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Introduction. - The purpose of this paper is to collect the results on non-archimedean

nuclear spaces which are up to now scattered over différent articles under différent

names.

We also (§ 1 and ~ 2) state all the properties on compactoid sets and compactoid

linear mappings needed for the study of non-archimiedean nuclearity.

The following notations are used :

K is a complete non-archimedean (n. a. ) field with a non-trivial valuation.

If E is a locally K-convex space, then we denote by liE a fundamental system

of K-convex closed zero-neighbourhoods of 0 in E ~ and by f E the corresponding

set of n. a. semi-norms on E .

We always assume that E is Hausdorff.

For all the other basic notions appearing in this paper without reference, we

refer to [15].

1. Compactoid sets and c-compact sets

1,1. Definition. - Let E be a locally K-convex space. A subset A of E is

called compactoid if

U E S cE, S finite, such that A C C(S) + U ,

where C(S) is the K-convex hull of S .

1.2. Properties of compactoid sets.

(i) If A is compactoid and B ci A y then B is compactoid.

(ii) If A and B are cnapactoid, then A + B is compactoid.

(iii) A compactoid set is bounded.

(iv) If A. c E., I , then A. is conpactoid in E., V i e I if, and

only if, n. 1 EI A. 1 is compactoid in *

(*) Nicole DE Department Vrije Universiteit Brussel,
2 Pleinlaan F-7, B-1050 BRUSSEL (Belgique).
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(v) Let F be a subspace of E and Then A is compactoid in F if,
and only i f, A is compactoid in E.

(vi) Let X c K and C(X) , B Lx. the n. a. Banach space of the continuous 

tions from X to K . If A c C(X) is equicontinuous and pointwise bounded, then

A i s compactoid in C(X) , * ’; ’ .’.) ’ t oo .
(vii) Let A c E be compactnid and complete, and let C1 be a locally K-convex

topology which is coarser than the topology C on E . on A.

(viii) Let 15 ~ F be locally K-convex spaces and f : E 2014&#x3E; F a continuous

linear map. If A ~ E is compactoid, then f(A) is compactoid in F.

(ix) Let E , F be locally K-convex and (f ) an equicontinuous sequence of

linear maps from E to F y converging pointwise to f . If A is compactoid in

E then (f ) converges to f uniformly on A .

(x) If the unit ball of a n. a. Banach space E is compactnid, then dim 35  ce .

(xi) Every compactoid subset of a n. a. Banach space is of countable type.

Proof.

- (i) ~ (ii) , (iii) and (viii) follow immediately from the definition.

- (iv), (v) and (vi) are proved in [7~.
- (vii) is proved in [ 8].
- For (ix), see [2].
- For (x) and (xi) , see [ 14].

1. 3. Définition. - A subset A of a locally K-convex space E is called c-

compact if every K-convex filter (i. e. a filter generated by sets x + B ,
B = K-convex) on A has a cluster point on A .

1.4. Remark. - If K is not locally c-compact there are in E no non-trivial

K-convex, c-comp act sets.

The following are équivalent (see [ 15]) : :

(i) K is locally c- comp act.

(ii) K is c-compact.

(iii) K is maximally complete.

1. 5. PROPOSITION (see [ 1 ]). - j_f K is maximally complète then every weakly o-

compact subset of a locally K-convex space E is c-compact.

1. 6. Relation to compactoid If K is maximally complete and A

is a K-convex, bounded subset of a locally K-convex space E, then A is c-

compact if, and only if, fi is compactoid and complete.
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2. Compactoid o erators.

2.1. Définition. - Let E and F be locally K-convex spaces. A linear mapping
f : E --~ F is called compactoid if there exists a zero-neighbourhood U e ~
such that f(U) is compactoid in F . (If E is a n. a. Banach space then one can

take U = unit ball o f E ).

2.2. Général properties.

(i) Every compactoid mapping is continuous, (see [3]).

(ii) If f : E -&#x3E; F is compactoid, and B is bounded in E, then f ( B) io

compactoid in F, (see [3]).

