RENÉ GUITART

Construction of an homology and a cohomology theory associated to a first order formula

Diagrammes, tome 23 (1990), p. 7-13

<http://www.numdam.org/item?id=DIA_1990__23__7_0>
CONSTRUCTION OF AN HOMOLOGY AND A COHOMOLOGY THEORY

ASSOCIATED TO A FIRST ORDER FORMULA

by René GUITART

RESUME - On montre comment chaque formule ϕ d'un langage \mathcal{L} détermine une théorie d'homologie (et une théorie de cohomologie) sur la catégorie des interprétations de \mathcal{L}, dont la valeur sur chaque interprétation I de \mathcal{L} est une obstruction à $I \models \phi$ "à des co-équations près" (et "à des équations près").

This paper is a sequel of [7].

1. PROPOSITION. Let $\mu(x_1,\ldots,x_n)$ be a first order formula of \mathcal{L}, and let $\text{Mod}_\mu \phi$ be the category with objects the models of ϕ, and with morphisms from M to M' the morphisms (of models of ϕ) $m : M \to M'$ such that

$$\forall x_1,\ldots,x_n [\mu(m(x_1),\ldots,m(x_n)) \to \mu(x_1,\ldots,x_n)]$$

Then there is a small mixed sketch σ such that $\text{Mod}_\mu \phi \cong \text{Mod}_\sigma$.

The existence of σ is proved by the juxtaposition of proposition 3 p.8 of [6], théorème 2.1 p.26 of [5], and proposition 3 p.301 of [7],II. In fact, this juxtaposition shows more than our proposition here.

2. For C a category, let $BC = |NC|$ be the geometric realization of the nerve of C. BC is a cw-complex, and $\pi_1 BC \cong C(C^{-1})$ (the category of fractions of C). Of course if C is a class, BC is a class too. But, if $C = \operatorname{Mod}\phi$ for a small sketch σ, then in BC we can construct a set $g\sigma$ such that the inclusion $g\sigma \longrightarrow B\operatorname{Mod}\phi$ is an equivalence of homotopy. In particular we get

PROPOSITION. $\operatorname{Mod}\phi((\operatorname{Mod}\phi)^{-1})$ is a small groupoid, up to equivalence. We call it the fundamental groupoid of σ, and we denote it by $\pi_1 g\sigma$.

The existence of the set $g\sigma$ comes from [7].

3. Let $\operatorname{Mod}_\mu \phi/1$ be the category with objects the morphisms (of interpretations of \mathcal{L}) $f : M \longrightarrow I$ where M is a model of ϕ, and with morphisms, from $f : M \longrightarrow I$ to $f' : M' \longrightarrow I$, the morphisms of models (morphisms of $\operatorname{Mod}_\mu \phi$) $g : M \longrightarrow M'$ such that $f'.g = f$.

Then

PROPOSITION. There is a small sketch $\sigma = \sigma(\mathcal{L}, I, \phi, \mu)$ such that $\operatorname{Mod}_\mu \phi/1 \cong \operatorname{Mod}\phi$.

So we get a small cw-complex $g\sigma(\mathcal{L}, I, \phi, \mu)$, which is a geometric description of the position of I with respect to $\operatorname{Mod}_\mu \phi$.

4. Let \textbf{Ab} be the category of small abelian groups, and let $F : \operatorname{Mod}_\mu \phi \longrightarrow \textbf{Ab}$ be a functor. (In particular F could be the constant functor on a fixed abelian group A, or it could be a "canonical" functor if \mathcal{L} is a language over the language of abelian groups, etc). The André’s homology measures "how I is far from $\operatorname{Mod}_\mu \phi$, from the point of view of F". In order to do that we consider the chain complexe
which is

\[\cdots \to \sum FM_2 \xrightarrow{d_2} \sum FM_1 \xrightarrow{d_1} \sum FM_0 \xrightarrow{d_0} 0 \]

with \(d_1 = s_0 - s_1 \), where

\[
\begin{align*}
\ s_0 : (FM_1)_{\alpha} : M_0 & \to I \\
\ x_0 & \to (FM_1)_{\beta'} \to I \\
\ s_1 : (FM_1)_{\alpha} : M_0 & \to I \\
\ x_1 & \to (FM_0)_{\beta} \to I
\end{align*}
\]

and so on, and we define

\[
H_0(I, F) = \ker d_0 / \text{Im } d_1 = \text{coker } d_1, \quad H_1(I, F) = \ker d_1 / \text{Im } d_2, \quad \text{and, for every } n \geq 0, \quad H_n(I, F) = \ker d_n / \text{Im } d_{n+1}.
\]

