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ABOUT p-ADIC INTERPOLATION OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

by Stefaan CAENEPEEL

[University of Brussel]
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(Y. AMICE, G. P. ROBBA)
9e année, 1981/82, n° 25, 8 po 17 mai 1982

o. Introduction.

In 1958, proved n E N} form a normal base for C ( Z , Q ) .
n -- -p --IJ

Since then, a number of different proofs of this theorem were given (cf. [1], [2J,
[4J, [5J, [8J).

In section 1, we show that the method used by Yvette AMICE [1] can be generali--
sed to prove that [() ; n E N} form a normal base, for each s This

leads to a generalisation o f Mahler’s formula (1.2). It i s a rema,rkable fact that

some.. polynomials ( e. g. x ) get an infinite expansion. So the linear space spanned

by the (x) 2 la Y s dense in C(Z , Q ) ; . however, it does not lay dense in
1 

n p -"P
c (Z , Q) .

-P ~p
- 

N

In section 2, we prove that there exist polynomials R , with deg n = 2n + 1 ,
N n

such that the polynomials Y 
n (X)2 together with the R 

n 
form a normal base of

C1 (Z , Q) . A close relation with van der Put’s base, consisting of locally cons-

tant and locally linear functions should be noted.

1. Normal. bases for C( Z , Q ) .
~p’ ~p

1. 1 THEOREM.- For each s [a .= (x) s s ° n form a normal base of
- - "1l n ---

Proof. - In view n° 3. 1. 5, or [7] lemme 1, it is sufficient to prove that

{qn ; n ~ N} form a vectorial base of E = C( Z , F ) . Let Eh be the space of

F -valued functions constant on each ball

Since Ë = U K. our proof will be finished if we can show that {~; i  ph]
form a base of Ëh.
For i  p 

h 
and I x - y I p" ~ we have

F) Texte reçu I e 30 j uin 1982.
Stefaan GAENEPEEL, Vsije Universiteit Brussel, 2 Pleinlaan, &#x26;.1050 BRUSSEL
(Belgique)
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hence

so ~.(x) ==~.(y) . It follows that ~ E ~ , and

So the transition matrix form (x. ; i  ph} to i  ph} is triangular ;
the desired result follows.

1.2 COROLLARY. - Let s e N . Each continuous f : Z --&#x3E; Q can be written as

a uniformily convergent series

where

and

Proof. - We have to calculate the interpolation coefficients a (s) . They are de-

termined by the formulas

We prove the formula using induction on n. Suppose true for n ~ 1BJ , then we

have : ,

1 - n , we got
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this finishes the proof.

1.3 Note. - We can write down explicit formulas for the [:3(S) : :

It is easy to tabulate 
m

1.4 Note. - Comparing the case s = 1 with Mahler’s formula, we get the following
arithmetic formula : 

,

1.5 Note (due to L. VAN Ht-’B1v1NE). - One can determine the 03B2m(s) also, by using ge-

nerating functions. One has the following identity between formal power series :

Then it follows that
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if, and only if,

if, and only if,

where

this last condition determines the hls ast condltloll deter the Sn .

1.6 Note. - Applying corollary 1. 2, we can obtain a lot o f p-adically convergent

series, e. g.

’ 

It is a remarkable fact that these series converge p-adically for each prime num-

ber p . Also note that of the series yields an apparent cnntradiction

after putting x = 0 ; this shows that the series do no converge in Ci ( Z 
The same phenomenon happens with Van der Put’ s base. return to this problem in

section 2.

1.7 Note. - The proof of theorem 1.1 is merely based on the proof of Mahler’s
theorem as given 

One could try to adapt the proof given by BOJANIC [4J, MAHLER [5] or VAN ROOY [8J
to prove the theorem; however, it seems that these kinds of argument do not work

here.

