
INFORMATIQUE THÉORIQUE ET APPLICATIONS

M. BELLIA
Logic and functional programming by retractions
: operational semantics
Informatique théorique et applications, tome 22, no 4 (1988),
p. 395-436
<http://www.numdam.org/item?id=ITA_1988__22_4_395_0>

© AFCET, 1988, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1988__22_4_395_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 22, n° 4, 1988, p. 395 à 436)

LOGIC AND FUNCTIONAL PROGRAMMING
BY RETRACTIONS:

OPERATIONAL SEMANTICS (*)

by M. BELLIA (X)

Communicated by G. LONGO

Abstract. - Retractions are featuring predicates so that, to each predicate defined by a Horn
theory we associated a retraction of a set theory built according to the structure of the Herbrand
Universe, HUC. The set theory allowed a set theoretic interprétation of the Herbrand terms and
supplied them with a combinatory formulation, constant expression.

In the present paper we discuss normal forms for constant expressions and define a System of
rewrite rules which reduces constant expressions to normal forms. This set of rewrite rules toghether
with the rules for a, p, and Y réduction of Lambda terms, forms also an operational semantic of
our calculus with retractions. The réduction System is finally considered in order to inuestigate
relations beween inference on logic formulas and réduction on this kind of combinatory forms.

Résumé. - Les rétractions modélisent les prédicats de la programmation logique de façon que à
chaque prédicat défini par une théorie de Horn, on associe une rétraction d'une théorie des ensembles
qui est construite en accord avec la structure de V Univers à" Herbrand, HUC. Cette théorie permet
une interprétation théorique des termes d'Herbrand en fournissant une formulation combinatoire,
l'expression constante. Dans cette article nous traitons les formes normales pour les expressions
constantes et nous définissons un système de règles de réécriture qui réduit les expressions constantes
aux formes normales. Le système de réécriture muni des règles de réduction a, P et Y du Lambda-
calcul au premier ordre forme aussi une sémantique opérationnelle de notre calcul avec les
rétractions. Ce système est enfin utilisé pour étudier les relations entre Xinfèrence sur les formules
logiques et la réduction de ce type de formes combinatoires.

1. INTRODUCTION

[Bellia88] considered the définition of a functional paradigm for logic
programming. It identified retractions as the most primitive concept which
relates predicates and functiöns. Rétractions are featuring predicates so that
to each predicate defined by a set of Horn clauses we associate a retraction

(*) Received in 1986
This work was partially supported by the European Community under ESPRIT Project 415.
(*) Dipartimento di Informatica, Universita' di Pisa Corso Italia, 40-56100 Rsa, Italy.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 88/04 395 42/S6.20/© Gauthier-Villars

396 M. BELLIA

on some cartesian product of the Herbrand Universe, HUC. The approach
has been discussed in a functional language which is essentially Church's
Lambda calculus restricted to first order and extended with a symbolic data
domain, HU*. The data domain has been completely but in abstract way
defined by giving an axiomatization of its operators. In the present paper,
we discuss the operational, machine oriented, définitions of the data domain
operators.

In our language programs are closed farms (i. e. X.-abstractions without
occurrences of f ree variables). For example, in the extended syntax that we
introduced in [Bellia88], the following:

ƒ 1 (x) = x +y where 1 = j>;

f2(x,y)=f\(x)+y

is a program which déclares ƒ1 and ƒ2 as the functions denoted by the closed
forms Xx.((X y.x+y) 1) and Xxy.((X x.((X y.x+y) 1)) x)+y\ respectively.
Expressions are applications of ^-abstractions to data, and évaluations are
ot, P and Y expression réductions. For example, in the extended syntax, the
following expression,

l^x where ƒ2 (2, 3) = x,

which corresponds to the application

after 4 P-reductions, results into the expression 7 # ((2 +1) + 3). The expression
could be further reduced according to the structure of the data domain and
the semantics of the symbols occurring in the expression. The semantics of the
domain operators can be embodied into an équivalence relation. Therefore, we
can define évaluations as a, P and Y réductions modulo the équivalence
relation. For example, if the data domain contains 7, 2, 1, 3 as Integers and
the équivalence relation interprets + and + as the product and the addition
opérations on Integers, then the above expression is further reduced to the
integer 42. Our language data domain is more complex than the domain of
the Integers and our operators compute with data which dénote (possibly
infinité) sets. Therefore, though a, p and Y réductions are familiar in func-
tional languages and an équivalence relation, « , has been completely and
formally stated for our set operators [Bellia88] the operational semantics of

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 3 9 7

the operators should be discussed in order to clarify:

— the relations between a, P, Y réductions and évaluations of expressions
which contain set operators;

— the operational semantics of set intersection, Intset, and;

— the computer architecture of the language machine support.

