Yasutaka Sibuya

An application of Newton iteration procedure to p-adic differential equations

<http://www.numdam.org/item?id=GAU_1979-1981__7-8__A6_0>
AN APPLICATION OF NEWTON ITERATION PROCEDURE
TO p-ADIC DIFFERENTIAL EQUATIONS

by Yasutaka SIBUYA (*)

[University of Minnesota]

This report is based on the author's lectures at Strasbourg, Padova, Grenoble, Groningen and Paris. The motivations of this research were explained in the papers to appear ([3],[5]) and the lecture-notes [4] (joint with S. SPERBER). Therefore, in this paper, we will report only on the technical part.

1. Preliminaries.

Let \(K \) be a field of characteristic zero complete with respect to an absolute value \(|\cdot| \) which is non-trivial and ultrametric. The field of rational number, \(\mathbb{Q} \), is a subfield of \(K \), and we require that the restriction of \(|\cdot| \) to \(\mathbb{Q} \) is a \(p \)-adic absolute value for some prime number \(p \). We normalize \(|\cdot| \) so that \(|p| = 1/p \).

For \(\varphi = \sum_{m=0}^{\infty} a_m x^m \in K[[x]] \), we set

\[
|\varphi|_0(r) = \sup_{m \geq 0} |a_m| r^m.
\]

If \(|\varphi|_0(r_0) < +\infty \) for some positive constant \(r_0 \), then \(\varphi \) is convergent for \(|x| < r_0 \). The following lemma is fundamental throughout this report.

Lemma 1. Assume that \(\varphi_j = \sum_{m=0}^{\infty} a_{j,m} x^m \in K[[x]] \), \(j = 1, 2, \ldots \), with the properties:

(i) \(\lim_{j \to \infty} a_{j,m} = a_m \) exists for every \(m \);

(ii) \(|\varphi_j|_0(r) < M(r) \) for \(0 < r < r_0 \), \(j = 1, 2, \ldots \), where \(r_0 \) is a positive number, and \(M(r) \) is a non-negative number which depends only on \(r \). Then, \(\varphi = \sum_{m=0}^{\infty} a_m x^m \) is convergent for \(|x| < r_0 \), and \(\lim_{j \to \infty} |\varphi_j - \varphi|_0(r) = 0 \) for \(0 < r < r_0 \). (Cf. B. DWORK [1].)

2. An example (a rough sketch).

Let us consider a non-linear differential equation
(2.1) \[x \frac{du}{dx} + au = f(x) + u^2 g(x, u), \]

where \(\alpha \in \mathbb{K}, f, g \in \mathbb{K}[[x]],\) and \(f, g \) are convergent. We want to find a convergent power series \(\varphi \in \mathbb{K}[[x]] \) which satisfies the equation (2.1). To do this, we try to construct \(\varphi \) in the following form

(2.2) \[u = \varphi = \sum_{j=0}^{\infty} \varphi_j, \quad \varphi_j \in \mathbb{K}[[x]]. \]

Step 1. First of all, \(\varphi_0 \) is determined by the linear differential equation

(2.3) \[x \frac{d\varphi_0}{dx} + \alpha \varphi_0 = f. \]

Step 2. Change \(u \) by \(u = \varphi_0 + v. \) Then (2.1) becomes

(2.1') \[x \frac{dv}{dx} + \alpha v = \varphi_0(x)^2 g(x, \varphi_0(x)) + \varphi_0(x) G(x) v + v^2 g_1(x, v), \]

where

\[
\varphi_0(x) = 2g(x, \varphi_0(x)) + \varphi_0(x) g_u(x, \varphi_0(x)) \quad (g_u = \partial g/\partial u),
\]

\[
v^2 g_1(x, v) = \varphi_0(x)^2 [g(x, \varphi_0(x) + v) - g(x, \varphi_0(x)) - g_u(x, \varphi_0(x)) v] + 2 \varphi_0(x) v[g(x, \varphi_0(x) + v) - g(x, \varphi_0(x))] + v^2 g(x, \varphi_0(x) + v).
\]

We determine \(\varphi_1 \) by the linear part of (2.1')

(2.4) \[x \frac{d\varphi_1}{dx} + \alpha \varphi_1 = \varphi_0^2 g(x, \varphi_0) + \varphi_0 G(x) \varphi_1. \]

The other \(\varphi_j \) will be determined successively in a similar manner.

