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DIMENSION OF THE SPACE OF SOLUTIONS OF THE DIFFERENTIAL EQUATION y’ = 03C9y

Alain ESCASSUT

Groupe d’Etude d’Analyse Ultramétrique
1987-1988

Let K be an algebraically closed f ield of characteirstic 0 provided

with an ultrametric absolue value ). j. For all set D in K we will denote

by R(D) the K-algebra of the rational function with no pole in

D. When D is closed and bounded, the algebra R(D) is provided with the

norm of uniform convergence on D denoted 1 that makes it a

normed K-algebra. Its completion f or that norm is then a K-Banach algebra

denoted by H(D), the elements of which are called the analytic elements on .

A set D is said to be infraconnected if f or all aeD, the adherance of

the in R is an interval. We know that a bounded closed set

D is infraconnected if and only if H(D) does not have non trivial

idempotent [E 2 ].
In Chapter I we will prove the analytic elements with null derivative

on a clopen inf raconnected set is a constant and more generally when the

derivative of an analytic element is an analytic element, we obtain the

Mittag-Lef f ler series of the derivative in deriving the Mittag-Leffler

series of the considered analytic element.

In chapter II we will study the dimension of the space of solutions of

the differential equation (~)y’ = fy with f,yeH(D), D a clopen bounded

infraconnected set. We will prove a solution is either invertible in H(D)

or strictly annulled by a T-filter on D [E 1. If F contains a solution

invertible in H(D) then ~ has dimension 1. If H(D) has no divisors of

zero, then ~ has dimension o or 1.

In Chapter III, we will suppose the residue characteristic p is

dif f erent f rom zero and we will construct clopen bound inf raconnected sets

D with elements feH(D) such that ~’ has dimension n or infinite

dimension.

. Chapter II and III were made in common with Marle-Claude Sarmant. The

questions taken up here were pointed out to my attention in talking to

Labib Haddad at the Clermont Ferrand Analysis Seminary.



41

I. DERIVATIVE OF ANALYTIC ELEMENTS ON MFRACONNECTED CLOPEN SETS

Asserting the theorems requires to introduce a lot of def initions and

notations.

For all a~K, d(a,r) denotes the disk r} d ( a, r ) is

the disk and C(a,r) is the circle [ = r~.

Let D be a bounded closed set of diameter R and let D be the disk

d(a,r) with Then admits a partition by a unique family (1" ) lEI
where each T is a disk d ,r ) and rl is maximal. The T are called the

holes of D.

Let T = d (a,r) be a hole of D, and let R(T) be the algebra of the

such that lim h(x) - o. R(T) is then provided with the norm

..,

of the uniform convergence on KBT and we will denote by H(T) the Banach

algebra completed of R(T) for that norm.

We know that H(T) is the algebra of the Laurent series 03A3 03BBn n such

that l im 
|03BBn| n) 

= o[A,K ,R]. 

n=1(x-a? 

that )= 
n=l(x-a)

Now assume D is inf raconnected closed and bounded. We have the

Mittag-Leffler theorem [K,R] for an feH(D). There exists a unique sequence

of holes (T) . of D and a unique set of analytic elements (fnn~N * with
f ~H(T ) and f ~ o and a unique f ~H(D) such that the series 03A3 f
n n n o n

n=o

converges to f in H( D ) and satisfies~f~D = max(~fo~ , 

Here we will call a f-hole of any one of the holes T 
n

The classical Theorem 1 is well known and it will be helpful :

Theorem 1.1. Let A be a bounded closed infraconnected set in K and let

g~H(0394). Let (Tn)n~N be the sequence of the g-holes of g on the

infraconnected set fl and let At= ~B( u T ) Then g extends into an element
0=1 n

heH(A’) such that ~h~0394, = ~g~0394.
It is well known and easily seen that an analytic element on an open

set D has a derivative at each point of D [R]. Now we will look when f’

also belongs to H(D).

In all of the following theorems and corollairies we denote by D a

clopen bounded infraconnected set of diameter R ill K , !2Y S

the set consisting of the diameter of the holes of D and the diameter R

or D and by A the lower bound of S. We denote by f an element of HE D ), by
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the set consisting of R and of the set of the diameters of the

f-holes of D, and by the lower bound of Q(f).