Proposition. \(H_n(I, F) \) is a function of \(F, I, \mu, \phi \), which in fact depends only of the homotopy type of \(\text{Mod } \mu/\phi \) and of \(F \) and could be denoted by \(H_n(\text{Mod } \mu/\phi, F) \).

Let \(\text{Int}L \) be the category of interpretations of \(L \), let \(J : \text{Mod} \phi \to \text{Int}L \) be the canonical inclusion. Then the inductive Kan extension of \(F \) along \(J \) is given by

\[
[\text{Ext}_J F](I) = \lim_{M_0 \to I} F(M_0)
\]

and we have

\[
H_0(I, F) = [\text{Ext}_J F](I).
\]

If \(I \models \phi \), then \(H_n(\text{Mod } \mu/\phi, I, F) = \left\{ \begin{array}{ll} F(I) & \text{if } n = 0 \\ 0 & \text{if } n > 0 \end{array} \right. \)

5. Now, the point is that, because of the results hereover (§§ 1 to 4), we get
PROPOSITION. The tools of [1] and of [3], available in the situation where a full and small category \(\mathcal{M} \) (called a category of "models") lives inside a big category of "spaces", are also available in the situation where a (possibly big and not necessarily full) category \(\text{Mod}_\mathcal{M} \) of models of a theory lives inside a big category of interpretations of a language \(\mathcal{L} \) (compare with the idea of "paires adéquates" p. 43 of [1]). Precisely here we get the fact that the \(H_n(\text{Mod}_\mathcal{M}/\mathcal{L},F) \) are small.

6. After the existence of \(g \) proved in [7], the theorem hereunder §9 is just a second stone for a work to be pursued. Theoretically the computation of our \(H_n \) is based on the effective construction of a "locally cofree diagram", and more precisely on the construction of a "relatively cofiltered locally cofree diagram" (r.cf.l.cf.d.) (see [5] and [6]) (in the category \(\text{Mod}_\mathcal{M} \)) generated by I. This r.cf.l.cf.d. contains all the information we need, and it will be the starting point of an absolute calculus. But for concrete situations we need a relative calculus, by the way of comparisons between various \(H_n \). For that it will be essential to go toward effective relative calculation of these small \(H_n \), and especially we need a description of the link between these calculations and the theory of demonstrations. For example we need relations among \(H_n(\text{Mod}_\mathcal{M}/\mathcal{L},F) \), \(H_n(\text{Mod}_{\mathcal{L}/\mathcal{M}}/\mu,G) \), \(H_n(\text{Mod}_{\mathcal{M}/\mathcal{L}}/\mu,\phi) \), \(H_n(\text{Mod}_{\mathcal{M}/\mathcal{L}}/\mu,\phi\land\gamma) \), \(H_n(\text{Mod}_{\mathcal{M}/\mathcal{L}}/\mu,\phi\Rightarrow\gamma) \), \(H_n(\text{Mod}_{\mathcal{M}/\mathcal{L}}/\mu,\phi) \) (for convenient \(\mu \) and \(\mathcal{L} \)).

For that it will be necessary to describe the category \(\text{For}(\mathcal{L}) \) of formulas of the language \(\mathcal{L} \). At first this will be useful to precise the functoriality of the \(H_n(\text{Mod}_\mathcal{M}/\mathcal{L},F) \) with respect to \(\phi \) and \(\mu \).

7. The first purpose of this paper was to show precisely how each classical first order formula \(\phi \) of a language \(\mathcal{L} \) determines a "small" homology theory on the category of interpretations of \(\mathcal{L} \). Now, the continuation of this research pass through the description of \(\text{For}(\mathcal{L}) \). With respect to that, I would like to make the following remark: what have to be morphisms between formulas ? it is not so clear a priori; they have to be "demonstrations" or "proofs", but there is no
canonical idea of what is a demonstration.

