Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Stefann CaEnEpeEL

About p-adic interpolation of continuous and differentiable functions

Groupe de travail d'analyse ultramétrique, tome 9, $\mathrm{n}^{\circ} 2$ (1981-1982), exp. no 25, p. 1-8
http://www.numdam.org/item?id=GAU_1981-1982_9_2_A7_0

[^0]
ABOUT p-ADIC INTERFOLATION OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS by Stefaan CaEneperd (*)
 [University of Brussel]

0. Introduction.

In 1958, MAHLER proved that $\left.\left\{\begin{array}{l}\mathrm{X} \\ \mathrm{n}\end{array}\right) ; \mathrm{n} \in \underset{\sim}{\mathbb{N}}\right\}$ form a normal base for $\mathrm{C}\left(\underset{\sim}{\mathrm{Z}}, \mathrm{Q}_{\mathrm{p}}\right)$. Since then, a number of different proofs of this theorem were given (cf. [1], [2], [4], [5], [8]).

In section 1, we show that the method used by Yvette AMiICE [1] can be generalised to prove that $\left\{\left(\begin{array}{l}X_{n}\end{array}\right)^{s} ; n \in \underset{\sim}{\mathbb{N}}\right\}$ form a normal base, for each $s \in{\underset{\sim}{N}}^{*}$. This leads to a generalisation of Mahler's formula (1.2). It is a remarkable fact that some polynomials (e. g. x) get an infinite expansion. So the linear space spanned by the $\binom{x}{n}$ lays dense in $C\left(\underset{\sim}{z}, Q_{p}\right)$; however, it does not lay dense in $c^{1}(\underset{\sim}{z}, \xrightarrow[\sim]{\sim})$.

In section 2, we prove that there exist polynomials \tilde{R}_{n}, with $\operatorname{deg} \tilde{R}_{n}=2 n+1$, such that the polynomials $\gamma_{n}\binom{x}{n}$ together with the \tilde{R}_{n}^{n} form a normal base of $C^{1}\left(\underset{\sim}{z}, Q_{p}\right)$. A. close relation with Van der Put's base, consisting of locally constant and lncally linear functions should be noted.

1. Normal bases for $C(\underset{\sim}{Z}, \underbrace{a}_{-})$•
1.1 THEORE:. - For each $s \in \mathbb{N}^{*}, \quad\left\{q_{n}=\binom{x}{n}^{s} ; n \in \mathbb{N}\right\}$ form a normal base of $E=C\left(Z_{-p}, a_{p}\right)$.

Proof. - In view of [2] $\mathrm{n}^{\circ} 3.1 .5$, or [7] lemme 1, it is sufficient to prove that $\left\{\bar{q}_{n} ; n \in \underset{\sim}{\mathbb{N}}\right\}$ form a vectorial base of $E=C(\underset{\sim}{Z}, \underset{\sim}{F})$. Let \bar{E}_{h} be the space of ${ }_{\sim}^{\mathrm{F}}$-valued functions constant on each ball

$$
{\underset{p}{B^{\prime}}-\mathrm{h}}^{(a)}=\left\{x \in \underset{-p}{Z} ; \quad|x-a| \leqslant p^{-h}\right\} .
$$

Since $\bar{E}=U \bar{E}_{h}$, our proof will be finished if we con show that $\left\{\bar{q}_{i} ; i<p h\right.$ form a base of \bar{E}_{h}.

For $i<p^{h}$ and $|x-y|<p^{-h}$, we have

$$
\left|\binom{\mathrm{x}}{i}-\binom{\mathrm{y}}{i}\right|<1 \quad([2], 3.2 .2 .3),
$$

