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NON-ARCHIMEDEAN NUCLEARITY

by Nicole DE GRANDE - DE KIMPE (')

[Veije Universiteit Brussel]

Introduction. - The purpose of this paper is to collect the results on non-archimedeen
nuclear spaces which are up to now scattered over different articles under different

namese.

We 2lso (§ 1 and ¢ 2) state all the properties on compactoid sets and compactoid

linear mappings needed for the study of non-archimiedean nuclearity.

The following notations are used :

K is a complete non-archimedean (n. a.) field with a non-trivial valuation.

If E is a locally K-convex space, then we denote by ‘U.E a fundamental system
of K-convex closed zero-neighbourhoods of O in E , and by @E the corresponding

set of n. a. semi-norms on E .
We always assume that E is Hausdorff.

For all the other basic notions appearing in this paper without reference, we
refer to [15].

l. Compactoid sets and c-compact sets

lele Definition. — Let E be a locally K-convex space. A subset A of E is
called compactoid if

vUeU,, 28<E, S finite, such that AC c(s) + U,
where C(S) is the K-convex hull of S .

1.2. Properties of compactoid sets.

(i) If A is vompactoid and B < A, then B is compactoid.
(ii) If A and B are compactoid, then A + B is compactoid.
(iii) A compactoid set is bounded.

(iv) 1If AiCEi’ ¥ 1iel, then Ai is compactoid in Ei’ ¥iel if, and

only if, niEI A; is compactoid in nieI E, .
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(v) Let F be a subspace of E and A< F. Then A is compactoid in F if,
and only if, A is compactoid in E .

(vi) Let X< K and C(X) , H.Hm the n. a. Banach space of the continuous func-
tions from X to XK . If A< C(X) is equicontinuous and pointwise bounded, then
A is compactoid in C(X) , i|.}|_ .

(vii) Let A< E be compactnid and complete, and let G, be a locally K-convex
topology which is coarser than the topology 7 on E . Then Cl =G on A,

(viii) Let E, F be locally K-convex spaces and f : E —> F a continuous
linear map. If A< E is compactoid, then f(A) is compactoid in F .

(ix) Let E, F be locally K-convex and (fh) an equicontinuous sequence of
linear maps from E to F , converging pointwise to f . If A is compactoid in

E then (fn) converges to f uniformly on A .
(x) If the unit ball of a n. a. Banach space E is compactnid, then dimE < = .

(xi) Every compactoid subset of a n. a. Banach space is of countable type.

Proof.

(1), (ii), (iii) and (viii) follow immediately from the definition.

(iv), (v) and (vi) ere proved in [7].

(vii) is proved in [ 8].
For (ix), see [2].
For (x) and (xi), see [14].

1,3. Definition. —= L subset A of a locally K-convex space E is called c-
compact if every K-convex filter (i. e. a filter generated by sets x + B,

B = K-convex) on A has a cluster point on 4 .

1.4, Remark., — If K is not locally c-compact there are in E no non-trivial

K-convex, c-compact sets.
The following are equivalent (see [15]) :
(i) X is locelly c-compact.
(ii) K is c-compact.
(iii) K is meximally complete.

lo5. PROPOSITION (see [11). — If K is maximally complete then every weakly c-
compact subset of a locally K-convex space & 1is c-compact.

l.6. Relation to compactoid sets (see [8]). = If K is maximally complete and A
is a K-convex, bounded subset of a locally K-convex space E , them A is c~

compact if, and only if, A is compactoid and corplete.
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2. Compactoid operators.

2.1. Definition. - Let E and F be locally K-convex spaces. A linear mapping
f: E~>TF is called compactoid if there exists & zero-neighbourhood U e U
such that f£(U) is compactnid in F . (1r E is a n. a. Banach space then one can
take U = unit ball of E ).

2.2+ General properties.

(1) Every compactoid mapping is continuous, (see [3]).

(ii) If f: E —> F is compactoid, and B is bounded in E, then f(B) is
compactoid in F , (see [3]).

(iii) If f is a linear mapping from E into a n. a. Banach space F, then f
is compactoid if, and only if, f factors through c¢
g: E-->c, compactoid, 6ee [5]).

o 2as f = heg with

2.3. Properties of compactoid maps between n. a. Banech spaces.

(i) The compactoid operators form an operator ideal which is injective and surjec-

tive. (For the definitions, see [12]. The proof follows immediately from properties
of compactoid sets (see § 1).)

.

(ii) If f: E —=> F is compactoid, then so is its transpose 'f : F' —> E'

(see [10]).