This is our Newton iteration procedure.

A closer look at equation (2.3). If \(f = \sum_{m=0}^{\infty} c_m x^m \) \((c_m \in \mathbb{K})\), then \(\varphi_0 \) is given by

(2.5) \[\varphi_0 = \sum_{m=0}^{\infty} \frac{c_m}{m + \alpha} x^m. \]

Assuming that \(|f|_0^0(r) \leq M \) for \(0 \leq r < r_0 \), where \(r_0 \) and \(M \) are some positive numbers, we want to derive

(2.6) \[|\varphi_0|_0^0(r) \leq M \text{ for } 0 \leq r < r'_0, \]

for \(r'_0 \) a positive number, as large as possible, such that \(0 < r'_0 < r_0 \). To do this, we introduce two assumptions

(2.7) \[c_m = 0 \text{ for } m < m_0, \]

(2.8) \[|m + \alpha|^{-1} \leq c_m^{m-\delta} \quad (m \geq m_0), \]

where \(m_0 \) is a positive integer, \(C \) is a positive number greater than one, and \(\delta \) is a positive number smaller than one, i.e. \(C > 1, 0 < \delta < 1 \).

The assumption (2.8) may be called "non-Liouville property" of the exponent \(\alpha \). The condition (2.7) may be written

(2.7') \[f = 0 \pmod{x^{m_0}}. \]
Note that, if equation (2.1) admits a formal power series solution, then, we can change (2.1) so that condition (2.7) may be satisfied for any prescribed \(m_0 \). Also note that any algebraic number \(\alpha \) satisfies condition (2.3) for any \(\delta \) if we choose \(C \) and \(m_0 \) suitably.

Under assumption (2.3), set

\[
(2.5) \quad \rho_0 = (1/C)^{m_0^{-\delta}}
\]

Then \(0 < \rho_0 < 1 \), and

\[
\rho_0^m = (\rho_0^m)^{1-\delta} = (C^{-m/m_0})^{1-\delta} \leq (1/C)^{m_0^{-\delta}} \leq |m + \alpha| \quad \text{if} \quad m \geq m_0.
\]

Hence, under assumptions (2.7) and (2.8), we have

\[
|\varphi_0(\rho_0)| \leq \sup_{m \geq m_0} |m + \alpha|^{-1} \leq \sup_{m \geq m_0} \left| c_m \right| \rho_0^m \leq \sup_{m \geq m_0} \left| c_m \right| r^m = |f|_0(r),
\]

and

\[
(2.6') \quad |\varphi_0|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0.
\]

Equation (2.4) without \(\varphi_0 \) \(g(t) \varphi_1 \). To simplify the explanation, we remove \(\varphi_0 \) \(g(x) \varphi_1 \) from the right-hand member of equation (2.4); i.e., we consider the equation

\[
(2.10) \quad x \varphi_1 dx + \varphi_1 = \varphi_0 g(x, \varphi_0).
\]

We know already that

\[
(2.11) \quad \varphi_0 \equiv 0 \pmod{x^{m_0}},
\]

and that \(\varphi_0 \) satisfies (2.6'). First of all, (2.11) implies that

\[
(2.12) \quad \varphi_0^2 g(\cdot, \varphi_0) \equiv 0 \pmod{x^{2m_0}}.
\]

Hence, if we assume that \(g \) satisfies the condition

\[
(2.13) \quad \left| \varphi_0^2 g(\cdot, \varphi_0) \right|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0,
\]

we have

\[
(2.14) \quad \left\{ \begin{array}{l}
\varphi_1 \equiv 0 \pmod{x^{2m_0}}, \\
|\varphi_1|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1,
\end{array} \right.
\]

where \(\rho_1 = (1/C)^{(2m_0)^{-\delta}} = \rho_0^{-\delta} \).