00

Let f 0 + r f be the Mittag-Leffler series of f on D with fo ~ H(6),
° 
n=l - 

°

f )(T a f-hole of D) nEf4.
n n n ~ 

201420142014201420142014

Theorem L 2. Assume p(f) &#x3E; o. Then f’ belongs to H(D) and satisfies
0153

~f’~D ~ 03C1(f), 
and the f’n converges to 

Corollary . Assume For all feH(D), f’ belongs to H(D) and

The main problem we have got to study is whether the infraconnectedness

characterizes the implication tIft (x) = o whenever f = constant in D".

An answer is "yes" on the clopen set D. But it is not the same on a set

A that is only open but not closed.

Actually, we find solutions to those problems in answering a more

00

general question : if f’ belongs to H(D), does the series ~ f’ converge
n

n=o

to f’ in H(D) ?

Theorem i.~ . The three following assertions are equivalent :

a) f’ belongs to H(D)
00

b) the series ~ f’ converges to f’ in H(D)
n

n=o

oo

c) the series ~ f’ converges in H(D).
n 

n
n=o

On the f irst hand, Theorem 1.3 helps us characterize the infraconnected

clopen bounded sets D such that all the elements geH(D) have derivative in

H(D).

Theorem I.4. 03BB is different from zero if and only if for every g’

belongs to H(D).

On the second hand, Theorem 1.3. gives us the implication : if f’(x)=o

for all f then f is a constant, whenever A be a clopen infraconnected

set and this is characteristic of the infraconnected sets in the class of
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the clopen bounded sets. However, that characterization does not hold any

more when A is not supposed to be closed.Theorem 1.5. A clopen bounded set

E is infraconnected if and only t,~ for every geH(E) such that g’(x) = o

for all g is a constant in E.

Remark.

The derivation clearly is not continuous in R(D). Like in the proof of

Theorem 1.5, consider a clopen bounded infraconnected set D with a

sequence of holes T = d (b ,r ) with 1 i m r = o and take a sequence

(A ) in K such that I i m 2014I!2014= o and lim +00 .

À

Clearly, the sequence g converges to 0 although the sequence g’
n x-b n

n 
co

does not converge. As a consequence the series r g has a derivative that
n

n=1

does not belong to H(D).

However the f ollowing Theorem 1.6 will be helpf ull in f urther articles.

Theorem 1.6. Suppose f’belongs to H(D). For every c &#x3E; o, there exists

heR(D) such that c together c .

Recall brief ly the proof of Theorem 1.1.
00 

’

Let g = r g be the Mittag-Lef f lerian series of g on the infraconnected
n

n=o

set A with g o ~ and g n e H(T n ). For each n~N let h n = then hn
clearly belongs to H(A’). Now g E H(T ) c H(A’)and by the

Mittag-Leffler = ~gn+1~0394 hence ~hn+1-hn~0394, = ~gn+1~0394
n+l

and then the sequence h does converge in H(A’) to an element h which
n

extends to g. Finally, ~h~0394, ; ).

Proof of Theorem 1.2.

Since D is open, it is well known and easily seen that f has a

derivative at each point of D (because in every disk d(a,r) c D,f(x) is
CO

equal to a series r À 
n 
(x-a) which converges for I :s r) [R).

n=o

Now let (T ) be the sequence of the f-holes of f in D and let
m 

n
co

D’ = By Theorem 1.1, and ~f~ = If 1 . Thus we can
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assume every hole of D is a f-hole.

Let acD and let r(a) be the distance from a to In
CO

d (a,r(a)),f(x) is equal to a convergent for 
~ 

n=o
co

is equal to a series 03A3 03BB
n 

convergent for I . x-a I  r(a) and then

On the other hand, by definition of r(a), we can see that for all e &#x3E; o

there exists a f-hole - T included in the disk d( a, r( a )+ e). Then

r(a) + c hence 03C1(f) ~ r(a) + c . As that is true for all c &#x3E; 0

clearly 03C1(f) ~ r(a) hence |f’(x)| ~ 20142014- . Finally, this inequality is
~ f 

!~)
true for all xeD hence we obtain the inequality (1) )f’t! ~ 201420142014 .

Now let r f be the Mittag-Leffler series of f in H(D) with f ~ H(D)
~ 

n o
n=o

and f ~ H(T ), f ~ o. It is well known that f’~ H(D) and in the same way
n n n o

~ * 
~

f ~ H(T ) for each n~N . Then by (1) the series f clearly converges in
n n n

n==o

H(D) to a limit ~. We just prove ~ == IT’. Indeed, let e be a positive

number, and let N(c)~M be such that jf ! D ~ e p(f) for q ~ N(c). Then

! ~’ " E ~’! ~ c hence 6f’ - )) ~ ~: , finally f’== ; that ends the proof.
n D D

n=o 
’

Definition. Let D be an infraconnected closed bounded set and let f~H(D).