’

(iii) f: E —> F is compactoid if, and only if, it can be written as

f(x) = Zn an(x).yn ,

with (a) < E', (y) F and lim jla ll.lly |l = 0, (see [14]).

2.4, Remark. - The characterization stated in (iii) shows that the compactoid li-
near mappings are in fact the n. a. equivalent of the classical nuclear operators.

Therefore the n. a. opcrators are often called nuclear as well.

3. The definition of a non-zrchimedean nuclear space.

3.1. Definition. - 4 locaelly K-convex space E, UE s is called nuclear if for
each U € UE there exists a Ve ‘UE such that the canonical mapping

Py E;, —> E; 1is compactnid (or nuclear). (The notations have the same meaning
as in the classical theory.)

The definition is independent of the choice of uE .

3.2. Remark. - Fuclear locally K-convex spaces, in this sense, have first been
studied in [3] and [5] for K maximelly complete. In these papers, they are called

Schwartz-spaces (because of the equivzlence between nuclear and compactoid mapping
in n. a. analysis).

However many properties proved there remain valid when K is not maximzlly complete
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The properties which depend on the maximal corpleteness of X are mentioned as
such in § 5 .

We use the term "nuclear" to point nut that we deal with an erbitrary KX .

3.3. Remark. = In the classiczl theory the definition of a nuclear space is equi-
valent to the following :

" E is nuelear if for every locally convex space F the mn-topology and the
¢~topology on E & F coincide"

It is proved in [13] that, when K is maximally complete, cvery locally K-convex
space E has this property.

That is the reason why we prefer to work with definition 3. 3.

4. Examples of noh-archimedeen nuclear spaces.

4,1, Non-archimedean Kodthe spaces.

4,1.,1. Definition. - Let B = (bﬁ) be an infinite matrix consisting of strictly

positive real numbers bﬁ with
k k+1 o v
bn < bn s Yn, V ke

The n. a. Koéthe space K(B) , associated with B, is defined by

K(B) = {(,) ; @ | bs=0, VK,

€ K, ¥n, and limn | a n

n n
equipped with the :sequence of norms :

Pk((an)) = Inaxn lani bn ’

4.1.2. PROPOSITION (see [2] and [6]).

(i) K(B) is a perfect n. a. Fréchet sequence space in which the coordinate vec-

tors (en) form a Schauder basis.

(ii) The KSthe dual space X(B)™ of K(B) can be identified with the topological
dual space KX(B) .

(iii) The topology on K(B) is the normal topology n(X(B) , K(B)®) of the dual
pair (X(B) , K(B)™) .

4.1.3. PROPOSITION (sce [6]). — The space K(B) is nuclear if, snd only if,
k
- . k 1
vk, I3 kl > k such that l.a.mn b /bn =0

4.1.4. Examples. -~ Let a = (ah) be a non-decreasing sequence of positive real
numbers with l:'Lm.n a, =

Let B, = (kan) and B, = ((k/(k + 1))%) .

Then the KSthe sequence spaces 4 (a) = K(Bl) , and Al(a) = K(BZ) are nuclear.
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4,.2. Non-archimedean Fréchet spaces with a Scheauder basis.

4.2.1. PROPOSITION (see [4]). - let E, (Pk) be a n. a. Fréchet space with a
Schauder basis (xn) . Then there exists on E an equivelent sequence of semi-norms

(P;() such that, V xe B, x= %an X ot Pl'((x) = max | P_.

ol

4,2.2., PROPOSITION (see [6]). - Every n. a. cowmtably normed Fréchet space E with
R
a Schauder basis (xn) can be identified with a n. a. Kothe space. Let (Pk) be
0
the sequence (of norms) coming out of 4.2.1 then E = K(B) with B= (Pk(xn)) .

4, 2. 3. ExeampXes.
(i) The space A , of the entire functions f: K --=> K,
[oe)

n . n
A ={f: K—K; f(x):znanx » a €k, llmnlanl |x|" =0, Vv xe K},

. n
with norms Pk(f)zmaxnlanl K , k=1, 2, eeey

as well as the space A, , of functions f : K —> K, which are analytic on the
unit ball of K,

. n .
Al={f: K-> K3 f(x):znanxn, anGK, lim Ianl x| =0, v |xl g1},

n
A . 2 n

have the Schauder basis 1 , X 3, X 5, eee 3 X , ooe

They are nuclear by 4.1l.4. (take a =n )e

3*
(ii) Let n=P \ {0, «} =K end
—_ ® n . 1 . |n| —_ AVl
0@) = {5 8,2 ; a €k, L, la | R =0, vRr>1},

with norms H.l!k = max Ianl kInl , has the Schauder basis 1

n sy 2 4 2 s 2 4 2

It follows from 4.2.2 and 4.1.3 that 0(Q) is nuclear.