[^1]hence
\[

\left\lvert\,\left(\left.$$
\begin{array}{l}
x_{i}^{x} \\
)^{s}
\end{array}
$$-\binom{y}{i}^{s}\left|=\left|\binom{x}{i}-\binom{y}{i}\right|\right| \Sigma_{m=0}^{s-1}\binom{x}{i}^{m}\binom{y}{i}^{s-m-1} \right\rvert\,<1,\right.\right.
\]

so $\bar{q}_{i}(x)=\bar{q}_{i}(y)$. It follows that $\bar{q}_{i} \in \bar{E}_{h}$, and

$$
\bar{q}_{i}=\sum_{j=i}^{p^{h}-1} \bar{q}_{i}(j) \dot{x}_{j} \cdot
$$

So the transition matrix form $\left\{x_{j} ; i<p^{h}\right\}$ to $\left\{\bar{q}_{i} ; i<p^{h}\right\}$ is triangular ; the desired result follows.
 a uniformily convergent series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}^{(s)}\binom{x}{n}^{s}
$$

where

$$
a_{n}^{(s)}=\sum_{k=0}^{n}(-1)^{n-k}\left(\frac{n}{k}\right)^{s} \beta_{n-k}^{(s)} f(k)
$$

and

$$
\begin{aligned}
\beta_{0}^{(s)}=1, \quad \beta_{m}^{(s)}= & \sum_{\left(\Omega_{1} \cdots \ell_{r}\right)}(-1)^{r+m}\binom{m}{\sum_{1} \cdots \ell_{r}}^{s}, \\
& 1 \leqslant f_{i} \leqslant m
\end{aligned}
$$

Proof. - We have to calculate the interpolation coefficients $a_{n}^{(s)}$. They are determined by the formulas

$$
a_{n}^{(s)}=f(0), \quad e_{n}^{(s)}=f(n)-\sum_{i=0}^{n-1} a_{i}^{(s)} q_{i}(n) .
$$

We prove the formula using induction on n. Suppose true for $n \leqslant N$, then we have :

$$
\begin{aligned}
& a_{N+1}^{(s)}=f(N+1)-\sum_{n=0}^{N} a_{n}^{(s)}\binom{N+1}{n}^{s} \\
& =f(N+1)-\sum_{n=0}^{N} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}^{s} \beta_{n-k}^{(s)} f(k)\binom{\text { N }+1}{n}^{s} \\
& =f(N+1)-\sum_{k=0}^{N} \sum_{n=k}^{N}(-1)^{n-k} f(k) \sum_{i=1}^{r} \sum_{i=n-k}(-1)^{r+n-k}\binom{n-k}{\ell_{1} \cdots l_{r}}^{s}\binom{n}{k}\binom{s+1}{n}^{s} \\
& =f(N+1)+\sum_{k=0}^{N} f(k) \mathbb{E}_{n=k}^{N} \sum_{i=1}^{r} \sum_{i}=n-k i(-1)^{r+1} \frac{(N+1)!}{l_{1}!\cdots{ }_{r}!k!(N+1-n)!} .
\end{aligned}
$$

Putting $\ell_{r+1}=N+1-n$, we gat

$$
\begin{aligned}
a_{N+1}^{(s)}=f(N+1)+\sum_{k=0}^{N} f(k) & \sum_{i=1}^{r+1} \sum_{i}^{2}=N+1-k
\end{aligned}(-1)^{r+1}\left(\begin{array}{c}
N+1-k_{2} s \\
2_{1} \cdots 2_{r}\binom{N+1}{k}^{s} \\
\\
=f(N+1)+\sum_{k=0}^{N} f(k)(-1)^{N+1-k} \beta_{N+1-k}^{(s)}\binom{N+1}{k}^{s},
\end{array}\right.
$$

this finishes the proof.
1.3 Note. - We can write down explicit formulas for the $\beta_{m}^{(s)}$:
$\beta_{0}^{(s)}=\beta_{1}^{(s)}=1$,
$\beta_{2}^{(s)}=2^{5}-1$,
$\beta_{3}^{(s)}=6^{5}-2.3^{5}+1$,
$\beta_{4}^{(s)}=24^{5}-3.12^{5}+6^{5}+2.4^{5}-1$.
It is easy to tabulate the $\beta_{m}^{(s)}$:

m	1	2	3	4
0	1	1	1	1
1	1	1	1	1
2	1	3	7	15
3	1	19	163	1135
4	1	211	8993	271375

1.4 Note. - Comprang the case $s=1$ with Mahler's formula, we get the following arithmetic formula :

$$
\begin{aligned}
& \beta_{m}^{(1)}=\left(\sum_{\sum_{1} \cdots \ell_{r}}\right)(-1)^{r+m}\binom{m}{\ell_{1} \cdots \ell_{p}}=1 . \\
& \sum_{a_{i}}=m \\
& 1 \leqslant \nu_{i} \leqslant m
\end{aligned}
$$

