LOTHAR GERRITZEN

Differentials of the second kind for families of Mumford curves

DIFFERENTIALS OF THE SECOND KIND FOR FAMILIES OF MUMFORD CURVES

by Lothar GERRITZEN (*)
(Ruhr-Universität Bochum)

The space of everywhere meromorphic differentials on a Mumford curve M of genus g which can be integrated on the universal covering of M is a space of codimension g in the full space of meromorphic differentials on M. This fact allows to conclude that the Gauss-Manin connection associated to an analytic family of Schottky groups has g linearly independent horizontal elements which are defined everywhere on the parameter space of the family. I will give a sketch of the proof for this result.

1. ξ-functions and differentials of the second kind.

Let K be an algebraically closed field together with a complete non-archimedean valuation. Let Γ be a Schottky subgroup of the group $PGL_2(K)$ of fractional linear transformations of the Riemann surface $\mathcal{P} = K \cup \{\infty\}$ over K. Let Z be the domain of ordinary points of Γ, see [GP], Chap. I, § 4.

Theorem 1. - Let $h(z)$ be a rational function on \mathcal{P}, whose poles all lie in Z and let $z_0 \in Z$ be an ordinary point for Γ. Then the series

$$\xi(h; z_0; z) := \sum_{\gamma \in \Gamma} \frac{h(\gamma(z)) - h(\gamma(z_0))}{h(\gamma(z))}
+ \sum_{\gamma \in \Gamma} \frac{h(\gamma(z))}{h(\gamma(z_0)) = \infty}$$

is as a function of z uniformly convergent on any affinoid subdomain of Z. Its limit is a meromorphic function on Z.

A proof of this result appears in [G], (1).

Let now I be the K-vector space of those meromorphic functions $f(z)$ on Z for which

$$f(\gamma z) - f(z) \in K$$

for all $\gamma \in \Gamma$.

The differential df of a function from I is Γ-invariant and is thus a differential of the Mumford curve $M = Z/\Gamma$.

(*) Lothar GERRITZEN, Institut für Mathematik, Universität Bochum, Postfach 102148, D-4630 BOCHUM 1 (Allemagne fédérale).
Denote by H the K-vectorspace of rational functions on P whose poles all lie in Z. One can show that any $f \in I$ is obtained as $\zeta(h, z_0; z)$ with $h \in H$, see [G], (2).

Let $\text{Hom}(\Gamma, K)$ be the K-vectorspace of group homomorphisms $\zeta : \Gamma \to K$. If we fix a basis $\alpha_1, \ldots, \alpha_g$ of the free group Γ, we obtain a canonical isomorphism $\text{Hom}(\Gamma, K) \cong K^g$ when we map ζ onto the g-tuples $(\zeta(\alpha_1), \ldots, \zeta(\alpha_g))$.

For any $f \in I$ we denote by $P(f)$ the group homomorphism $\Gamma \to K$ given by

$$P(f)(\gamma) = f(\gamma z) - f(z).$$

Then $P(f)(\gamma)$ is the period of the differential df with respect to the "cycle" γ.

The mapping

$$P : I \to \text{Hom}(\Gamma, K)$$

is K-linear whose kernel consists of the field of Γ-invariant meromorphic functions on Z which is the field of rational functions on the curve \mathbb{M}. One can prove that the mapping $P : I \to \text{Hom}(\Gamma, K)$ is surjective, see [G], (3).

Theorem 2. Let $\alpha_1, \ldots, \alpha_g$ be a basis of Γ. Then there exist functions $f_1, \ldots, f_g \in I$ such that $P(f_i)(\alpha_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$.

A meromorphic differential $\omega = fdz$ on Z is called to be of the second kind if for any point $a \in Z$ there is a meromorphic function $h_a(z)$ on Z such that $\omega - dh_a$ is analytic in a.

Denote by Ω_2 the K-vectorspace of Γ-invariant differentials on Z of the second kind. The proof of the following theorem is given in [G], (4).

Theorem 3. $\Omega_2 = \Omega_1 \otimes dI$ where Ω_1 is the g-dimensional K-vectorspace of analytic differentials on \mathbb{M}.

2. Families of Schottky groups.

Let S be a rigid analytic space over K, see [BGR], Chap. 9. We consider the projective line over S, namely the product space $\mathbb{P} \times S$ together with the projection π onto the second factor.

Denote by $\text{Aut}_S(\mathbb{P} \times S)$ the group of those bianalytic mapping $\gamma : \mathbb{P} \times S \to \mathbb{P} \times S$ which are compatible with π (i.e. $\gamma \circ \pi = \pi$).