2. INSTANCES AND EXPRESSION EVALUATION

We remember some well known facts. First, external évaluation rules
[Stoy77] on ^-expressions have to be used to guarantee a finite séquence of
7-reductions. Second, operators have to be lazy [Friedman76, Henderson76]
to handle operators on possibly infinité data structures (such as the éléments
of HU©). These features are both achieved in a demand-driven and call-by-
need [Henderson80] évaluation strategy on the sélection of subexpressions
and in their évaluations [Bellia84]. By using this strategy, we could compute
for instance, the expression

Intset (In (2, ie), ® rc, n ®) (1)

by finitely many approximations as needed by the main (computation). For
example, according to the following lazy implementation of Intset

Intset{t1mt\, t2mt2) ~if card(t1)=l and card(£2) = l and tt = t2

then^ • Intset (>;, t2)

else Intset (tt m t[, t2) • Intset (t[, t2 • t2) (2)

Intset (0 , 0 = 0

the évaluation of (1) results into the expression:

<(U)>#Intset(In(2, S(TC)), ® 0,

S(7t)(g)«®S(7l), 0®«®S(7t), S(7C)®). (3)

Note that (2) imposes that both tx and t2 are éléments of HUT. Therefore,
the application of Intset forces the évaluation of both the expressions In (2, n)
and ® 7C, 7i ®.

Implementations like (2) for our operators are operationally realistic and
easy to design. They recursively enumerate all the finite approximations we

vol. 22, n° 4, 1988

398 M. BELLIA

need. However, they are inadequate. Let us consider the expression

Intset (S (2, ® n, n ®), In (2, rc)). (4)

If we use (2) to compute (4) we could indefinitely look for some value
(different from the empty set, 0) to be computed. (2) implements a semi-
décision procedure to compute set intersection when applied to expressions
which dénote infinité sets (i. e. éléments of HUJ even if they are constant
expressions. However, as pointed out in [Bellia88], constant expressions are
combinatory formulas which dénote a special class of (possibly infinité) sets.
The class is a subclass of all the recursive subsets of éléments of HU r and,
more important, this class is closed under set intersection, that is if E and E'
are constant expressions, Intset (E, E') could be expressed by some constant
expression E". This is a conséquence of the Property 5.1 in [Bellia88] which
states that Intset, applied to two constant expressions, £1 and El, corresponds
to the computation of the most gênerai instance, Mgi, on the tuples of
Herbrand terms H\ and Hl such that

El=r\(Hl) and El = r\(H2).

Mgi is a byproduct of the unification algorithm (hence the existence of the
Mgi of two tuples of Herbrand terms is decidable), while r| is a meaning
preserving map from Herbrand terms into constant expressions. For example,
in the expression Intset (® n, 7t ®, In (2, n))> we have

El = ®KyK0 and JE2 = In(2, TU).

By Property 5.1 and because

® n, n ® = r) (x^y) and In (2, %) = T\{Z, z),

Intset (® n, 7t®, In (2, n)) corresponds to the computation of the Mgi of
the tuple x, y with x, x, i. e.

Intset(® 7is TC®, In(2, n))^V[{x, x),

and because

In (2, 7t) = r|(x, x),

Intset (® 7i, n®, In (2, 7i))=In(2, TC).

The expression Intset (® TC, n ®, In (2, n)) should be reduced to the constant
expression In (2, n) which, according to ^ , could be further reduced to the

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 399

constant expression <0^0>«In(2? S (71)). It computes as (3) involving only
constant expressions.

As another example, consider the expression (4).

£1=S(2, ® ji, rc®) and £2=In(2, rc),

then by Property 5.1 and because

S (2, ® n9 % ®) = T] (x, S (y))) and In (2, n) = i\ (z9 z\

Intset(S(2, ®n, K ®) 5 In (2, xc)) = 0

since the Mgi of x, S (y) and z, 2 does not exist.
The problem is that many relevant properties, which could be deduced

from the axiomatization of our set operators and which relate Intset to the
other operators, are lost in the brute force implementation of Intset by (2).
We would like to have an implementation for Intset such that, for each tuples
of Herbrand terms,

Hl=hlt ...,/*„ and

if there exists Mgu 9 such that:

then

otherwise, Inset finitely computes 0 . This means: firstly, that évaluations of
Intset compute finitely when applied to constant expressions, and finally each
class of congruent constant expressions has some representantive, i. e. normal
form. Inset computes these representantives.

We give it in two different ways. The first solution is based on the existence
of the function pe. It is a weak form of r\ "1 and associâtes to each constant
expression (including expressions which contain applications of •, Pr and
constructor inverses) a finite structure of Herbrand terms which (according
to the set interprétation of Herbrand terms [Bellia88]) dénotes the same set.