Let T be a hole of ID. By the Mittag-Leffler Theorem and by Theorem 1.1.

there is: a unique h ~ H(T) such that f-h extends to an element of
T T

H(DuT); h 
T 

will be called the f-singular element associated to T with

respect to D.

The following proposition is then a direct consequence of the

Mittag-Leffler Theorem.

Proposition. Let 1) and D’ be two Infraconnected bounded sets such

that D’c ID. Assume there is a hole T ojf D which L? also a hole of D’. For

every f~H(D), the f-singular element assoclated to T with respect to D has

a restriction on E)’ that Is’ the f-singular element associated to T with

respect to D’.
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Notations. For all r’, r"~~R with r’  r~, we will denote by

the annulus (x’~t  ~"~ smd ~Y ~(a,r’,r") the annulus

X~K) r’~ )x-a( ~ r~~.

00

Lemme I.A. assume the series 03A3 IT’ converges to a limit h in H(D).
n

n=o

Then h(x) == f’(x) aH x~H(D).

Proof. Let 03B1 be a point in 1) and let r &#x3E; o be such that d(a,r) c I). For

n

every neM let g == ~ f, and let g be the restriction of g to d(a,r). By
n j=o ~ ,~ n n

theorem 1.2, the sequence g converges to the restrictionh of f to 
n

in H(d(a,r)) hence h(x) = f’(x) for all This is true for all x~D

and that ends the proof.

Proof of Theorem 1.3. First b ) trivially implies a ) and c ) . Af ter, by

Lemma I.A, it is easily seen that c) implies b), and then it only remains

to us to prove for example a) implies b).

Let us assume a) is true and prove b). For every hole T of D, let

f T(resp g ) be the f-singular element ( resp. the f’ -singular element)

associated to T with respect to 1). Let G be the set of the f-holes T such

that ( f T )’ # g and let J be the set of the f-holes such that ( f )’ == 

g .
If we can show 0, Theorem 1.3 is; clearly proven. Suppose then G ~

69. All of the g are null except maybe a countable family of them. The

series 03A3 g and 03A3 g obviously converge in 11(13), and then

By Lemma I. A, the series ~ (IT )’ is clearly equal to the derivative

of 03A3 f’ Let h = 03A3 fT = f - 03A3 fT; then h’ = f’ - 03A3 (f )’ = 03A3 S-
T~~

Let D be the family of the diameters of the holes T that belong to ~’,

and let 6 be its lower bound. Suppose 6 &#x3E; (3. By Theorem 1.2, the series

03A3 f’ converges to h’, henee 03A3 f’T is the Mittag-Lef f er series of h’ on

I~, hence f’ == gL- for all T~~ and that contradicts the def inition 

Hence 6 = 0.

Now, we will prove there exists a hole I = with an annulus

A(a,r,s) such that the set Y of the diameters p of the f-holes included in

A(a,r,s) has a strictly positive lower bound. Indeed suppose such a hole y
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does not exist. Then we can easily construct a sequence of f-holes T =

d (a r ) - with (1) r ~ 1 n and (2) | a | ~ 2 n . For example, assume the

sequence has just been constructed up to the range q, satisfying (1) and

(2) for n ~ q . Since G does not exist, then in A(a ,r ,2) we can find a

f-hole T = d (a ,r ) with r  and then the sequence is
q+l q+~ q+l q+l 

-

clearly constructed by induction in taking first any f -hole T = d (a ,r )

The sequence (T ) clearly converges to a point and that contradicts
n

the hypothesis "D is clopen". Hence we have now proven the existence of

the f -hole T with an annulus A(a,r,s) and a number 03B4 &#x3E; 0 such that every

f-hole T c A(a,r,s) satisfies (3) 

Let ~ be that family of the f-holes included in A(a,r,s). Let

~ = E f ; by Theorem 1.2, the series ~] (f )’ converges to t’ in H(D).

Now let 03C6 = Clearly 03C6 belongs to H(D ) and no hole T ( of D ) .

included in d(a,s) is a 03C6-hole. Hence 03C6 extends to an element of

H((D u d(a,s)). In d(a,s),~p(x) is equal to a Taylor series

(a,s)), hence 

Thus in D n is equal to the series ~’ ( x ) and then for

every hole T of D included in d(a,s) the 03C6’-singular element associated to

T with respect to D is null.

