MARIUS VAN DER PUT

p-adic Whittaker groups

Groupe de travail d’analyse ultramétrique, tome 6 (1978-1979), exp. n° 15, p. 1-6

<http://www.numdam.org/item?id=GAU_1978-1979__6__A9_0>
p-ADIC WHITTAKER GROUPS

by Marius van der PUT (*)

[Universiteit, Utrecht]

An algebraic curve (non singular, irreducible and complete) over \(\mathbb{C} \) which is hyperelliptic can be uniformized by a Whittaker group (see [1], p. 247-249). We will treat the rigid analytic case for complete non-archimedean valued fields \(K \) with characteristic \(\neq 2 \). In order to avoid rationality problems the field \(K \) is supposed to be algebraically closed. A part of the results in this paper was independently proved by G. Van STEEN.

1. Combinations of discontinuous groups.

Let \(\Gamma \subset \text{PGL}(2, K) \) be a discontinuous group. We will assume that \(\omega \in \mathbb{P}^1(K) \) is an ordinary point for \(\Gamma \). A fundamental domain \(F \) for \(\Gamma \), containing \(\omega \), is a subset \(F \) of \(\mathbb{P}^1 \) satisfying:

(i) \(\mathbb{P}^1 - F \) is a finite union of open spheres \(B_1, \ldots, B_n \) in \(K \) such that the corresponding closed spheres \(B_1^+, \ldots, B_n^+ \) are disjoint,

(ii) The set \(\{ \gamma \in \Gamma; \gamma F \cap F \neq \emptyset \} \) is finite,

(iii) if \(\gamma \neq \gamma' \) and \(\gamma F \cap F \neq \emptyset \) then \(\gamma F \cap F \subset \bigcup_{i=1}^n (B_i^+ - B_i) \),

(iv) \(\bigcup_{\gamma \in \Gamma} \gamma F = \Omega = \) the set of ordinary points of \(\Gamma \).

We will write \(\mathfrak{F} \) for \(\mathbb{P}^1 - \bigcup_{i=1}^n B_i^+ \).

One can show that a fundamental domain for \(\Gamma \) exists if \(\Gamma \) is finitely generated (see [2] and [3]).

PROPOSITION. - Let \(\Gamma_1, \ldots, \Gamma_m \) be discontinuous groups with fundamental domains containing the point \(\omega \), \(F_1, \ldots, F_m \). Suppose that \(\mathfrak{F} = \mathbb{P}^1 - F_i \) for all \(i \neq j \). Then the group \(\Gamma \) generated by \(\Gamma_1, \ldots, \Gamma_m \) is discontinuous. Moreover \(\Gamma = \bigcap_{i=1}^m \Gamma_i \) (the free product) and \(\bigcap_{i=1}^m F_i \) is a fundamental domain for \(\Gamma \).

Proof. - Put \(F = \bigcap_{i=1}^m F_i \) and \(\mathfrak{F} = \bigcap_{i=1}^m \mathfrak{F}_i \). Let \(W = \delta_0 \delta_1 \cdots \delta_{i-1} \delta_i \) be a reduced word in \(\Gamma_1 \cdots \Gamma_n \), i.e. each \(\delta_i \in \bigcup_{j \neq i} \Gamma_j \) and if \(\delta_i \in \Gamma_j \), then \(\delta_{i+1} \notin \Gamma_j \). Then \(W(F) \subset \mathbb{P}^1 - F \). Hence \(\Gamma \) is equal to \(\Gamma_1 \cdots \Gamma_m \). Further \(W(F) \cap F \neq \emptyset \) implies that \(W \in \bigcup_{j \neq i} \Gamma_j \). So we have shown that \(F \) satisfies the conditions (i), (ii) and (iii). Let \(\delta > 0 \), then there are finite sets \(W_1 \subset \Gamma_1, \ldots, W_m \subset \Gamma_m \) such that the complement of \(\bigcup_{\gamma \in W_i} \gamma F_i \) consists of

(*) Texte reçu le 12 mars 1979.