1.5 Note (due to L. VAN HANIE). - One can determine the $\beta_{m}^{(s)}$ also, by using generating functions. One has the following identity between formal power series :

$$
\left(\sum_{n=0}^{\infty}(-1)^{n} a_{n} \frac{2^{n}}{(n!)^{s}}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} b_{n} \frac{Z^{n}}{(n!)^{s}}\right)=\sum_{n=0}^{\infty}(-1)^{n} C_{n} \frac{Z^{n}}{(n!)^{s}},
$$

if, and only if, $c_{n}=\sum_{k=0}^{n}\left(\frac{n}{n}\right)^{s} a_{k} b_{n-k}$. Put $b_{n}=1, c_{n}=f(n), a_{n}=a_{n}^{(s)}$.
Then it follows that

$$
f(n)=\sum_{k=0}^{n}\binom{n}{k}^{s} a_{k}
$$

if, and only if,

$$
\sum_{n=0}^{\infty}(-1)^{n} a(s) \frac{Z^{n}}{(n!)^{s}}=\left(\sum_{n=0}^{\infty} \frac{\beta_{n}^{(s)} Z^{n}}{(n!)^{s}}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} f(n) \frac{Z^{n}}{(n!)^{s}}\right)
$$

if, and only if,

$$
a_{n}^{(s)}=\sum_{k=0}^{n}\binom{n}{k}^{s}(-1)^{n-k} \beta_{n-k}^{(s)} f(k),
$$

where

$$
\sum_{n=0}^{\infty} \frac{\beta_{n}^{(s)} Z^{n}}{(n!)^{s}}=\frac{1}{\sum_{n=0}^{\infty}(-1)^{n} z^{n} /(n!)^{s}}
$$

this last condition determines the $\beta_{n}^{(s)}$.
1.6 Note. - Applying corollary 1.2, we can obtain a lot of p-adically convergent series, e. g.
$x=x^{2}-\frac{1}{2} x^{2}(x-1)^{2}+\frac{1}{3} x^{2}(x-1)^{2}(x-2)^{2}+\cdots$

$$
=x^{3}-\frac{3}{4} x^{3}(x-1)^{3}+\frac{23}{36} x^{3}(x-1)^{3}(x-2)^{3}+\ldots
$$

It is a remarkable fact that these series converge p-adically for each prime number p. Also note that derivation of the series yields an apparent contradiction after putting $x=0$; this shows that the series do no converge in $C^{1}\left(\underset{\sim}{z}, M_{p}^{0}\right)$-nom The same phenomenon happens with Van der Put's base. We return to this problem in section 2.
1.7 Note. - The proof of theorem 1.1 is merely based on the proof of Mahler's theorem as given in [2].

One could try to adapt the proof given by BOJANIC [4], MAHLER [5] or VAN ROO \dddot{Y} [8] to prove the thenrem; however, it seems that these kinds of argument do not work here.

We can generalise theorem 1.1 if we replace $\underset{-}{Z} \underset{\sim}{p}$ by regular compact part M of a locol field K and the interpolation sequence $\underset{\sim}{\mathbb{N}}$ by a very well distributed sequence $u: \underset{\sim}{N} \rightarrow M$. For more details abnut very well distributed sequences, we refer to the work of Yvette NICE [1]. We denote, following the notations in [1],

$$
P_{n}(x)=\left(x-u_{0}\right)\left(x-u_{1}\right) \ldots\left(x-u_{n-1}\right), \quad Q_{n}(x)=P_{n}(x) / P_{n}\left(u_{n}\right)
$$

Given $\alpha_{1}, \alpha_{2}, \ldots$ in K, with $\left|\alpha_{i}\right| \leqslant 1$ and $\sum_{i=1}^{\infty} \alpha_{i}=1$, we define $q_{n}=\sum_{i=1}^{\infty} \alpha_{i}{ }_{n}^{i_{n}}$. We omit the proof of the following theorem, since it is merely the same as the proof of theorem 1 in [1], up to one modification as in theorem 1.1.