Suppose that, proceeding inductively as above, we have defined for all \(j \geq 0 \),

\[
\left\{ \begin{array}{l}
\varphi_j \equiv 0 \pmod{x^{2m_0}}, \\
|\varphi_j|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j,
\end{array} \right.
\]

and

\[
(2.15) \quad \left| \varphi_j \right|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j,
\]

we have

\[
(2.16) \quad \left| \varphi_{j+1} \right|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j.
\]

Suppose that, proceeding inductively as above, we have defined for all \(j \geq 0 \),

\[
\left\{ \begin{array}{l}
\varphi_j \equiv 0 \pmod{x^{2m_0}}, \\
|\varphi_j|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j.
\end{array} \right.
\]

and

\[
(2.17) \quad \left| \varphi_j \right|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j,
\]

we have

\[
(2.18) \quad \left| \varphi_{j+1} \right|_0(r) \leq M \quad \text{for} \quad 0 \leq r < \rho_0 \rho_0 \rho_1, \ldots, \rho_j.
\]
where \(\rho_j = \rho_{j-1}^{2^{-\delta}} = \rho_0^{2^{-j\delta}} \); set

\[\psi_j = \sum_{j=0}^{\infty} \rho_j^2 , \quad \rho_\infty = \left(\sum_{j=0}^{\infty} \rho_j \right)^{1/2} = \rho_0^{(1-2^{-\delta})^{-1}} > 0 . \]

Then \(|\psi_j|_0 < M \) for \(0 < r < r_0 \rho_\infty \), and \(\psi_j \) converges x-adically to

\[\rho = \sum_{j=0}^{\infty} \rho_j . \]

Therefore, by virtue of lemma 1, we conclude that \(\rho \) is convergent for \(|x| < r_0 \rho_\infty \).

The argument of this section is not strictly speaking correct, since we removed \(\rho_0 G(x) \rho_1 \) from the right-hand member of equation (2.4). A correct treatment of equation (2.1) is given in SIBUYA-SPERBER ([2], [4]).

3. Typical results.

In this section, we shall give a rigorous treatment of a problem which is more general than the problem of section 2. We assume that \(K \) contains an element \(\pi \) such that

\[|\pi| = \left(\frac{1}{p} \right)^{\psi-1} . \]

We consider the following situation.

(i) We are given \(\alpha_1 , \ldots , \alpha_n \in K \) such that

\[|\alpha_j| < 1 , \quad |m + \alpha_j|^{-1} \leq C m^{1-\delta} \quad \text{and} \quad |m + \alpha_1 - \alpha_j|^{-1} \leq C m^{1-\delta} . \]

for \(m \geq 2^k \) and \(i, j = 1, \ldots , n \), where \(k \) is a non-negative integer, and \(C \) and \(\delta \) are positive numbers such that \(C > 1 \), \(0 < \delta < 1 \).

(ii) We are also given \(a_1 , \ldots , a_n \in K[[X]] \) such that

\[a_j \equiv 0 \pmod{X} , \quad \left| \int_0^{r_0} a_j(t) \, dt \right|_0 < |\pi| , \]

for \(0 < r < r_0 \) and \(j = 1, \ldots , n \), where \(r_0 \) is a positive number, and where, for \(a = \sum_{m=1}^{\infty} a_m X^m \), we have denoted \(\sum_{m=1}^{\infty} (a_m / m) X^m \) by \(\int_0^{r_0} a(t) \, dt \).