Marius van der PUT, Mathematisch Instituut der Rijksuniversiteit, UTRECHT (Pays-Bas).
Given $\varepsilon > 0$ then there is $\delta > 0$ and some $n >> 0$ such that the complement of $U_{W \in W} W_1$, where W consists of all reduced words in W_1, \ldots, W_n of length $\leq n$, is a finite union of spheres of radii $< \varepsilon$.

This shows that the set of limit points of Γ is equal to the compact set $P^1 - \bigcup_{W \in W} W$.

2. Example. If each $\Gamma_i \simeq \mathbb{Z}$, so Γ_i is generated by an hyperbolic element, then Γ is a free group on n generators. We will call such a Γ a Schottky group of rank n. It can be shown that any group Γ, which satisfies:

(i) Γ discontinuous;

(ii) Γ is finitely generated;

(iii) Γ has no elements of finite order ($\neq 1$),

is a Schottky group of rank n. Moreover \mathbb{C}/Γ turns out to be an algebraic curve over k with genus n.

3. Definition of the p-adic Whittaker groups. (characteristic $k \neq 2$.)

Let s be an element of order two in $\text{PGl}(2, k)$. Then s has two fixed points a and b. Moreover s is determined by $\{a, b\}$. Let B be an open sphere in P^1 maximal, w. r. t. the condition $sB \cap B = \emptyset$ and let c be a point of B.

There exists a $\sigma \in \text{PGl}(2, k)$ with $\sigma(a) = 1$, $\sigma(b) = -1$, $\sigma(c) = 0$. Then $t = \sigma s \sigma^{-1}$ has the form $z \mapsto 1/z$; t has 1, -1 as fixed points and $\sigma(B) = \{z \in P^1; |z| < 1\}$. It follows that $P^1 - B$ is a fundamental domain for the group $\{1, s\}$.

Let $(g + 1)$ elements s_0, \ldots, s_g of order two in $\text{PGl}(2, k)$ be given. Suppose that their fixed points $\{a_0, b_0\}$, $\{a_1, b_1\}$, ..., $\{a_g, b_g\}$ are all finite and are such that the smallest closed spheres B^+_0, ..., B^+_g in k containing $\{a_0, b_0\}$, $\{a_1, b_1\}$, ..., $\{a_g, b_g\}$, are disjoint.

Choose points $c_i \in B^+_i$ such that the open sphere B_i with center c_i and radius = radius of B^+_i does not contain a_i and b_i.

According to Prop. 1 the group $\Gamma = \langle s_0, s_1, \ldots, s_g \rangle$ generated by $\{s_0, \ldots, s_g\}$ is discontinuous, has $F = P^1 - \bigcup_{i=0}^g B_i$ as fundamental domain and is equal to

$$\langle s_0 \rangle * \langle s_1 \rangle * \ldots * \langle s_g \rangle \simeq \mathbb{Z}/2 * \ldots * \mathbb{Z}/2.$$

Let $\varphi: \Gamma \rightarrow \mathbb{Z}/2$ be the group homomorphism given by $\varphi(s_i) = 1$ for all i. The kernel W of φ is called a Whittaker group. The group W is generated by $\{s, s_0, s_2 s_0, \ldots, s_g s_0\}$. An easy exercise shows that W is a free group on
15-03

The groups W and Γ have the same set E of limit points. Let $\Omega = \mathbb{P}^1 - E$.

Then Ω/W and Ω/Γ have a canonical structure of an algebraic curve over k. The natural map $\Omega/W \to \Omega/\Gamma$ is a morphism of algebraic curves of degree 2.

4. PROPOSITION

$\Omega/\Gamma \cong \mathbb{P}^1$.

Proof. Consider

$$\theta(a, b, z) = \prod_{v \in \Gamma} \frac{z - \gamma(v)}{z - \gamma(b)},$$

where $a, b \in \Omega$ and $a \not\in \Gamma b$ and $a \not\in \Gamma a \cup \Gamma b$.

This function converges uniformly on the affinoid subsets of Ω since

$$\lim_{z \to \infty} |\gamma(a) - \gamma(b)| = 0.$$

So $F(z) = \theta(a, b, z)$ is a meromorphic function on Ω. For any $\delta \in \Gamma$ we have $F(\delta z) = c(\delta) F(z)$ where $c(\delta) \in k^*$. Clearly $c : \Gamma \to k^*$ is a group homomorphism and hence $c(\delta) = \pm 1$.

