b)  cp(a*)  cp(a)*. D

2.2. In particular, the BL : L - BL are nearly (and hence also
weakly) open. Thus, we easily conclude
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Theorem. The category Bfrm is reflective in both Frmwo and
Frmno, with reflection functor B.

2.3. A BL is, however, seldom open. Here we characterize the
frames L for which it is.

First (see, for instance, [7]), p being open means there is c E L such
that

Thus, /3L is open iff there is a c E L such that

Theorem. The following statements on a frame L are equivalent :
(1) (3L: L - ’13L is open,
(2) L has a smallest dense element,
(3) there is a dense c E L such that lc = {x I x  c} is a Boolean

algebra.

PROOF: (1)=(2) : Take the c from (*). In particular, c n x = c iff x
is dense.

(2)=&#x3E;,(3) : Let c be a smallest dense element, let x  c, If y A ((c A
x*) V x) = 0 we have y  x* and y A c A x* = y A c = 0 so that y=0.
Thus, (c n x*) V x is dense and we have

and hence c n x* is the complement of x in ic.
(3)=&#x3E;(1) : Denote the complement of x in ic by rz. As obviously

we have

for any x eic. Since ic is Boolean, we obtain, for any x E L,
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and hence x n c = BL(x) n c. As BL(x) _ BL BL(x) and QL(c) = 1, we
immediately infer that

2.4. Note : To have a better idea how rare the openness of (3 L
is: It is easy to prove that, for a To-space X, (3 : Q(X ) --&#x3E; BQ(X ) is
open iff there is a dense open discrete subset C C X .

3. Non-existence of left adjoints

3.1. B, as a reflection functor, is a left adjoint in the weakly and
nearly open cases. Now, in the metric and uniform setting, again with
the choice of weakly open homomorphisms, 93 is also a right adjoint
([6], [8]), and hence it is natural to wonder whether this might also
hold for ordinary frames. In this section we show this is not the case.
First, a simple reason for this at quite a general level.

Theorem. For C=Frmwo , Frmno , Frm fo and Frmo ,B has no
left adjoint.

PROOF: Consider the two frames
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and

and the embeddings cp, w : L --&#x3E; M determined by the subframes of M
indicated by 0 and x : 

which are clearly weakly open.
Then, the equalizer of Sp and 0 is the initial 2 --+ L. On the other

hand, the Booleanizations of L and M are
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and

while Bcp = Bv is the isomorphism 93L --+ BM ; the equalizer of %p
and BW is therefore the identity BL --+ BL but B(2 ---+ L) = 2 --+ 93L.

(Note that p and q do not preserve pseudocomplements; in partic-
ular, they are not open.) D

3.2. The theorem above leaves much to be desired. The initial

question involved comparing the situation in frames with that in uni-
form frames. Now the underlying frames of uniform frames are of a
very special nature : they are, as is well known, exactly the compact-
ifiable frames, or, allowing the use of non-constructive principles, the
completely regular frames ([4], [5], [22]). Thus, if the question is re-
interpreted to ask whether the existence of a left adjoint to !8 in the
uniform case really depends on the uniform structure, as opposed to
just the special nature of the frames in question, we should rather ask
whether the restriction of 9S to the completely regular frames,

has a left adjoint or not. This is the problem we shall deal with in the
remainder of this section.
Note that a procedure similar to that in 3.1 would not apply here: in

the regular case the BL are monomorphisms by denseness, and hence
if Bcp = Bcp one also has p = 0.

3.3. Now let
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be a hypothetical left adjoint to B, with adjunction transformations

Let J : BFrm ---&#x3E; CRegfrmwo be the identical embedding, right
adjoint to B. As now 93 o T is a left adjoint to 93 o J= Id, we conclude
easily that

p is a natural equivalence.

In view of the adjunction identity

we obtain further

Corollary. Each êT(B) is an isomorphism.