We define two sequences of numbers, \(\{ \sigma_n \} \) and \(\{ \tau_n \} \) by

\[\begin{cases} \sigma_1 = 1/C , & \tau_1 = (1/C)^{2(1-2^{-\delta})^{-1}} \\ \sigma_n = \sigma_{n-1}^2 \tau_{n-1} , & \tau_n = (\sigma_n \sigma_1)^{2(1-2^{-\delta})^{-1}} . \end{cases} \]

Note that

\[0 < \tau_n < \sigma_n < \tau_{n-1} < 1 . \]

In this section, we shall prove the following two theorems.
THEOREM 1. Assume that a differential operator $H = \sum_{j=0}^{n-1} b_j(x) \partial^j$ ($\partial = xd/dx$) satisfies the following conditions:

\[
\begin{cases}
 b_j \in K[[x]] \text{ and } b_j \equiv 0 \pmod{x^k}, \\
 |b_j|_0(r) < |\pi| \text{ for } 0 \leq r < r_0.
\end{cases}
\]

Then, there exists $\eta_1, \ldots, \eta_n \in K[[x]]$ such that

\[
\begin{cases}
 \eta_j \equiv 0 \pmod{x^k}, \\
 |\int_0^r t^{n-1} \eta_j(t) \, dt|_0(r) < |\pi| \text{ for } 0 \leq r < r_0 \gamma_n^{-k_5}, \ j = 1, \ldots, n,
\end{cases}
\]

and that

\[
(3.3) \quad (\partial + \alpha_1 + a_1) \ldots (\partial + \alpha_n + a_n) - H = (\partial + \alpha_1 + a_1 - \eta_1) \ldots (\partial + \alpha_n + a_n - \eta_n).
\]

THEOREM 2. Assume that

\[
f \in K[[x]], \ f \equiv 0 \pmod{x^k}, \ |f|_0(r) < 1 \text{ for } 0 \leq r < r_0,
\]

and that

\[
G = \sum_{\mu_0+\cdots+\mu_{n-1} \geq 2} g_{\mu_0^{\mu_0} \cdots \mu_{n-1}}^{\mu_0^{\mu_0} \cdots \mu_{n-1}}(x) v_0^{\mu_0} \cdots v_{n-1}^{\mu_{n-1}} \in K[[x, v_0, \ldots, v_{n-1}]],
\]

with $g_{\mu_0^{\mu_0} \cdots \mu_{n-1}}^{\mu_0^{\mu_0} \cdots \mu_{n-1}}(x) \in K[[x]]$,

\[
|g_{\mu_0^{\mu_0} \cdots \mu_{n-1}}^{\mu_0^{\mu_0} \cdots \mu_{n-1}}|_0(r) \leq |\pi| \text{ for } 0 \leq r < r_0.
\]

Then, there exists a unique $\phi \in K[[x]]$ such that

\[
(3.11) \quad \phi \equiv 0 \pmod{x^k},
\]

and that

\[
(3.12) \quad (\partial + \alpha_1 + a_1) \ldots (\partial + \alpha_n + a_n)(\phi) = f + G(x, \phi, \partial \phi, \ldots, \partial^{n-1} \phi).
\]

Furthermore, this power series ϕ also satisfies the condition

\[
(3.13) \quad |\phi|_0(r) < 1 \text{ for } 0 \leq r < r_0 \gamma_n^{-k_5}.
\]

Remark 1. The power series ϕ is a solution of a non-linear differential equation with purely Fuchsian linear part. This is a prototype of the most difficult situations in the study of p-adic non-linear problems. The most important part of theorem 2 is the estimate (3.13), i.e., the r-interval in which $|\phi|_0(r) < 1$ holds.
Remark 2. - Theorem 1 is a Hensel-type lemma. The problem of factorization of a linear differential operator is naturally reduced to a non-linear problem such as that of theorem 2. For example, if the order of the operator is two, the corresponding non-linear problem is a Riccati equation. In general, if the order of the operator is \(n \), the order of the corresponding non-linear problem is \(n - 1 \). Taking advantage of this situation, we can prove theorem 1 and 2 simultaneously by an induction on \(n \). Since the case \(n = 1 \) was treated in SIBUYA-SPERBER [2], we shall prove these theorems for \(n \geq 2 \). (Cf. also SIBUYA-SPERBER [4].)