4,3. PROPOSITICON (see [6]). - Every locally K-convex space E is nuclear for the
weak topology o(E , E') .

4,4, The space C (X) .

4.4.1. Definition (see [9]). — Let X be & non-empty subset of K , without iso-
lated points. For n> 1, let

-~

VnX:{(xl,xz,...,xn)eXn; xi*r‘x:j whenever i # j} .

For f£: X —>K define ¢ (f) : v X —> X by induction as follows :
{sof:f and, for n> 1,

& -3 eeo0
9n-—l(xl > X35 cce xn+l) ’n—l(XZ » X35 ’ xn+1)

Qn f(xl 9 eoe Xml) = ) >

( - f is called the n-th difference quotient of f ).
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The function f is said to be n times continuously differentiesble, f € Cn(X) R
if the function Qn(f) can be extended to a continuous function i f on Xn+1 .

The space C (X) 4is then defined by C (X) = 1,203 A (x) .
’ , ’...

For fe CO(X) and B< X, B compact, let

peB
and
a ==
165, = 30, 178%, » 1135 fig

On C(X) a locally K-convex topology is then defined by the family of n. a.
semi-norms ¢

{H.‘,{B’n; Bc X compact, n=0, 1, 2, «ec}

4.4,2, PROPOSITION (see [7]). - The locally K-convex space ¢”(X) is nuclear.

5. ProEerties of nonearchimedean nuclear spaces.

501« PROPOSITION. -~ Every bounded subset of a n. a. nuclear spacc is compactnid.

Sketch of proof. — Let B < E be bounded and take U e U o Then take Ve ‘UE s
Ve U as given by the nuclearity.

Now ch(B) =@y e chV(B) is compactoid in E.U .
SO a 5‘(1 9 oo S\Cn (S EU SuCh that
(PU(B) < C[i‘(l y eee ;Cn] + (D(U) P

It than follows that B < C[x cee s x ]+ U

1 b

5.2, COROLLARY, - If E is & n. a. normed space which is nuclear then dimE < = .,
(From 5.1 and § 1, 1.2 (x)).

5.3. PROPOSITION (see [3]). —= If E is nuclear and F is any n. a. Banach space

then every continuous linear map from E to F 1is compactnid.

5.4, PROPOSITION (see [5])s - A locally K-convex space E 1is nuclear if, and
only if,

(i) E is a subset of some power ch) of ¢4, and

(ii) Every continuous linssr mep from E to ¢y is _compactoid.

5.5. COROLL:iRY. - Every n. a. nuclear Fréchet space is of countable type.

5.6. PROPOSITION (see [31). = Let K be meximally complete. Then a locally K-

convex space is nuclear if, =nd only if, it is semi-rsflexive and quasi-normable.

( E is quasi-normablc if for every K-convex cquicontinuous subset L of E' there
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exists a K-convex equicontinuous set D 2 A such that on A the topologies induced
by E', B(E', E) and Xy, *.‘!D coincide.)

5.7. Stability properties for n. a. nuclear spaces.

~

(i) A ].oca.lly K—~convex space E is nuclear if, and only if, its mmpletion E
’ Y ’
is nuclear.

(ii) Every subspace nf z n. a. nuclear space is a n. a. nuclear spacc.

(iii) Every quotient, by a clnsed subspace, of a n. a. nuclear space is a n. a.
nuclear spacee.

(iv) Every product of n. a. nuclear spaces is n. a. nuclear.

(The proof is exactly the same zs in the classical case. It is a consequence of
9 2, 2.3 (i).) (See e. g. [12].)

5.8, Remark. — In [l1], an example is given of a space in which every bounded
subset is precompact but which is not a Schwartz-space. The same example, with

obvious modifications, gives a n. a. space in which every bounded subset is compac-
toid but which is not n. a. nuclear.

6. Nuclearity of the dual space.

6.1. PROPOSITION (see [6]). - Let K(B) be_any n. a. Kothe space. Then its topo-

logical duel space K(B)* is a n. a. nuclear space for the normal topology
n(K(B)* , XK(B)) .

6.2. PROPOSITION (sce [6]). - Suppose X is maximally complete. Then the dual

E(B)* of an. a. KSthe space X(B) is & n. a. nuclear space for the Mackey topolo-
g T(K(B)*, K(B)) .

6.3. PROPOSITION (see [3]). = Supposec K is maximally complcte. Then the strong

dual E', 3(E', E) of an. a. nuclear Fréchet space is again a n. a. nuclear
space.
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