3.4. Lemma. If B is a Boolean algebra, eB is dense onto.

PROOF: Since B is isomorphic to BT(B) it suffices to prove that

EBT(B) is dense onto. Consider the commutative diagram

As êT(B) is an isomorphism and f3T(B) dense onto, so is EBT(B) . 0

3.5. Proposition. A complete Boolean algebra is continuous iff it
is atomic.

PROOF: The "if " part being obvious, let B be a non-atomic complete
Boolean algebra. Then a = (V{x | x atom in B})* is not zero and
hence we have a non-zero b   a. Further, as there are no atoms
bellow a, we have a decreasing sequence
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Now the partition

obviously contains no finite cover of b, contradicting b   a, D

(This fact is implicit in the diagram of lattice properties on page
96 of [10]. There does not seem to be any reference to it in the text,
though.)

3.6. Theorem. Let C be CRegFrmwo or CRegFrm,,,, . Then

B : C --+93Frm has no left adjoint.

PROOF: Suppose it has and use the notation of 3.2. For any B E
%Frm let l : K --+ T(B) be a compactification and put

By 3.4 this is a compactification of B. We will show it is a smallest
one, meaning that for any compactification h : M --+ B we have a
Sp : K --&#x3E; M such that

Indeed : As h is dense onto, ’13h defined in 2.1 is also dense onto and
hence an isomorphism by Booleanness. Then, for

we have

Now, a frame with a smallest compactification is continuous by [3],
Proposition 4, but only atomic Boolean algebras possess this property
by 3.5. 0
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4. Other maps

4.1. The argument from 3.2 - 3.6 cannot be used for the feebly
open and open cases. Of compactifications we know only that they
are nearly open (2.1 ), and indeed they often are not open, or feebly
open. Furthermore, one cannot use the argument of 3.3 as B is not a
reflection. On the other hand, if one asks just about the existence of
a left adjoint, this is refuted for all cases by 3.1. Note that we have
discussed the completely regular case primarily to contrast the frame
situation with that of uniform frames, where the left adjoint exists in
the weakly open case only anyway.

Still, a study of Booleanization as a functor from the category of
Heyting algebras with special properties (and with complete Heyting
homomorphisms - open frame homomorphisms) probably merits some
interest, including, of course, the existence or non-existence of a right
adjoint (recall 2.3).

4.2. Denote by 3L the ideal lattice of L, with intersection as meet
and join given by

and put, for cp : L--&#x3E; M, Jcp( J) =lcp[J].
One easily sees that

for any J E 3L, hence J** =I(V J)**, and in particular J** =l V J if L
is Boolean. Thus, for Boolean algebras we have a natural equivalence

defined by uB (b) =lb. One also has somewhat canonical maps

defined by pL ( J) = V J. These pL are generally not homomorphisms.
They do, however, satisfy "adjunction identities "
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and therefore one is tempted to consider the category of frames with
morphisms sufficiently relaxed to include these pL . One can, for

instance, take as morphisms those maps (not necessarily homomor-
phic) for which the square in 1.1 can be completed by a homomor-
phism 1/J. (This results in the conditions: p(0) = 0, cp(1)** - 1,
SP(a ^ b)** - cp(a)** ^ cp(b)** and cp((V ai)**)** _ (Vcp(ai)**)** only
the last relaxation is necessary for the pL since they do preserve meets. )
But this does not help either since the PL do not form a transforma-
tion anyway. In the special case discussed in the next paragraph they
do, but there they are actually homomorphisms.

4.3 A frame L is said to be DeMorgan (or extremaclly disconnected)
if a* V a** = 1 for all a E L, or, equivalently, if (a** V b** )** - a** V b**
for all a. b E L. The category of all DeMorgan frames with weakly open
homomorphisms will be denoted by DMFrmwo . Trivially, !8Frm is
a full subcategory of DMFrmwo and B :DMFrmwo --+93Frm is a
left adjoint to the embedding. We have

Theorem. 1. PL : 3BL -- L is a frame homomorphism iff L is

DeMorgan.
2. The systems p and J-L from 4.2 constitute an adjunction between

B :DMFrmwo --+Frm on the right andJ : BFrm ---&#x3E;DMFmwo on
the left.