On the other hand, p’ = h’-t (f )’ = E gT - 03A3 ( f )’ - ( f )’ and then

the 03C6’-singular element associated to T with respect to D is gG-(f03C4)’~ 0
so that we have a contradiction with and then Theorem 1.3 is

f inal ly proven.

Proof of Theorem 1.4.

By the Corollary, 0, every g=H(D) has its derivative g’ in

H(D). Now let us assume that ~ == 0 and let us f ind a geH(D) such that g’

does not belong to H(D). Let (T ) , = (d (a ,r )) ~ be a sequence of
n n 

n~iN
holes such that l im r = O.

n

Now let (03BBn)n~N * be a sequence in K such that lim 2014201420142014== 0 and

lim |03BBn| 2 = + eo . We know that |03BBn| rn and then the series 03A303BBn x-an
n

converges to a limit g in H(D) and for each n, the g-singular element of
À

T with respect to D is obviously n x-a , hence the Mittag-Leffler series
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00 ~

of g on D on r # . ." 

x-a
’ 

n=1 n 00 À

Now suppose g’ belongs to H(D) . By theorem 1.3, the series ~ ~’ 2
n=i(x-a )

must converge to g’ in H(D). = that clearly shows
(x-a ) r

09 A
the series - 03A3 n 2 does not converge in H(D). Theorem 1.4 is then

n=1 
n

proven.

Proof of Theorem 1.5. It is well known that if E is not infra connected,

H(E) has an idempotent u *’ 0 and 1 and then u(x) = 0 in a subset E of E,

while u(x) = 1 in E = EBE , hence u’(x) = 0 for all xeE (though u is not

constant in E).

Now suppose E is infraconnected, let geH(E) be such that g’ (x) - °

whenever xeE and let us prove that g is a constant.
00

be the Mittag-Leffler series of g on E. Since g’ is the null
n

n=o 
OC)

analytic element, the series £ (g )’ converges to zero in H(E) hence it
n

n=o

is easily seen that g’ = 0 whenever 1 and g is a constant in D, and
n o

that ends the proof of Theorem 1.5.

Proof of Theorem 1.6.
oo

Let d(a,r) = D and let g(x) = £ À For each q~N, let (g)
m q

m=o

q

be the polynomial £ ~ (x-a)"~. Now let T = d (b,r) be a hole of D, and let
m

m=o
oo ~ q ~

t(x) = V m ; for each let (t) = T; m .
m=l (x- b) 

m q 
m=l (x-b) 

m

Now let c be &#x3E; 0 and let us find the heR(D) satisfying Theorem 1.4.

N(C)

By Theorem 1.3, we have an integer N(e) such that (1) I Y" f n - c

and (2) f’ - f’ ~ ~ c.
On the other hand we obviously have an integer Q(c) such that

6f - ~ e whenever n - 0,...,N(c) and then by (1) and (2) it

&#x3E; oo

is eas i ly seen we have y ( f ) n - 

and £ (f’) n - f’ D ~ £

Putting h = 03A3 (f ) R Q(0 obtain tile heR(D) we have been looking for.
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II THE DIFFERENTIAL EQATION y’ = f y IN THE ALGEBRAS 

Here we take a clopen bounded infraconnected set D, a f in H(D). we

consider the differential equation (8) y’= fy with y~H(D), and we denote

by ~ the space of the solutions geH(D) of (8).

By classical results, we know that ~ may be reduced to (Oh (For

example, if D is the disk I ~ I, it is easily seen the equation y’ = y

has no solution in H(D)). Here we will give sufficient conditions on the

algebra H(D) to have dimension 1 or 0 

I n the three Theorems that follow, D ~s a clopen bounded infraconnected

set, f belongs to H(D), (8) denotes the differential equation y’ = fy and

9’ is the linear space of the solutions of (E) In H(D).

The notions of T-f ilter and strictly annulled element involved in

Theorem 11.2 will be recalled below.

Theorem 11.1. If (g&#x3E; has at least one solution g inversible in H(D) then 

~P has dimension 1.

Theorem II.2. We assume (ö) has at least one solution g non identically null.

Then g has no zero isolated In D. 

either g is invertible in H(D)

or g is strictly annulled by a T-filter on D.

Theorem II.3. If H(D) has no divisor of zero, then J has dimension 0 or 1.

The proof of Theorem 1 is easily obtained.