4. Proof of theorem 1 for \(n \).

In this section, assuming theorem 2 for \(n - 1 \), theorem 1 for \(n = 1 \), and theorem 1 for \(n - 1 \), we shall prove theorem 1 for \(n \). Set

\[
\begin{align*}
L &= (\partial + a_1 + a_n) \cdots (\partial + a_{n-1} + a_n), \\
\eta &= \dot{\eta} + a_n.
\end{align*}
\]

We want to find \(\eta \in K[[x]] \) and \(\tilde{L} = \sum_{j=0}^{n-2} y_j \sigma^j \) \((y_j \in K[[x]])\) such that

\[
(4.2)
L\dot{\eta} - H = (L - \tilde{L})(\dot{\eta} - \eta).
\]

The relation (4.2) is equivalent to the assertion that

\[
(4.2')
L\dot{\eta}(u) - H(u) = 0
\]

for all \(u \) belonging to a sufficiently large extension of \(K[[x]] \) such that

\[
(\dot{\eta} - \eta)(u) = 0.
\]

Therefore, (4.2) is equivalent to the assertion that

\[
(4.3)
L(u\eta) = H(u) \text{ for all such } u \text{ satisfying } \dot{\eta}(u) = u\eta.
\]

Observe that

\[
(\partial + \alpha_j + a_j)(uv) = u(\partial + (\alpha_j - \alpha_n) + (a_j - a_n) + \eta)(v),
\]

if \(\dot{\eta}(u) = u\eta \). Hence

\[
(4.4)
L(u\eta) = u(\partial + (\alpha_1 - \alpha_n) + (a_1 - a_n) + \eta) \cdots (\partial + (\alpha_{n-1} - \alpha_n) + (a_{n-1} - a_n) + \eta)(\eta),
\]

if \(\dot{\eta}(u) = u\eta \). We can write

\[
(4.4')
(\partial + (\alpha_1 - \alpha_n) + (a_1 - a_n) + \eta) \cdots (\partial + (\alpha_{n-1} - \alpha_n) + (a_{n-1} - a_n) + \eta)(\eta)
= (\partial + (\alpha_1 - \alpha_n) + (a_1 - a_n)) \cdots (\partial + (\alpha_{n-1} - \alpha_n) + (a_{n-1} - a_n))(\eta)
- F(x, \eta, \cdots, \sigma^{n-2} \eta),
\]

where \(F \) is a function of \(x, \eta, \cdots, \sigma^{n-2} \eta \).
where

\[\tilde{F} = \sum_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} \tilde{F}_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(x)^{\mu_0} \cdots \mu_{n-2} \in K[[x]][v_0, \ldots, v_{n-2}], \]

On the other hand, if \(u = \mu \), we have

\[\exists \nu = u(\alpha_n - \alpha_n + \eta), \quad \delta^2 u = u \{(-\alpha_n - \alpha_n + \eta)^2 + \delta(-\alpha_n - \alpha_n + \gamma)\}, \quad \text{etc.} \]

Hence, \(H(u) \) has the following form

\[(4.5) \quad H(u) = uF(x, \eta, \ldots, \delta^{n-2} \eta), \]

where

\[F = \sum_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} F_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(x)^{\mu_0} \cdots \mu_{n-2} \in K[[x]][v_0, \ldots, v_{n-2}], \]

\[F_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} \in K[[x]], \quad F^{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} = 0 \quad (\text{mod} \ x^k), \]

\[|F^{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(r)| < 4^{2} \quad \text{for} \quad 0 \leq r < r_0. \]

Thus, we derive from \((4.3) \) the equation for \(\eta \):

\[(\delta + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n)) \cdots (\delta + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n))(\eta) = F + \tilde{F}. \]