1. 8 PROPOSITION. - If $u: N \rightarrow M$ is a very well distributed sequence in a regular compact part M of the local field K, and the q_{n} are defined as above, then $\left\{q_{n} ; n \in \mathbb{N}\right\}$ form a normal base of $C(M, K)$.
2. A normal base for $C^{1}(\underset{\sim}{z}, ~, ~ \underset{\sim}{\mathrm{p}})$.

For details about p-adic differentiability, we refer to [6]. Recall that a function $f: \underset{\sim}{Z} p \rightarrow \underset{\sim}{n} p$ is called C^{1} (or continuously differentiable) it the difference quntient $\Phi_{1} f$ defined by

$$
\underline{\Phi}_{1} f(x, y)=(f(x)-f(y)) /(x-y)
$$

can be extended to a continuous function $\Phi_{1} f$ on Z_{-p}^{2}. The space of C^{1}-functions becomes the Banachspace $C^{1}=C^{1}\left(\underset{\sim}{Z} p,{\underset{\sim}{Q}}_{\underset{p}{*})}^{1}\right.$ under the norm

$$
\|f\|_{1}=\max \left\{|f(0)|, \quad \sup \left\{\left|\Phi_{1} f(x, y)\right| ; \quad x \neq y\right\}\right.
$$

It is known ([3], [6], [9]) that the following sets form normal bases for C^{1} :

$$
\begin{aligned}
& \left\{\gamma_{n}\binom{x}{n} ; n \in \underset{\sim}{N}\right\} \quad \text { (Mahler's base) } \\
& \left\{\gamma_{n} x_{n}(x) ; n \in \mathbb{N}\right\} \cup\left\{x_{n}(x)(x-n) ; n \in \underset{\sim}{\mathbb{N}}\right\} \quad \text { (Van der Put's bases). }
\end{aligned}
$$

We remind of the fact that γ_{n} is defined by
$\gamma_{0}=1$
$\gamma_{n}=a_{s} p^{s}$ if $n=a_{s} p^{s}+a_{s-1} p^{s-1}+\ldots+a_{0}, a_{s} \neq 0$.
So $v\left(\gamma_{n}\right)=s$, and $\left|\gamma_{n}\right|^{-1}=\max \left\{|m|^{-1} ; \quad 0<m \leqslant n\right\}$.
x_{n} is the characteristic function of $\left\{x ;|x-n|<\left|\gamma_{n}\right|\right\}$.
Define $R_{n}=\gamma_{n}\left(\begin{array}{l}x_{n}\end{array}\right)^{2}$; it will then follow from lemma 2.2 that $\left\|R_{n}\right\|_{1}=1$; however, the R_{n} do not form a base for C^{1}, as we allready know from 1.6. Can we choose polynomials \tilde{R}_{n} such that deg $\tilde{R}_{n}=2 n+1$ and the $R_{n-1} \tilde{R}_{n}$ form a normal base for C^{1} ? Inspired by Van der Put's base, we could try $\tilde{\tilde{R}}_{n} \sim R_{n}(x-n)$.

After normalisation, we get $\tilde{R}_{n}=\gamma_{n+1}\binom{x}{n}\binom{x}{n}$. Unfortunately, it turns out that $\left\{R_{n}, \tilde{R}_{n} ; n \in \mathbb{N}\right\}$ are nnt orthogonal in C. This comes from the fact that

$$
\left|\tilde{R}_{n}^{\prime}(n)\right|=\left|\frac{Y_{n+1}}{n+1}\right|<1 \quad \text { for some } n
$$

An answer to our question is furnished by following theorem.
2.1 THEOREM. - Let

$$
R_{n}=\gamma_{n}\binom{x}{n}^{2}
$$

$$
\tilde{R}_{n}=\gamma_{n+1}\binom{x}{n}\binom{x-\left(n+1-\gamma_{n+1}\right)}{\gamma_{n+1}}\left(\begin{array}{l}
x+1-\gamma_{n+1} \\
n+1-\gamma_{n+1}
\end{array}\right.
$$

then $\left\{R_{n} ; \tilde{R}_{n} ; n \in \underset{\sim}{\mathbb{N}}\right\}$ form a normal base for $C^{1}\left(\underset{\sim}{Z}, Q_{p}\right)$.
Note that for $n=a_{s} p^{s}-1,0<a_{s}<p, \tilde{R}_{n}=\gamma_{n+1}\binom{x}{n}\binom{x}{n+1}$. We need some lemmas.
2.2 LEMNA. $\left\|R_{n}\right\|_{1}=\left\|\tilde{R}_{n}\right\|_{1}=1$.