Proof of Theorem 11.1. Let g be a solution of (ö) invertible in H(D), and

let h be another solution. We verify h g is a constant in H(D). Indeed, by

hypothesis, h g does belong to H(D). Then (-)’ h = h’g - = 

and then by Theorem 1.5 we know that - is a constant in D.
g

Now we have to recall the definitions linked to the Monotonous Filters.

Technical definitions and proof of Theorem II. 2.

The technique used in the proofs of the Theorems requires a lot of

classical definitions previously given in 

We will denote by "log" a real logarithm function of base fù} 1 and by

v the valuation def ined on K by v(x) = = - 

Now we have to define the monotonous filters. Henceforth, D will denote
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a closed bounded fnfraconnected set and we will specify when it is

supposed to be open; f will denote an element of H(D); (~) is the equation

y’ = fy with yeH(D).
We call an increasing f ilter (resp. a decreasing filterk) of center aeD

of d~~eter r the filter on D that admits for base the family of sets

r(a,r,s) n D with 0  s  r (resp. r(a,r,s) n D with r  s).

We call a decreasing filter with no center on D a f ilter that admits

for base a sequence D in the form D = d(a ,r ) &#x3E; n D with :
n n n n

d(a ,r ) c d(a ,r ), 1 im r &#x3E;0, ~ d(a ,r ~ &#x3E; = ø
n+l n+l n n n n n

n=1

and the limit of (r ) is called the diameter of the filter.
n

We call a monotonous filter a filter that is either increasing or

decreassing.

We know that if J is a monotonous f ilter on D and feH(D), then the

function def ined in D by I has a limit along the f ilter ~ and the

mapping f~ I is a multiplicative semi-norm on H(D) continuous with
rg

respect to the 

If 5 is a monotonous filter of center a, of diameter r, we also have

For convenience we introduce the valuation function v defined by
a

Let R be the diameter of D. Then for all a = D , the function

~ -&#x3E; v (f,~) is continuous and piecewise linear in its interval of
&#x26;

definition I. If a does not belong to a hole of* D, I is [-log R, +oo[. If a

belongs to a hole ’I* == d"(a,p), then I == [-log R, -log pi.
When a == (3 we will only write for v (f,~).

0

For   v(a-b) we have v = v for all h~H(D). [E JE: I..
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By the definition of it is easily seen that -log~f~D ~ va(f, )

for all and  ~ -log R. In particular, if f and g~H(D) are such that

then v a (f.l1) = v 
Lef f belong to H(D). f is said to be strictly annulled by a increasing

filter (resp. a decreasing filter) of center a, of diameter r, if there

exists ~1  -log r ( resp. ~ &#x3E; -log r ) such that  + co whenever

]-log (resp. whenever r[) and if lim f(x) = o.

f is said to be strictly annulled by a decreasing filter J with no

center, of diameter r, of base (D ) with D = d(a, D, if there
n n n n

exists 03BB &#x3E; -log r such that v  +co whenever r I],

whenever n~N, and if 1 imf(x) = o.

Now recall a monotonous f ilter is called a T-f ilter if the holes of the

elements of its bases f orm a sequence that satisf ies a condition given in

[E 4 ] (we won’t explicitly need it in the present work). Then we know that

given a monotonous filter ~, there exist elements strictly annuled

par J if and only if Y, is a T-fllter [E 4 ]
An element feH(D) is said to be quasi-invertible if it factorizes in

the form P(x)g(x) with P a polynomial the zeros of which are in the

interior of D, and g an invertible element in H(D).

Then if D is a clopen bounded infraconnected set, an element feH(D) is

not quasi-inversible if and only if it is annuled by a T-filter on D[E4].

Proof of Theorem II.2. Let us assume g has an isolated zero a in D. Since

D is open we know g factorizes in the form (x-a)~h(x) with and

h(a) ~ 0 [E 1 ,E 2 ] hence g’ = (x-a)  (qh + (x-a)h’) hence qh =~ (x-a)(f-h’)

which contradicts the hypothesis h(a) * 0, (since q ~ 0). Thus g has no

isolated zero in D.

Now suppose g is not invertible; since it has no isolated zero it is

not quasi-invertible, and since D is open, that implies g is strictly

annulled by a T-filter on D (E 3 ;E 4 ].

Beaches, integrity and proof of Theorem 

Let J be an increasing (resp. a decreasing) filter of center a, of

diameter Let set of the xcD such that r (resp. r)

is called the beach of ~ , denoted by ~t~~. The beach of a decreasing
filter 5 with no center is the empty set ~ , We denote by ~~~~ the set