(iii) If f is a linear mapping from E into a n. a. Banach space F j, then f

is compactoid if, and only if, f factors through c0 as f = h. g with

g : E --&#x3E; co compactoid, 

2.3. Properties of compactoid maps between n. a. Banach spaces.

(i) The compactoid operators form an operator idéal which is injective and surjec-
tive. (For the definitions, see [l2]. The proof follows immediately from properties
of compactoid sets (see $ 1) . )

(ii) If f : E --&#x3E; F is compactoid, then so is its transpose f : F’ -&#x3E; E’ ,

(iii) f : E 2014&#x3E; F is compactoid if, and only if, it can be written as

with

2.4. Remark. - The characterization stated in (iii) shows that the compactoid li-

near mappings are in fact the n. a. équivalent of the classical nuclear operators.
Therefore the n. a. operators are often called nuclear as well.

3. The définition of a non-archimedean nuclear space.

3.1. Definition. - A locally K-convex space E ~ is called nuclear if for

each there exists a V E il such that the canonical mapping

(p , : EV --.-~ Eu is compactoid (or (The notations have the same meaning
as in the classical theory.)

The définition is independent of the choice of UE .
3.2. Remark. - Nuclear locally K-convex spaces, in this sense, have first been

studied in [ 3] and [51 for K maximally complète. In these papers, they are called

Schwartz-spaces (because of the équivalence between nuclear and compactoid mapping
in n. a. analysis).

However many properties proved there valid when K is not maximally complete
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The properties which depend on the maximal completeness of K are mentioned as

such in § 5 .

Va use the term "nuclear" to point oui that we deal with an arbitrary K .

3.3. Remark. - In the classical theory the définition of a nuclear space is equi-

valent to the following :
" E is nuelear if for every locally convex space F the n-topology and the

e-topology on F coincide"

It is proved in [ 13j that, when K is maximally complete, every locally K-convex

space E has this property.

That is the reason why we prefer ta work with définition 3.3.

4. Examples of non-archimedesn nuclear s aces.

4.1. Non-archimedean Kothe spaces.

4.1.1. Definition. - Let B = be an infinite matrix consisting of strictly

positive real numbers bf with 
n

, , ~

The n. a. Kôthe space K(B) , associated with B, is defined by

equipped with the séquence of norms :

4.1.2. PROPOSITION ( see [2] and [O]).

(i) K(B) is a perfect n. a. Frëchet séquence space in which thé coordinate vec-

tors (e ) form a Schauder basis.

(il) Thé Köthe dual space of K(B) can be identified with thé topological
dual space K(B) .

(iii) Thé topology on K(B) is thé normal topology n(K(B) , K(B)x) of thé dual

pair (K(B) , K(B)") .

4.1.3. PROPOSITION ( see [6]). - Thé space K(B) is nuclear if, and only if,

4.1.4. Examples. - Let a = (a ) be a non-decreasing séquence of positive real

numbers with lim a == es .

~ 

n n 
m

Then the Köthe séquence spaces = and Al (a) = K(B2) are nuclear.



J4-05

4.2. Non-archimedean Fréchet spaces with a Schauder basis.

4.2.1. PROPOSITION (see [4]). - Let E, be a n. a. Fréchet space with a
Schauder basis (x ) . Then there exists on E an équivalent séquence of semi-norms
(Pk") such that, ~ x E E, x = )" ar x : == max t P..
k 2014«tt-~t~2014t2014~*-~’2014tt j’y n n ~ n n ~

4.2.2* PROPOSITION (see [6]). - Every n. a. countably normed Fréchet space E with

a Schauder basis (x ) can be identified with a n. a. Köthe space. Let * (P*k) be

thé séquence (of norms) coming out of 4.2.1 then E = K(B) with B = (P*k(xn)) .
4. 2. 3. 

(i) The space of the entire fonctions f : K -2014~&#x3E; K ~

with norms

as well as the space A , of functions f : K 2014&#x3E; K ~ which are analytic on the

unit ball of K,

have the Schauder basis 1, x , ... , é , ...