For given a one can take b close to a such that $|F(\infty) - F(\infty)| < \frac{1}{2}$. For this choice of a and b, we find that F is invariant under Γ. So F defines a morphism $F : \Omega/\Gamma \to \mathbb{P}^1$. This morphism has only one pole. Hence F is an isomorphism.

Second proof (G. Van STEEN). - If Γ is finitely generated then Ω/Γ is an algebraic curve of genus $= \text{rank of } \Gamma_{ab} = [\Gamma : \Gamma]$.

In our case the rank is clearly zero.

5. THEOREM

Ω/W is an hyperelliptic curve of genus g. The affine equation of Ω/W is

$$y^2 = \prod_{i=0}^{2g} (x - F(a_i))(x - F(b_i)).$$

Proof. It follows from 3 and 4 that Ω/W is indeed hyperelliptic of genus g.

Therefore Ω/W must have $2g + 2$ ramification points over Ω/Γ. A point $p \in \Omega/W$, image of $\omega \in \Omega$, is a ramification if, and only if, $s_0 \in W \omega$. The points $a_0, b_0, \ldots, a_g, b_g$ satisfy this condition, and their images in Ω/Γ are different. So the equation follows.

6. COROLLARY

Let $s_0, \ldots, s_g \in \text{PGl}(2, k)$ be elements of order 2 such that the group Γ generated by them satisfies: Γ is discontinuous and

$$\Gamma = \langle s_0 \rangle \ast \langle s_1 \rangle \ast \cdots \ast \langle s_g \rangle.$$

Then there are elements s_0^*, \ldots, s_g^* of order 2 in $\text{PGl}(2, k)$ with the $(2g + 2)$ fixed points in the position required in 3, and such that $\Gamma = \langle s_0^* \rangle, \ldots, \langle s_g^* \rangle$.

Proof. In 3, 4 and 5, the position of the $(2g + 2)$ fixed points of $\{s_0, \ldots, s_g\}$ is only used to prove that Γ is discontinuous and equal to
\begin{align*}
\langle s_0 \rangle \times \cdots \times \langle s_g \rangle. \quad & \text{So we can also form } W = \langle s_0, s_1, s_0 s_2, \ldots, s_0 s_g \rangle \subset \Gamma \text{ and conclude that } \Omega/W \to \Omega = \mathbb{P}_1 \text{ has degree 2 and has } 2g + 2 \text{ ramification points, called } A_1, \ldots, A_{2g + 2}. \text{ Let } \sigma : \Omega/W \to \Omega/W \text{ be the automorphism of order 2 defined by } f. \text{ Then } A_1, \ldots, A_{2g + 2} \text{ are the fixed points of } \sigma.
\end{align*}

Write \(t_1 = s_0 s_1, \ldots, t_g = s_0 s_g \). Every element in } \Gamma \text{ of order 2 must have the form } a s_i a^{-1} (a \in \Gamma; i = 0, \ldots, g) \text{ (see [5]). Further } a \in \Gamma \text{ has the form } w s_0 \text{ or } w, \text{ with } w \in W. \text{ Since } s_0 s_i s_0 = t_i s_i t_i^{-1}, \text{ we find that every element in } \Gamma \text{ of order 2 has the form } w s_i w^{-1}, \text{ with } w \in W \text{ and } i \in \{0, \ldots, g\}. \text{ It is easily verified that this presentation is unique.}

Further } \Omega \to \Omega/W \text{ is a universal covering (see [4]). Hence for any } e, f \in \Omega \text{ with } \sigma(\pi(e)) = \pi(f), \text{ there exists a unique lifting } s : \sigma \to \Omega \text{ of } \sigma \text{ with } s(e) = f. \text{ Moreover } s \in \Gamma.