We can generalise theorem if we replace Z by regular compact part M of a

local field I{ and the interpolation sequence 11 by s1 very well distributed

sequence u : N -&#x3E; . For more details about very well distributed sequences, we

refer to the work of Yvette AMICE [1], We denote, following the notations 

... ~~ ~ ~n-1~ ’ i1~~~ ~ 

Given 03B11,03B12, ... in 1(, with 0153. = 1 , we define

We omit the proof of the following theorem, since it is merely the

same as the proof of theorem 1 in [1], up to one modification as in theorem 1.1.
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1. $ PROPOSITION.- If u : N --.&#x3E; M is a very well distributed sequence in a
regular compact part M nf the local field K , and the qn are defined as above,

.~.~......~.._

then { ; n E ’N} form a normal base cf C(M, K) .
- gn -

2. A normal base fir C1(Z. ) ,
For dets.ils about p-ada.c differentiability, we refer to [ 6]. Recall that a func-

tion f a Z 
p 

--&#x3E; Q is called C1 or continuously differentiable it the dif-
ference quotient 03A61 f defined by

can be extended to a continuous function ?l f on Z2. The space of C1-functions
becomes the Benachspace C = C (Z , Q) under the ~P norm

-- --p

It is known ([3], [6], [9]) that the following sets form normal bases for C1 :

We remind of the fact that ’Yn is defined by

Xn is the characteristic function of {x; I x - nl  I Ynl} .
Define Rn (xn) 2 ; it will then follow from lemma 2.2 that ~Rn~1 = 1 ; however,

bhe R 
n 

do not form a base for C , as we allready know from 1.6. Can we choose

polynomials R such that deg R = 2n + 1 and the R 1 R form a normal base’ 

1 
n n n

Ebr C ? Inspired by Van der Put’s base, we could try R 
n 

--- R n (x - n) .
After normalisation, we get R 

n 
= y n+ 1 (x) n ( 

n + x I 1) . Unfortunately, it turns out

that {R , R ; n E N} are not orthogonal in C . This comes from the fact that

An answer to our question is furnished by following theorem.

2.1 THEOREM. - Let
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then (R ; R : n e N) form a normal base for C(Z . Q) .’n’n2014 "~ "P

Note that for n=a~p~ -1 ~ 0a~p~ R~= (~) (~~) ’ We need
some lemmas.

2.2 LEMMA. -

Proof. -For all we have

because

Furthermore

In quite a similar we prove that 1 ; finally

2. 3 LEMMA. - If 0 § m  n , then I R~ (m) I  1 .

Proof.

If 1-y ~ then =0. Suppose m  n + 1 -y .. If

J I  )y j ~ the re sult follows easily from the fact that 1 
= * ~

we can suppose that =y == a p .

We introduce the notation

Schiff(as ps + ps-1 + ... + ao) == as + + ... + ao.

We remind of the fact that

Schiff m + Schiff(n - m - l) + 1 - Schiff n  (p - l) v(03B3n), for 0  m  n .

This follows from the fact that ’j)(~)~ i == 1 ~ but it can also be proved directly.

let n= a p~+ ... + then + ... + and 

We have
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hence

the result follows.
Proof of theorem 2. I. - The polynomials form a dense subspace of Cl (cf. lv1ahler’s

base). Since the R and R generate the polynomials, it only remains to show
_ 

n n

that (R , R ; n E N) form an orthogonal system
n n --

Using [8J, 5. I. (8), it is sufficient to show that for each m G N :

R is orthogonal to the linear hull of [a , R 1, R 1, ...}
n n n+ n+

is orthogonal to the linear hull of [R n+ 1, R. n+ 1, R n+ 2’ ...} .

This follows from the fact that for all cv . 03B2j E K , we have
J J

and

using the fact that = 0 ,

2.4 Note. - Ouy proof is merely inspired by Van Rooy’s proof of Mahler’s theorem

([8J, 5.27). It is also possible to give a proof using the residue class space (as

in 1. I ) j which is, however, considerably longer.
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