One can prove that there is an admissible covering $\mathcal{G} = (S_i)_{i \in I}$ of S such $\gamma|_{S_i}$ is a fractional-linear transformation over S_i which means that there is a matrix

$$\begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in \text{GL}_2(\mathbb{O}(S_i)),$$
where $\theta(S_1)$ is the K-algebra of analytic functions on S_1 such that

$$\left(\gamma|_{S_1}\right)(s, z) = \frac{a_i(s) + b_i(s)}{c_i(s) + d_i(s)}.$$

For any point $s \in S$ we obtain a canonical homomorphism $\text{Aut}_S(P \times S) \to \text{PGL}_2(K)$ by restricting $\gamma \in \text{Aut}_S(P \times S)$ to the subspace $P \times \{s\}$ of $P \times S$. We denote the restriction of γ to $P\{s\}$ by γ_s.

Definition. - A subgroup $\Gamma \subseteq \text{Aut}_S(P \times S)$ is called a Schottky group over S (or a family of Schottky groups parametrized by S) if for any point $s \in S$ the restriction of the canonical homomorphism $\text{Aut}_S(P \times S) \to \text{PGL}_2(K)$ to Γ gives an isomorphism from Γ to a Schottky group Γ_s of $\text{PGL}_2(K)$.

Let now Γ be a Schottky group over S. The proof of the following result will be given elsewhere.

Theorem 4. - There exists an admissible subdomain Z of $P \times S$ such that for any $s \in S$ the intersection $Z \cap (P \times \{s\})$ is the domain of ordinary points for the Schottky groups Γ_s. If S is an affinoid space there is an affinoid subdomain $F \subseteq Z$ such that $U_{\gamma \in \Gamma} \gamma(F) = Z$.

If S is irreducible, then so is the domain Z.

Corollary. - $Z/\Gamma \to S$ is an analytic family of Mumford curves.

From now on let S be irreducible and H be the $\theta(S)$-algebra of meromorphic functions on $P \times S$ whose poles and points of indeterminancy all lie in Z.

Let $z_0 : S \to Z$ be an analytic mapping such that $\pi \circ z_0 = \text{id}_S$ and $h \in H$. Let h_s be the restriction of h onto $P \times \{s\}$. Then there is a meromorphic function $\xi(h ; z_0 ; s, z)$ on Z such that the restriction of $\xi(h ; z_0 ; s, z)$ onto $P \times \{s\}$ equals $\xi(h_s ; z_0(s), z)$. Let I_s be $\theta(S)$-module of meromorphic functions $f(s, z)$ on Z for which $f \circ \gamma - f \in \theta(S)$ for all $\gamma \in \Gamma$. Let $\text{Hom}(\Gamma, (S))$ be the free $\theta(S)$-module of rank g of all group homomorphisms $c : \Gamma \to \theta(S)$.

Let $P(f)(\gamma) := f \circ \gamma = f$. Then $P(f) \in \text{Hom}(\Gamma, \theta(S))$.

Theorem 5. - Let $\alpha_1, \ldots, \alpha_g$ be a basis of Γ. There is an admissible covering $(S_i)_{i \in I}$ of S and for any i there are functions $f_1, \ldots, f_g \in I_{S_i}$ such that $P(f_j)(\alpha_i) = \delta_{ij}$.

Let $\mathcal{F}_2 = \mathcal{F}_{2i/S}$ denote the sheaf on S whose set of sections on an admissible
open domain $U \subseteq S$ are the K-vectorspace of Γ-invariant differentials relative to $Z \to S$, of the second kind on $Z_U = Z \cap (P \times U)$.

Let Ω^1_{ex} be the subsheaf of Ω^1_2 of exact differentials and H^1_{DR} be the quotient sheaf Ω^1_2/Ω^1_{ex}.

Theorem 6. - H^1_{DR} is a free coherent module over the structure sheaf \mathcal{O}_S on S of rank $2g$. There is a canonical decomposition

$$H^1_{DR} = \bar{\Omega} \oplus \Omega^1$$

where Ω^1 is the subsheaf of Ω^1_2 of analytic differentials and $\bar{\Omega}$ is the sheaf of cohomology classes of differentials of the form df with $f \in I$. $\bar{\Omega}$ and Ω^1 are free modules of rank g over \mathcal{O}_S.

