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OIM LANGUAGES
SATISFYIISIG OGDEN'S LEMMA (•)

by L. BOASSON (*) and S. HORVÂTH (2)

Communicated by M. NIVAT

Abstract. — We show that varions types ofnon-context-free languages satisfying Ogden's lemma can
very easily be constructed. A simple answer is then given to a question of [6] and [7].

Define an "Ogden-like" language as a language L satisfying Ogden's
lemma [3, 4]:

DÉFINITION : A language L is Ogden-like if there exists an integer k0 such that if
in any word/ of L any fc0 or more positions ( = occurrences of letters) are
marked, ƒ has a factorization ƒ = aubvc satisfying:

(1) aunbvnceL, Vn^O;
(2) either each of a, u and b, or each of b, v and c contains a marked position;
(3) ubv contains at most k0 such positions.

Ogden's lemma, which is stronger than the classical Bar-Hillel's
lemma [2, 4, 5], ensures that any context-free language is Ogden-like. The aim of
this short note is to prove, as an answer to the third question of [6], the foliowing:

PROPOSITION: There exists properly context-sensitive, properly recursive,
properly recursively enumerable and non-recursively enumerable languages which
are Ogden-like.

By properly context-sensitive, we mean non context-free context sensitive, and
analogously for properly recursive and properly recursively enumerable.

Proof: The proof is very simple. Consider first a subset P of N, and define:

AP = {(ab)n\neP},

BP=APKjX*{aa,bb}X*,
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both being languages over X={a, b) .
Obviously, BP is context-free if AP is. Moreover, BP is properly context-

sensitive (resp. recursive, recursively enumerable) if AP is and BP is not
recursively enumerable if AP is not.

It is obvious too that BP is Ogden-like with /co = 4.
The proposition is then proved by chosing AP properly context-sensitive (resp.

recursive, resp. recursively enumerable) or not recursively enumerable. (It is well
known that such languages AP do exist, see [4] or [5] for instance.) =

REMARK 1: The family of Ogden-like languages is closed under union,
product, star and homomorphism. It is not closed under inverse
homomorphism, and under intersection with regular sets.

REMARK 2 : The family of Ogden-like languages (belonging as usual to some
countably infinité alphabet) has cardinality C ( = continuüm). The proof is
exactly the same as the proof of the corollary of theorem 3 in [6].

REMARK 3 : The languages BP are built exactly on the same principle as the
non-regular language of [1] satisfying the pumping lemma of regular sets.
Moreover, BP does satisfy this lemma. It can even be observed that BP is never
properly context-free. However, it is easily shown that the proof of the
proposition could be done with

AP = {anbn\neP},

which gives other examples of Ogden-like languages in the various classical

families.
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