They are nuclear by 4.1.4. (take a n = n ).

with = maxn |a has the Schauder basis 1 y z , z -1 , z , 2 
It follows from 4.2.2 and 4.1. 3 that is nuclear.

4. 3. PROPOSITION (see [6]). - Every locally K-convex space E is nuclear for the

weak topology

4.4. The space 

4.4.1. Definition (see [9]). - Let X be a non-empty subset of K y without iso-

lated points. For n  1 , let

X2 ’ ... , xi ~ x, j]( .

For f : X 2014&#x3E; K çP+ 1 X 2014&#x3E; K by induction as follows :

to f = f for 1 ,

f is called the n-th différence quotient of f ).
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The function f’ is said ta be n times continuously differentiable, f E 

if the function 03A6 ( r) can be extended ta a continuous function 03A6 f on Xn+1.
n n 

.

The space CeDeX) is then defined by = 

1 2nJ n:= , , J~* **

For f E cfl(X) and B ~ X , B compact, let

and

On C~(X) 3L locally K-convex topology is then defined ty thé fandly of M. a*

semi-norms :

4.4.2. PROPOSITION (see [7]). - The locally K-convex space C~(X) is nuclear.

5. Pro erties of non-archimedean nuclear spaces.

5.1. PROPOSITION. - Every bounded subset of a n. a. nuclear space is compactoid.

Sket ch o f proof. - Let be bounded and t ake U E UE . Then take V E 

V  U as given by the nuclearity.

Now o is compactoid in Eu .

xl ’ ... , xn E Eu such that

It then follows that

5.2. COROLLARY. - If E is a n. a. normed space which is nuclear then dim E  Q:) .

(From 5.1 and § 1, 1.2 (x)).

5.3. PROPOSITION (see [3]). - If E is nuclear and F is any n. a~ Banach space
then every continuous linear map from E to F is compactoid.

5.4. PROPOSITION (see [5]). - A locally K-convex space E is nuclear if, and

only if,

(i) E is a subset of some power c6 of and

(ii) Every continuous linear map from Co is compactoid.

5.5. COROLLARY. - Every n. a. nuclear Fréchet of countable type.

5.6. PROPOSITION (see [ 3]). - Let K be maximally complete. Then a locally K-

convex space is nuclear if, and only if, it is semi-reflexive and quasi-normable.
( E is quasi-normable if for every K-convex equicontinuous subset b.. of E’ there
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exists a K-convex equicontinuous set D ~ A such that on A the topologies induced

by E) and coincide.)

5.7. Stability properties for n. a. nuclear spaces.

(i) A locally K-convex space E is nuclear if, and only if, its completion E

is nuclear.

(ii) Every subspace of a n. a. nuclear space is a n. a. nuclear space.

(iii) Every quotient, by a closed subspace, of a n. a. nuclear space is a n. a.

nuclear space.

(iv) Every product of n. a. nuclear spaces is n. a. nuclear.

( The proof is exactly the same as in the classical case. It is a conséquence of

~ 2, 2.3 (i).) (See e. g. [l2].)

5. 8. Remark. - In [ 11], an example is given of a space in vrhich every bounded

subset is preconpact but which is not a Schwartz-space. The same exanple, with

obvious modifications, gives a n. a. space in which every bounded subset is compac-

toid but which is not n. a. nuclear.

6. Nucl e arit of the dual s ace.

6.1. PROPOSITION (see [6]). - Let K(B) be a. Köthe shace. Then its topo-
logical dual space is a n. a. nuclear space for the normal topology
n(K(B)" , y K(B)) .

6.2. PROPOSITION (see [6]). - Suppose X is maximally complete. Then the dual

1£( B) x of a n. a. Köthe space is a n. a. nuclear space for the Mackey to:polo-

gy 03C4(K(B)x , K(B)) .

6. 3. PROPOSITION (see [3]). - Suppose K is maximally complete. Then the strong
dual E’ , E) of a n. a. nuclear Fréchet space is again a n. a. nuclear
space.
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