Sketch of proof: In order to prove that Ω^1 is free of rank g, we have to observe that for any $\gamma \in \Gamma$ there is a canonical differential $\omega_\gamma = (du_\gamma/u_\gamma) \in \Omega^1$, where u_γ is defined on Z as in [GP], Chap. 2. While the u_γ are unique up to a unit from \mathcal{O}_S, the differential ω_γ is unique. If $\alpha_1, \ldots, \alpha_g$ is a basis of Γ, then $\omega_\alpha_1, \ldots, \omega_\alpha_g$ is a basis for Ω^1.

The result concerning $\bar{\Omega}$ follows from Theorem 4. While the function $f^{(i)}$ depend on the index i, we find that $df^{(i)}_j - df^{(i)}_j$ are in the intersection $S_i \cap S_j$, the differential of a Γ-invariant function and thus the cohomology class of $df^{(i)}_j$ equals the cohomology class of $df^{(i)}_j$. Thus they constitute a basis element of $\bar{\Omega}$.

Theorem 7. - The restriction $\nabla|\bar{\Omega}$ of ∇ onto $\bar{\Omega}$ is trivial, i.e. there is a basis of horizontal elements in $\bar{\Omega}$.

Sketch of proof: The result is local in nature. If $\mathcal{E} = (S_i)$ is an admissible covering of S and if we have proved the result for the family over S_i for all i, the proof is complete.

Using Theorem 5 we may therefore assume that there are function $f_1, \ldots, f_g \in I$ such that $P(f_j)(\alpha_j) = \delta_{ij}$, where $\alpha_1, \ldots, \alpha_g$ is a basis of Γ. We have to show that $\nabla_D(df^{(i)}_i) = 0$ where $df^{(i)}_i$ is the cohomology class of $df^{(i)}_i$ in H^1_{DR}. Now by the very definition of ∇_D we know that $\nabla_D(df^{(i)}_i) = d(df^{(i)}_i)$ where D is an extension of the derivation D to the field of meromorphic function on M with $D(x) = 0$ for a meromorphic function x on M which is not a meromorphic function on S. (is not constant on all the curves of the family $M \to S$).
We are done if we can show that $\hat{\Delta}f_i$ is Γ-invariant. This seems obvious as

$$(\hat{\Delta}f_i) \cdot \alpha_j = \hat{\Delta}(f_i \cdot \alpha_j) = \hat{\Delta}(f_i + \delta_{ij}) = \hat{\Delta}(f_i).$$

The problem with this argument is that $\hat{\Delta}$ is defined only on the field of meromorphic functions of M and f_i is not in it. But one can define a unique extension of $\hat{\Delta}$ to a vector field on Z which does justify the above line of argument as soon as we have shown

$$(\hat{\Delta}f_i) \cdot \alpha = \hat{\Delta}(f_i \cdot \omega).$$

But $D'(f) := (\hat{\Delta}(f \cdot \omega)) \cdot \alpha^{-1} - \hat{\Delta}(f)$ is an analytic vector field on Z with $D'(f) \equiv 0$ for all meromorphic functions on M. Thus $D' \equiv 0$ and

$$(\hat{\Delta}f_i) \cdot \alpha = \hat{\Delta}(f_i \cdot \omega).$$

4. Elliptic case.

The first nontrivial example is the family of Tate curves which has been studied by a number of authors, see for example [R], [Rb], [K], [DR].

Assume that $\text{char } K \neq 2$.

$$S = \{q \in K : 0 < |q| < 1\}$$

$$Z = \{(q, z) \in K^2 : q \in S, z \in K - \{0\}\}$$

$\alpha(q , z) := (q , qz)$ is a bi analytic map $Z \rightarrow Z$. Let Γ be the transformation group generated by α. Then $M = Z/\Gamma \rightarrow S$ is the universal family of Tate curves.

The de Rham cohomology space H^1_{DR} for the family $M \rightarrow S$ is freely generated over the structure sheaf on S by the class τ_1 of the analytic differential (dz/z) and by the class τ_2 of the meromorphic differential $d\xi$ where

$$\xi(q , z) = \frac{1}{1 - z} + \sum_{n=1}^{\infty} \left(\frac{1}{1 - q^n z} - \frac{1}{1 - q^n z^{-1}} \right)$$

$$= \frac{1}{1 - z} + \sum_{n=1}^{\infty} \left(\frac{q^n z}{1 - q^n z} - \frac{q^n z^{-1}}{1 - q^n z^{-1}} \right)$$

for which holds

$$\xi(q , qz) - \xi(q , z) = 1$$

$$\xi(q , z^{-1}) = 1 - \xi(q , z)$$

$$\xi(q , -1) = \frac{1}{2} \text{ if char } K \neq 2$$

$$\xi(q , q^n) = 1 \text{ if } q^n = q.$$
\[\tilde{\phi} = z \frac{\partial \tilde{\phi}}{\partial z} \]

\[\tilde{\phi}' = z \frac{\partial \tilde{\phi}}{\partial z} . \]