Set \(\eta = \pi w \), and \(\tilde{f}(x) = F_{\alpha=0}(x), \quad \tilde{H} = \sum_{j=0}^{n-2} b_j(x) \eta^j \), where

\[\sum_{j=0}^{n-2} b_j(x) v_j = \sum_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} F_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(x)^{\mu_0} \cdots \mu_{n-2}, \]

and

\[\tilde{G}(x, v_0, \ldots, v_{n-2}) = \sum_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}} \{F_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(x) + \tilde{F}_{\mu_0^{\cdot}\mu_2^{\cdot}\mu_{n-2}^{\cdot}}(x)\}^{\mu_0} \cdots \mu_{n-2}. \]

Then the equation for \(w \) is given by

\[(4.5) \quad (\delta + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n)) \cdots (\delta + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n))(w) = (1/\eta) \tilde{f} + \tilde{H}(w) + (1/\eta) \tilde{G}(x, \pi w, \pi^2 w, \ldots, \pi^{n-2} w) \]

Utilizing theorem 1 for \(n - 1 \), we find \(\tau_1, \ldots, \tau_{n-1} \in K[[x]] \) such that
\[\eta_j = 0 \pmod{x^2^k}, \quad |\int_0^t \eta_j(t) \, dt|_0 < |\eta| \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}, \]

and that
\[
\begin{align*}
& (\alpha + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n)) \cdots (\alpha + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n)) - \eta \\
& = (\alpha + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n) - \eta) \cdots (\alpha + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n) - \eta) - \eta_{n-1}.
\end{align*}
\]

Then, applying to (4.6) theorem 2 for \(n - 1 \), we find a unique solution \(w(x) \) such that
\[
\begin{align*}
& \begin{cases}
\psi = 0 \pmod{x^2^k}, \\
|\psi|_0(r) < 1 \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}.
\end{cases}
\end{align*}
\]

Thus, we constructed \(\eta \) so that (4.3) is satisfied and
\[
\begin{align*}
& \begin{cases}
\eta = 0 \pmod{x^2^k}, \\
|\eta|_0(r) < |\eta| \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}.
\end{cases}
\end{align*}
\]

To compute \(\tilde{L} \), we derive \(\tilde{L}(\xi - \eta) = H - L\eta \). Putting
\[
H - L\eta = \sum_{j=0}^{n-1} \hat{b}_j(x) \cdot b^j, \quad b_j \in K[[x]],
\]
we get
\[
\begin{align*}
& \begin{cases}
\hat{b}_j = 0 \pmod{x^2^k}, \\
|\hat{b}_j|_0(r) < |\eta| \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}.
\end{cases}
\end{align*}
\]

Furthermore,
\[
(4.3) \quad Y_{n-2} = \hat{b}_{n-1}, \quad Y_\mu = \hat{b}_{\mu+1} - \sum_{j=\mu+1}^{n-2} f_{j,\mu+1} Y_j, \quad \mu = 0, \ldots, n - 3,
\]
where \(f_{j,\mu} \in K[[x]] \), and
\[
|f_{j,\mu}|_0(r) \leq 1 \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}.
\]

Finally, applying to \(L - \tilde{L} \) theorem 1 for \(n - 1 \), and to \(\xi - \eta \) theorem 1 for \(n = 1 \), and utilizing the inequality \(\sigma_{n-1} < \sigma_1 \), we complete the proof.