PROOF: 1. Since 393L is the frame freely generated by the lattice
93L, pL : 3ZL -4 L is a frame homomorphism extending the identical
embedding fl3L --+ L iff the latter is a lattice homomorphism, and this
holds iff L is DeMorgan.

2. First note that, for any Boolean frame B, 3B is DeMorgan since
J* V J** =i(v J)*V IV J = 1. Further, for any p : B --+ C in BFrm,
3p : 38 - JC is weakly open since an ideal J in B (or C) is dense
iff V J = 1 while V 3V(J) = p(V J). Hence J may be viewed as a
functor BFrm--+DMFrmwo.
On the other hand, 93 is a functor on D MFrmwo such that the

identical embeddings !8L --+ L are lattice homomorphisms natural in
L : for any p : L - M in DMFrmwo and a E BL, p(a) = p(a)**
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since a implies and hence

p(a) = cp(a*)*. As a consequence, the PL : JKL---+ L are also natural
in L.

Finally, the adjunction identities

are easily verified. M

For the somewhat related connection between Frmwo and DMFrm,,,,
see [15].

5. Appendix : Some categorical properties
5.1. Since the categories Frmwo and Frmno contain BFrm as

a reflective subcategory they cannot be cocomplete. F’rmwo is not

complete either : By [19], some pairs of weakly open homomorphisms
do not have equalizers in Frmwo .

5.2. Prmno coincides with the category of complete distributive lat-
tices with pseudocomplements, with homomorphisms preserving 0,1,A,
V and *. Frmo coincides with the category of complete Heyting alge-
bras and complete Heyting homomorphisms. Thus, both of them are
equationally presentable (in the terminology of [14] - see, e.g., [1]) and
hence are complete with limits as in sets and therefore as in Frm.

5.3. Proposition. Frmwo has products and they are the usual
frame products.
PROOF: Let pi : L == lT Lj ---+ Li be a frame product. Then, for
x = (xi ) i E L obviously x * = (x*i ) i , and hence the p- are nearly
open. Now consider weakly open hi : : M ---&#x3E; L i . For the map h :
M - IT Lj satisfying pih = hi, that is, h(y) = (ha(y))i, we have

5.4. Proposition. For any weakly open (nearly open, open) ho-
p i

momor p hism h : L --&#x3E; M i f L --+ K--&#x3E; M is its usual image f actor-
ization, then p and i are also weakly open (nearly open, open).
PROOF: As Frmn, and Frmo are varieties of algebras, it suffices to
prove the statement for weakly open h. For any dense a E L, the fact
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that p(a) = h(a) is dense in M trivially implies that it is dense in the
subframe K of M. Further, if h(a) is dense in Is’ for some a E L then
h(a*) = 0 since h(a) A h(a*) = 0 in Ii . Now h(a V a*) is dense in
M since h is weakly open, but this is just h(a). Hence the identical
embedding i : Ii --&#x3E; M is weakly open. D

5.5. Since any frame has, up to isomorphism, only a set of ho-
momorphic images, and hence, a fortiori, only a set of homomorphic
images in Frmwo , Frmno or Frmo , a familiar argument constructs
coequalizers in these categories from products and factorizations, and
we have

Corollary. Each of Frmwo , Frmno and Frmo has coequalizeTS.

5.6. The coequalizers need not coincide with those in Frm. Here
is an example covering all the three cases :

Let L = Q(R) for the real line R, f : R --+ R sending x to -x,
and p = Q(f), obviously an open homomorphism L - L. Then, by
regularity, the coequalizer of p and idL is a closed quotient of L and
hence spatial. Thus, it corresponds to the equalizer 101 of f and idR in
spaces, making it the map L --+2 given by 0 E R, and this is obviously
not weakly open since it takes the dense open R B {0} to 0.

5.7. In the remaining three paragraphs we will add a few remarks
on some coproducts in Frmwo . The following properties of coproducts
will be used

i j
(1) if L - L (B M 2013 M are the coproduct injections, L EÐ M is

V - generated by the x EÐ y = i(x) A j(y),
(2) x X y = 0 iff x = 0 or y = 0 ; consequently,

and from this it is easy to infer that