Proof. - For all $x \neq y$, we have

$$
\left|\frac{R_{n}(x)-R_{n}(y)}{x-y}\right| \leqslant \frac{\left|\gamma_{n}\right|}{|x-y|}\left|\binom{x_{n}}{n}-\binom{y}{n}\right| \quad \max \left(\left|\binom{x}{n}\right|,\left|\binom{y}{n}\right|\right) \leqslant 1
$$

because $\left\|\gamma_{n}\left(\begin{array}{l}x_{n}\end{array}\right)\right\|_{1}=1$ and $\|\left(\begin{array}{l}x_{n} \\ n\end{array} \|=1\right.$.
Furthermore

$$
\left|\frac{R_{n}(n)-R_{n}\left(n-\gamma_{n}\right)}{n-\gamma_{n}}\right|=1
$$

In quite a similar way, we prove that $\left\|\widetilde{R}_{n}\right\|_{1} \leqslant 1$; finally

$$
\left\|\tilde{R}_{n}\right\|_{1} \geqslant\left|R_{n}^{\prime}(n)\right|=\left|\frac{\gamma_{n+1}}{\gamma_{n+1}}\right|=1 .
$$

2.3 LENMA. - If $0 \leqslant m<n$, then $\left|\tilde{R}_{n}^{\prime}(m)\right|<1$.

Proof.

$$
\tilde{R}_{n}^{\prime}(m)=\left.\gamma_{n+1} \frac{d}{d x}\binom{x}{n}\right|_{x=m}\binom{m-\left(n+1-\gamma_{n+1}\right)}{(n+1)-\left(n+1-\gamma_{n+1}\right.}\binom{m-\left(\gamma_{n+1}-1\right)}{n+1-\gamma_{n+1}}
$$

If $m \geqslant n+1-\gamma_{n+1}$, then $\tilde{R}_{n}(m)=0$. Suppose $m<n+1-\gamma_{n+1}$. If $\left|\gamma_{n+1}\right|<\left|\gamma_{n}\right|$, the result follows easily from the fact that $\left\|\binom{n+1}{n}\right\|_{1}=\left|\gamma_{n}\right|^{-1}$. So we can suppose that $\gamma_{n}=\gamma_{n+1}=a_{s} p^{s}$.

We introduce the notation

$$
\operatorname{Schiff}\left(a_{s} p^{s}+a_{s-1} p^{s-1}+\cdots+a_{0}\right)=a_{s}+a_{s-1}+\cdots+a_{0}
$$

We remind of the fact that
Schiff $m+\operatorname{Schiff}(n-m-1)+1-\operatorname{Schiff} n \leqslant(p-1) v\left(\gamma_{n}\right)$, for $0 \leqslant m<n$. This follows from the fact that $\left\|\binom{\mathrm{x}}{\mathrm{n}}\right\|_{1}=1$, but it can also be proved directly. Now, let $n=a_{s} p^{s}+\ldots+a_{0}$, then $m<a_{s-1} p^{s-1}+\ldots+a_{0}$, and $n-m-1 \geqslant a_{s} p^{s}$. We have
$v\left(\left|\frac{d}{d x}\binom{x}{n}\right|_{x=m}\right)=v\left(\frac{m!(n-m-1)!}{n!}\right)$

$$
\begin{array}{r}
=(p-1)^{-1}(\operatorname{Schiff}(n)-\operatorname{Schiff}(m)-\operatorname{Schiff}(n-m-1)+1) \\
=(p-1)^{-1}\left(a_{s}+\operatorname{Schiff}\left(n-a_{s} p^{s}\right)-\operatorname{Schiff}(m)-\operatorname{Schiff}\left(n-m-1-a_{s} p^{s}\right)-a_{s}+1\right) \\
\geqslant-v\left(\gamma_{n}-a_{s} p^{s}\right)>-v\left(\gamma_{n}\right)
\end{array}
$$

hence

$$
\left|\frac{d}{d x}\binom{x}{n}\right|_{x=m}<\frac{1}{\mid \gamma_{n}}\left|=\frac{1}{T Y_{n+1}}\right| ;
$$

the result follows.
Proof of theorem 2.1. *The polynomials form a dense subspace of C^{1} (cf. Mahler's base). Since the R_{n} and \tilde{R}_{n} generate the polynomials, it only remains to show that $\left\{R_{n}, \tilde{R}_{n} ; n \in \mathbb{N}\right\}$ form an orthogonal system.