Take now } e \in \pi^{-1}(A_j) \text{ and a lifting } s \text{ of } \sigma \text{ with } s(e) = e. \text{ Then } s^2 = 1. \text{ Hence } s = w s_i w^{-1} \text{ for some } i \in \{0, \ldots, g\} \text{ and } w \in W. \text{ The } i \text{ does not depend on the choice of } e \in \pi^{-1}(A_j). \text{ Hence we have constructed a map }
\begin{align*}
\tau : \{A_1, \ldots, A_{2g + 2}\} & \to \{0, 1, \ldots, g\}.
\end{align*}

Further any } w s_i w^{-1} \text{ has at most two fixed points in } \pi^{-1}(\{A_1, \ldots, A_{2g + 2}\}). \text{ It follows that } \tau^{-1}(i) \text{ consists of at most two points. Hence } \tau \text{ is surjective and every } s_i \text{ has both fixed points in } \pi^{-1}(\{A_1, \ldots, A_{2g + 2}\}) \subset \Omega. \text{ The generators for } \Gamma \text{ can be changed into } s_0, t_1^2 s_1 t_1^2, s_2, \ldots, s_g. \text{ With a sequence of changes of this type one finds generators } s_0, \ldots, s_f \text{ for } \Gamma \text{ with their } (2g + 2) \text{ fixed points in the required position.}

7. THEOREM. - Suppose that } X \text{ is a hyperelliptic curve of genus } g \text{ over } k \text{ which is totally split. Then there exists a Whittaker group } W, \text{ unique up to conjugation in } \text{ PGL}(2, k), \text{ with } X \cong \Omega/W.

\textbf{Proof.} - \text{ We will use freely the results of [3] and [4]. We know that } \Omega \to \Omega/W \cong X \text{ exists where } W \text{ is a Schottky group of rank } g, \text{ unique up to conjugation. We have to show that } W \text{ is in fact a Whittaker group.}

Let } \sigma \text{ be the automorphism of } X \text{ with order two such that } \tau : X \to X/\sigma \cong \mathbb{P}_1. \text{ Then } \sigma \text{ has } A_1, \ldots, A_{2g + 2} \subset X \text{ as fixed points. Let } \Gamma \text{ denote the set of all lifts } s : \Omega \to \Omega \text{ of } \sigma : X \to X \text{ and of } \text{id} : X \to X. \text{ Then } \Gamma \text{ is a group and } W \text{ has index 2 in } \Gamma. \text{ The set }
\begin{align*}
K = \pi^{-1}(\{A_1, \ldots, A_{2g + 2}\}) \subset \mathbb{P}_1
\end{align*}
\text{ is a compact set with limit points } = \mathbb{P}_1 - \Omega = \text{ the limit points of } W = \text{ the limit points of } \Gamma. \text{ Let } \overline{\Omega} \text{ denote the reduction of } \Omega \text{ with respect to } K. \text{ Then}
\(\Omega/\Gamma \) is a reduction of \(\mathbb{P}^1 \) and it is in fact the reduction of \(\mathbb{P}^1 \) with respect to the finite set \(\{ \tau(A_1), \ldots, \tau(A_{2g+2}) \} \).

Let \(\overline{X} \) denote the reduction induced by \(\Omega \), i.e. \(\Omega \) is given with respect to a pure covering \(\mathcal{U} \), and \(\bar{X} \) is the reduction with respect to \(\pi(\mathcal{U}) \).

One easily sees that \(\overline{X} = \Omega/\mathcal{W} \) and consists of projective lines over the residue field \(k \). The intersection graph \(G(\overline{X}) \) is defined by:

- vertices = the components of \(\overline{X} \)
- edges = the intersection points.

The map \(\sigma \) induces an automorphism of \(\overline{X} \) and \(G(\overline{X}) \), again denoted by \(\sigma \).

Further \(\overline{X} \xrightarrow{\tau} \overline{X}/\sigma \cong \Omega/\Gamma \) and \(G(\overline{X})/\sigma \cong G(\overline{\Omega}/\Gamma) \) is a connected finite tree.

Through the image \(\overline{A}_1 \) of \(A_1 \) on \(\overline{X} \) goes only one component of \(\overline{X} \) since \(\overline{\tau}(A_1) \) lies on only one component of \(\overline{\Omega}/\Gamma \). Call this vertex of \(G(\overline{X}) \) the vertex \(e_1 \).

Then \(\sigma(e_1) = e_1 \) and the homeomorphism \(\sigma \) of \(G(\overline{X}) \) induces an automorphism \(\hat{\sigma} \) of \(\pi_1(\overline{X}, e_1) \) = the fundamental group of \(G(\overline{X}) \).