But if we decide to stay in (or to come back to) the style of sketches, a first picture is easy to give. In fact 𝔇 "is" a sketch 𝒔₀ (i.e. the category of interpretations of 𝔇 is isomorphic to ModAPPING), the formula 𝜙 (or 𝜙) is a sketch 𝒔, and the inclusion of the category of models of 𝜙 (or 𝜙) in the category of interpretations of 𝔇 is induced by a morphism of sketches P : 𝒔₀ → 𝒔. This P is the "proof" that a model of 𝜙 (or 𝜙) is an interpretation of 𝔇. In fact P is not a general morphism of sketches, but determines 𝒔 as a 𝒔₀ -sketch (see [6] p.10 for the precise definition). So we choose to say now that a formula for 𝒔₀ (in the place of a 𝔇-formula) is nothing but such a P, a 𝒔₀ -sketch. In [6] the boolean calculus of 𝒔₀ -sketches (conjunctions, disjunctions, complements) is exposed as construction in the category of sketches. Then we can defined the category For(antino) as being the category of 𝒔₀ -sketches, as objects, with morphisms from P to P' the morphisms of sketches f : σ → σ' which determine σ' as a σ-sketch, such that f.P = P'.

At this level of language, we can change our notations, replacing Mod 𝜙 by Mod 𝜙, or even, more precisely, by P, and the H_n(Mod 𝜙/I,F) will be denoted by H_n(P/I,F). Of course for general mixed sketches (and not only for those associated to first order formulas) the result in §5 works, and the abelian groups H_n(P/I,F) are smalls. Now

PROPOSITION. The functoriality of these H_n, with respect to P, I and F are trivial facts.

8. In a dual way, given a functor F : Mod 𝜙 → Ab and an interpretation I of 𝔇, the cohomology of I with coefficient in F is defined by considering the cochain complexe

\[
\begin{array}{cccc}
& & C^0(I,F) & \rightarrow C^1(I,F) & \rightarrow C^2(I,F) & \rightarrow \ldots \\
& d^0 & & d^1 & & \\
\end{array}
\]

which is
with

\[d(x)(l4 M \xrightarrow{\lambda} M_0) - x(1, M_1) \]

and so on, and we define \(H^n(I, F) = \ker d^n/\text{Im } d^{n-1} \).

For these cohomology groups, the same result is true, that is to say that they are small. But now, the computation is based on the effective construction of a "relatively filtered locally free diagram" (r.f.l.f.d.) (in the category \(\text{Mod } \phi_{\mu} \)) generated by \(I \). These cohomology groups will be denoted by \(H^n((I/\text{Mod } \phi_{\mu})^{\text{op}}, F) \).

9. Collecting the results of §5, §7 and §8, we get:

Theorem: The abelian groups \(H_n(\text{Mod } \phi/I, F) \) and \(H^n((I/\text{Mod } \phi_{\mu})^{\text{op}}, F) \) are small, i.e. they are elements of the category \(\text{Ab} \), they are functorial with respect to \(I, F, \mu \) and \(\phi \), and if \(I = \phi \), then \(H_n(\text{Mod } \phi/I, F) = 0 \), for every \(n > 0 \), and \(H^n((I/\text{Mod } \phi_{\mu})^{\text{op}}, F) = 0 \), for \(n > 0 \). In fact, more precisely, we have \(H_n(\text{Mod } \phi/I, F) = 0 \), for every \(n > 0 \), if there is a cofree model generated by \(I \), and we have \(H^n((I/\text{Mod } \phi_{\mu})^{\text{op}}, F) = 0 \), for \(n > 0 \), if there is a free model generated by \(I \). So they are small obstructions to the satisfaction of \(\phi \) in \(I \) "up to co-equations" and "up to "equations".

References

U.F.R. Maths, Tours 45-55, 5ème ét., Université. PARIS 7, 2 place Jussieu, 75005, FRANCE.