Moreover, pe is unique, and therefore it maps all the constant expressions
which are « -congruent into the same structure of Herbrand terms. Hence,
we can use the Mgi, computed by a straightforward simplification of the
unification algorithm, to implement Intset. This solution will be considered
in Sections 3 and 4.

vol. 22, n° 4, 1988

400 M. BELLIA

Moreover, we will see that constant expressions have normal form. Thus
we can reduce constant expressions to normal forms and, then compare
normal forms to décide if two different constant expressions compute the
same set. A rather different solution to the implementation of Inset exploting
normal forms, is proposed in Section 5.

3. HERBRAND TERMS AND CONSTANT EXPRESSIONS

We introducé the function pe. It associâtes to each constant expression
which does not contain applications of •, exactly one tuple of Herbrand
terms. The tuple dénotes the same set which is denoted by the constant
expression. For instance, each n which occurs in a constant expression is
mapped into a different variable symbol. Moreover, pe maps applications of
• into finite séquences of tuples of Herbrand terms. We will dénote séquences
of tuples of Herbrand terms by the séquence operator +.

DÉFINITION 3.1 (pe):

1- (constructors of arity 0)
pe(c) = c.

2- (application of < — »
p e « c l s . . ., c B » = pe(c1)> . . ., pe(cn).

3- (m and 0)
Pe(7l)=X,

4- (application of •)

p.(E± m . . . •£n) = pe(

5- (application of ® — ®)

where if
p.(£1) = ffl1+ . . . + H l m l , . . ., pe(£n) = tfn1+ . . . + H nmn

then,
k — m 1 x . . . x mn and, for each wÏ9 . . ., wn,

such that Wi=Hij for some;e[l, mil,

Ht = wu . . ., wn for some /e[l, k].

6- (application of In)

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 401

where if

p.(£)=iî'1 +...+H'.

then

Hj is the tuple which contains k times the tuple H) (i. e. Hj=Hp . . ., H'j).

7- (constructors of arity > 0)
Pe(cfco;£))=^i+

where if

P . (Ê) = H ; + . .

with H\ such that

then

H~tl9 . . .

8- (constructor inverses)

Pe(

where if

with iï- such that:

then

Hi = h> •

— H\ = tu . . .

then

where x l5 . . ., xfc are fc different variable symbols and,

t; = tP[x<-cfc(x ls . . ., xk)]

— Ht — 09 otherwise.

(t[x «- /Ï] is the term t where each occurrence of x is replaced by ft).

9- (application of Pr)

vol. 22, n° 4, 1988

4 0 2 M. BELLIA

where if

pe (£) = # ; + . . . + # ; with H'i

such that:

— H\ = tu . . ., tj-l9 tp . . ., tj+k-l9 . . -, tm and for no re[l, m], tr =

then

Hi = tp . . . , tj-+fe_x

-H'i = tu . . ., £,-_!, £,, . . ., tj.+jk-i, . . ., tm and for some re[l, m], £r = 0

then

10- (application of Pe)

where if

p e (E H H ; + . . . +H'„ with Hi = tlf . . ., tk

then
i/f = tw1? . . . > fwfc.

Example 3.1; Let C = {NIL0, S t, CONS2}, the computation of

pe(cons2(l, cons2(4? S l | (4 , Pe(l 3 4 2 5, ®In(2s n), n, n,n

proceeds as follows:
- cons2 (1, cons2 (4, S l | (4, Pc(l 3 4 2 5, <g> In (2, x), ^ z, w <g>))));
- cons2 (1, cons2 (4, sx | (4, Pe (1 3 4 2 5, x, x, ƒ, z, w))));
- cons2(l, cons2(45 8^(4, x, y, z, x, w)));
- cons2(l> cons2(4, s^xY), y, z, xj_, w));
- cons2(l, Si(x_l), j , z, C0NS2(xl, w));

- COiVS2(Si(xl), Z), z5 COJVS2(xl, w));

Note that the resuit is a triple of terms.

PROPOSITION 3.1: Under the interprétation of the séquence operator, +, as
set union, pe is a meaning preserving map, that is pe(E) = Ht +. . . +Hn

implies that for each MGHUJ, U is a member o f E if and only if u is a ground
instance of Ri for some ie[\, n], i. e. pe(£) and Hx + . . . +Hn dénote the same
set.

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 403

Proof: In the case of constant expressions which are 0 or n or 0-arity
constructors, or < — > applied to 0-arity constructors, it is immédiate to
prove that each ground Herbrand term is ground instance of pe(£) if and
only if it is a member of E.

To prove the Proposition in the other cases, we can use induction on the
structure of constant expressions. Moreover, note that + cornes from the
présence of applications of •, and • is an endomorphic operator on HU*.
Therefore each E containing k applications of • can be expressed by
E1 • . . . • £ k such that each E i does not contain applications of •.