5. Proof of theorem 2 for \(n \).

In this section, assuming theorem 1 for \(n \), and theorem 2 for \(n = 1 \), we shall prove theorem 2 for \(n \). Setting
\[
(5.1) \quad \psi_j = \sum_{\lambda=0}^j \psi_{\lambda} \quad \psi_j = \psi_{j-1} + \psi_j,
\]
we determine \(\psi_j \in K[[x]] \) by

\[
\tilde{\psi}_j = 0 \pmod{x^2^k}, \quad |\tilde{\psi}_j|_0(r) < |\psi| \quad \text{for} \quad 0 < r < r_0 (\sigma_{n-1} \tau_{n-1})^{2^{-k_0}}.
\]
(5.2) \((\alpha + \alpha_1 + a_1) \cdots (\alpha + \alpha_n + a_n) (\psi_j)\)

\[= f + \varrho(x, \psi_{j-1}, \partial \psi_{j-1}, \ldots, \partial^{n-1} \psi_{j-1}) + \sum_{i=0}^{n-1} G_{vi}(x, \psi_{j-1}, \ldots, \partial^{n-1} \psi_{j-1}) \partial^i \psi_j ,\]

where \(G_{vi} = \partial G/\partial v_1\). This means that the \(\phi_j\) are determined by linear differential equations:

(5.3) \(L_j(\phi_j) = f_j \quad (j = 0, 1, \ldots)\),

where

(5.4) \[
\begin{align*}
L_0 &= (\alpha + \alpha_1 + a_1) \cdots (\alpha + \alpha_n + a_n), \\
L_j &= L_0 - \sum_{i=0}^{n-1} G_{vi}(x, \psi_{j-1}, \ldots, \partial^{n-1} \psi_{j-1}) \partial^i (j \geq 1)
\end{align*}
\]

(5.5) \[
\begin{align*}
f_0 &= f \\
f_j &= G(x, \psi_{j-1}, \ldots, \partial^{n-1} \psi_{j-1}) - G(x, \psi_{j-2}, \ldots, \partial^{n-1} \psi_{j-2}) - \sum_{i=0}^{n-1} G_{vi}(x, \psi_{j-2}, \ldots, \partial^{n-1} \psi_{j-2}) \partial^i \psi_{j-1}, \quad (j \geq 1)
\end{align*}
\]

where \(\psi_j = 0\) if \(\lambda < 0\).

We want to construct the \(\phi_j\) so that

(5.6) \[
\begin{align*}
\phi_j &= \equiv 0 \quad (\bmod x^{k+j}) \\
|\phi_j|_0(r) &< 1 \quad \text{for} \quad 0 < r < r_0 \sigma \prod_{k=0}^{j-1} (\sigma_1 \cdots \sigma_n)^2(k+j) \delta
\end{align*}
\]

To do this, set

(5.7) \(L_j = L_{j-1} - H_j \quad (j \geq 1)\),

where by (5.4)

(5.8) \[
H_j = \sum_{i=0}^{n-1} G_{vi}(x, \psi_{j-1}, \ldots, \partial^{n-1} \psi_{j-1}) - G_{vi}(x, \psi_{j-2}, \ldots, \partial^{n-1} \psi_{j-2}) \partial^i \psi_{j-1}.
\]

Using an induction on \(j\), we can achieve a factorization of \(L_j\) into linear factors, by virtue of theorem 1 for \(n\), if

\(|x| < r_0 \prod_{k=0}^{j-1} (\sigma_1 \cdots \sigma_n)^2(k+j) \delta
\]

Then, by using theorem 2 for \(n = 1\) (n-times), we can achieve (5.6).
Thus, we get
\[|\psi_j|_0(r) < 1 \quad \text{for} \quad 0 \leq r < r_0 \tau_n^{-k_5}, \quad j = 0, 1, \ldots, \]
and \(\gamma_j \) converges \(x \)-adically to \(\gamma = \sum_{z=0}^{\infty} c_z \). Hence, by lemma 1 of section 1,
\[|\gamma|_0(r) < 1 \quad \text{for} \quad 0 \leq r < r_0 \tau_n^{-k_5}. \]

Finally, letting \(j \) tend to infinity on both sides of (5.2), we complete the proof.

Results for more general cases, applications, and treatments of systems of differential equations were given in SIBUYA–SPERBER ([3],[4]).

REFERENCES