Using [8], 5.1. (ϵ), it is sufficient to show that for each $m \in \mathbb{N}$:
R_{n} is orthogonal to the linear hull of $\left\{\tilde{R}_{n}, R_{n+1}, \tilde{R}_{n+1}, \ldots\right\}$
\tilde{R}_{n} is orthogonal to the linear hull of $\left\{R_{n+1}, \tilde{R}_{n+1}, R_{n+2}, \cdots\right\}$.
This follows from the fact that for $\varepsilon \perp \alpha_{j} \beta_{j} \in K$, we have

$$
\begin{aligned}
\| R_{n}-\sum_{j>n}^{\prime} \alpha_{j} R_{j} & -\sum_{j \geqslant n} \beta_{j} \tilde{R}_{j} \|_{1} \\
& \geqslant\left|\Phi_{1}\left(R_{n}-\sum_{j>n}^{\prime} \alpha_{j} R_{j}-\sum_{j \geqslant n}^{\prime} \beta_{j} \tilde{R}_{j}\right)\left(n, n-\gamma_{n}\right)\right|=1=\left\|R_{n}\right\|_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
\| \tilde{R}_{n}-\sum_{j>n}^{\prime} \alpha_{j} R_{j} & -\sum_{j>n}^{\prime} \beta_{j} \tilde{R}_{j} \|_{1} \\
& >\left|\tilde{R}_{n}^{\prime}(n)-\sum_{j>n}^{\prime} \alpha_{j} R_{j}^{\prime}(n)-\sum_{j>n}^{\prime} \beta_{j} \tilde{R}_{j}^{\prime}(n)\right|=\left|\tilde{R}_{n}^{\prime}(n)\right|=1=\left\|\tilde{R}_{n}\right\|_{1},
\end{aligned}
$$

using the fact that $R_{j}^{\prime}(n)=0$,

$$
\mid R_{j}^{\prime}(n)<1 \text { for } j>n
$$

2.4 Note. - Ou: proof is merely inspired by Van Roö̈'s proof of Mahler's theorem ([8], 5.27). It is also possible to give a proof using the residue class space (as in 1.1), which is, however, considerably longer.
[1] AMICE (Y.). - Interpolation p-adique, Bull. Soc. math. France, t. 92, 1964, p. 119-180.
[2] AMICE (Y.). - Les nombres p-adiques. - Paris, Presses universitaires de France, 1975 (Collection SUP, ":" ョ Mathématicien", 14).
[3] BARSKY (D.). - Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. math. France, t. 101, 1973, p. 397-411.
[4] BOJANIC (R.). - A simple proof of Mahler's theorem on approximation of continuous functions of a p-adic variable by polynomials, J. of Namber Theory, t. 6, 1974, p. 412-415.
[5] MAHLER (K.). - An interpolation series for continuous functions of a p-adic variable, J. für reine und angew. Math., t. 199, 1958, p. 23-34.
[6] SCHIKHOF (W. H.). - Non-archimedean calculus. - Nijmegen Katholiche Universitet, Nathematisch Institut, 1978 (Lecture Notes Report, 7812).
[7] SERRE (J.-P.). - Endomorphismes complètement continus des espaces de Banach p-adiques. - Paris, Presses universitaires de France, 1962 (Institut des hautes Etudes scientifiques. Publications mathématiques, 12, p. 69-85).
[8] VAN ROOIJ (1. C. M.). - Non archimedean functional analysis. - New York and Basel, M. Dekker, 1978 (Pure and applied Matheaatics, Dekker, 51).
[9] WEISMAN (C.). - On p-adic differentiability, J. of Number Theory, t. 9, 1977, p. 79-86.

[^0]: © Groupe de travail d'analyse ultramétrique
 (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
 L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: Texte reçu le 30 juin 1982.
 Stefaan CAENEPEEL, Vsije Universiteit Brussel, 2 Pleinlaan, B-1050 BRUSSEL
 (Belgique)