We know further that \(\pi_1(\overline{X}, e_1) \) is in a natural way isomorphic to \(\mathcal{W} \). Suppose that we can find a base for the fundamental group, \(t_1, \ldots, t_g \) such that \(\hat{\sigma}(t_i) = t_i^{-1} \) for all \(i \). Then we can lift this situation to \(\Omega \) as follows:

Choose an element \(e \in \pi_1(A_1) \); let \(s_0 \) be the lift of \(\sigma \) satisfying \(s_0(e) = e \); let \(h_0 \) be the component of \(\overline{\Omega} \) on which \(e \) lies; let the curve in \(G(\overline{\Omega}) \) with begin point \(h_0 \) and lying above \(A_1 \) have endpoint \(h \) \(\in \overline{G(\overline{\Omega})} \); let \(T_i \in \mathcal{W} \) be defined by \(T_i(e) \) lies on \(h \).

Then \(W = \langle T_1, \ldots, T_g \rangle \) and \(s_0 T_i s_0 = T_i^{-1} \) for all \(i \). Put \(s_1 = s_0 T_1, \ldots, s_g = s_0 T_g \).

Then \(\Gamma = \langle s_0, s_1, \ldots, s_g \rangle \) and easy inspection yields \(\Gamma = \langle s_0 \rangle * \langle s_1 \rangle * \ldots * \langle s_g \rangle \).

According to Corollary 6, we have shown that \(W \) is a Whittaker group.

Finally we have to show the following lemma:

8. LEMMA. - Let \(G \) be a finite connected graph with Betti number \(g \). Let \(\sigma \) be an homeomorphism of \(G \) such that:

(i) \(\sigma \) has order \(2 \);

(ii) \(G/\sigma \) is a tree;

(iii) \(\sigma \) fixes a vertex \(p \in G \).

Then the fundamental group \(\pi_1(G, p) \) has generators \(t_1, \ldots, t_g \) such that the induced automorphism \(\hat{\sigma} \) of \(\pi_1(G, p) \) has the form \(\hat{\sigma}(t_i) = t_i^{-1} \) for all \(i \).

Proof. - Induction on the number of vertices of \(G \).
(1) p is the only vertex of G. Then G is a wedge of g circles. As generators for \(\pi_1 \) we take the g circles together with an orientation. Call them \(t_1, \ldots, t_g \). Since \(\sigma \) is an homeomorphism we must have
\[
\hat{\sigma}(t_i) \in \{t_1, \ldots, t_g, t_i^{-1} \ldots t_i^{-1}\}
\]
for all \(i \). Since \(G/\sigma \) has a trivial fundamental group, one finds that \(\hat{\sigma}(t_i) = t_i^{-1} \) for all \(i \).

(2) Induction step. Choose an edge \(\lambda \) of G with endpoints \(p \) and \(q \neq p \).
If \(\sigma(\lambda) = \lambda \) then we make a new graph \(G^* \) by identifying \(p \) and \(q \) and deleting the edge \(\lambda \).

If \(\sigma(\lambda) \neq \lambda \), but \(\sigma(\lambda) \) has also endpoints \(p \) and \(q \), then we make \(G^* \) by identifying \(p \) and \(q \) and also identifying \(\lambda \) on \(\sigma(\lambda) \).

If \(\sigma(\lambda) \) has endpoints \(p, r \) with \(r \neq q \), then we make \(G^* \) by identifying \(q \) and \(r \) with \(p \) and deleting \(\lambda \) and \(\sigma(\lambda) \).

In all cases, \(G^* \) is homotopic to \(G \); \(\sigma \) acts again on \(G^* \) and induces the same automorphism of the fundamental group.

1° An easy calculation gives that the number of moduli for Whittaker groups of rank \(g \) is \(2g - 1 \). This is the same as the number of moduli for hyperelliptic curves of genus \(g \).

2° Is it possible to give an explicit calculation of the numbers \(F(a), F(b) \) in theorem 5?

3° Hyperelliptic curves and Whittaker groups in characteristic 2 will be treated by G. Van STEEN.

REFERENCES