Then \(\tilde{\phi} \), \(\tilde{\phi}' \) are \(\Gamma \)-invariant meromorphic functions on \(Z \) and the following equation holds

\[\tilde{\phi}'^2 = 4(\tilde{\phi} - e_1)(\tilde{\phi} - e_2)(\tilde{\phi} - e_3) \]

where \(e_1 = \tilde{\phi}(q, -1) \), \(e_2 = \tilde{\phi}(q, \pi) \), \(e_3 = \tilde{\phi}(q, -\pi) \) with \(\pi \) a fixed square root of \(q \).

If we put

\[x := \frac{\tilde{\phi} - e_1}{e_2 - e_1} \]

\[y := \frac{\tilde{\phi}'}{2(e_2 - e_1)^{3/2}} \]

then

\[y^2 = x(x - 1)(x - \lambda) \]

with

\[\lambda = \frac{e_3 - e_1}{e_2 - e_1} = x(q, -\pi) \]

which is the Legendre normal form for the family of Tate curves.

Let

\[D_q := \frac{\partial \tilde{\phi}}{\partial q} - \frac{x}{x'} \frac{\partial \tilde{\phi}}{\partial z} \]

where

\[\tilde{x} = \frac{\partial x}{\partial q} , \quad \tilde{x}' = \frac{\partial x}{\partial z} . \]

We claim that the vector field \(D_q \) coincides with the vector field \(\hat{D} \) for \(D = (\partial / \partial q) \) in the proof of Theorem 7.

\[D_q (x) = 0 = \hat{D}(x) \]

\[D_q (f) = \frac{\partial f}{\partial q} = \hat{D}(f) \] if \(f \) is analytic on \(S \).

Thus \(\hat{D} = D_q \).

Let \(v = \left(\nabla q / \partial q \right) \). Then \(v(f dx) = D_q (f) dx \) by definition of \(\left(\nabla q / \partial q \right) \).

One can by direct computation show that

\[v(df) = d(D_q (f)) \]

and that \(D_q (\xi) = (\partial \xi / \partial q) - (\xi / x')(\partial \xi / \partial z) \) is \(\Gamma \)-invariant.
This proves that $V(T_2) = 0$ which gives a more direct proof of Theorem 7 for the family of Tate curves.

Let σ_1 (resp. σ_2) be the cohomology class of $(dx/2y)$ (resp. $x(dx/2y)$).

Then σ_1, σ_2 is a basis of H^1_{DR}. Let

$$\frac{d\xi}{\xi} = \tau_2 = A\sigma_1 + B\sigma_2.$$

THEOREM 8.

$$A = \frac{\psi(q, -1)}{\sqrt{\psi(q, n) - \psi(q, -1)}}$$

$$B = \sqrt{\psi(q, n) - \psi(q, -1)}$$

and $\frac{A}{B}$ as a function of λ can be given by

$$\frac{A}{B} = 2\lambda[(1 - \lambda) \frac{F'}{F} + \frac{1}{2}]$$

where

$$F(\lambda) = F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - \lambda\right)$$

$$= \sum_{n=0}^{\infty} \left(-\frac{(1/2)_n}{n!}\right)^2 (1 - \lambda)^n.$$

Sketch of proof: The proof of the first part is given by a small computation. One can use the characterization of elements τ in H^1_{DR} with $V(\tau) = 0$ given in [P], (7.11), (ii), to prove the second part.

We find that $\tau_2 = \lambda(1 - \lambda) \frac{\partial F}{\partial \lambda} \sigma_1 - \lambda(1 - \lambda) F(\sigma_1)$ where f satisfies the hypergeometric equation

$$\lambda(1 - \lambda) \frac{\partial^2 f}{\partial \lambda^2} + (1 - 2\lambda) \frac{\partial f}{\partial \lambda} - \frac{1}{4} f = 0.$$

Here one has to use the fact that the map $\pi : \lambda(\tau) = x(q, -\tau)$ gives a bi-analytic map from S onto $\{\lambda : |1 - \lambda| < 2\}$.

Thus the inverse mapping $\pi(\lambda)$ is an analytic function of λ.

Now we conclude that $f = cF(\lambda)$ as f is analytic on $\{\lambda : |1 - \lambda| < 2\}$ with a constant $c \in K^*$ which can be determined by letting $\lambda - 1$ (i.e. $\tau = 0$).

REFERENCES