Assume El9 . . ., En be constant expressions which do not contain applica-
tions of •, i. e. pe (Et) = H'i9 and such that Et and H\ dénote the same set.
Then

4 - p e (£ 1 « . . . # £ n) = H; + . .
and,

Exm...mEH and # ;

dénote the same set because of the définition of #, the interprétation on +
and the assumptions about the components E{ and H\.

5 - PeCOEi, . . ., En®) = H\, . . ., Hk9 where H\, . . ., Hk is a tuple of
Herbrand terms, and from the définition of ® — ® immediately follows that
® Eu . . . , £ „ ® and H\, . . ., H'k dénote the same set.

In case of In, cfc and Pe, cases 6, 7 and 10, the proof proceeds exactly as
in <g> — ®.

We show now the proposition in the case of constructor inverses. The
proof is similar in the case of Pr.

8— pe(ckl(j, Ei))=Hi where Ht is such that:

— u H't = tu. . ., £,•_!, C\(tp. . ., ^ + f c _ 1) , . . ., tm

then Ht = tu . . ., tj^u tp . . ., tj+k_u . . ., tm, and by définition of c k | , u is
a member of ck | (/, E{) if and only if u has the form
<«!, . . ., iij..!, M7-, . . ., uj+k_u . . ., wm> and for each i^[/, j + fc-1], M£ is
member of the projection of cfc j (ƒ, £;) on Ï, i. e. wf is a ground instance of
the i-th component of the tuple H\, and hence of H(. Furthermore, for each
ie\j9 j + k — 1], ut is the (/—; + l)-th argument of an application of ck9 hence
u{ is a ground instance of ^_ J + 1 .

— if H- = tl9 . . ., t ;_ l s x, . . ., tm then by définition of cfcj,, u is a member
of ckl(j9 Et), if and only if u has the form <u l5 . . ., w7-_l5 MJ, . . . ,
uj+k-u • • • s w m) a n d there exists a ground instance v~vu ...9vjy

vj+k9...,vm of if̂ such that u~vt for each i$\j9j + k — 1] and,

vol. 22, n° 4, 1988

404 M. BELLIA

Vj=Ck(up . . ., «,•+*_!). But if such an instance exists, let 9 be the ground
instantiation function.

Then the function ô' such that 9' (xt) = ui_y+1 for each variable in
{xl5 . . ., xk}9 and 9'(x) = 9(x) otherwise, is a ground instantiation function
of H and is such that H.§' = u.

Note that, in constrast to rj, pe is unique. This is due to the following
property on Herbrand terms.

PROPERTY 3.1: If h and h' are two Herbrand terms, h.§ = h'.§ for each
(ground) instantiation function S, if and only if h is a renaming of h\

Therefore the following proposition holds.

PROPOSITION 3.2: For each pair of constant expressions E and E':

E & E' iffpe(E) equals pe(£0 tnodulo a variable renaming.

Proof: Follows immediately from Proposition 3.1 and Property 3.1.

PROPOSITION 3.3: For each pair of constant expressions, Ex and E2, such
that

p e (£ 1)= i f 1 +. . . +Hnl and pe(E2) = H't + . . .
then

intset (El9 E2) =

where

is such that:
Vie[1, ni], V/e[l,n21,

3 Mgu 9 ij such that Ht. 9 is = Hj. S ij ijfjT fli' = H{. » i, /or 5ome fe G [1, n 3].

Proo/* Follows immediately from Property 5.1 on Intset [Bellia88] and
from Proposition 3.1.

4. THE MOST GENERAL INSTANCE OF HERBRAND TERMS

Proposition 3.3 states that, in order to implement intset on constant
expressions, we can map the expressions into the corresponding (finite)
séquences of tuples of Herbrand terms. Then, we compute the most gênerai
instance, if any, of each pair of tuples respectively in the first and in the
second séquence. Finally, we apply the function r| to each instance and collect

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 405

them through applications of •. Note that, the spécifie function chosen for r|
is unessential to the approach.

We reformulate the Robinson's Unification Algorithm in order to compute
only the most genera! instance of two tuples of Herbrand terms.

DÉFINITION 4.1 (Most genera! instance of tuples of Herbrand terms, Mgi);

1. Let pl9 . . ., pn and qu . . ., qn be two tuples with no colliding variables
[that is, intersection of var (px) \J . . . U var(/?„) with var(q1) U • • • U var (g„)
is empty], otherwise a renaming is provided.

2. If for each fe[l, n], Pi = qt then stop with r\(px, . . ., pn).

3. Otherwise, let tp and tq be the first two sub-terms (in left-to-right and
top down visit of lists) which are different:

3.1. if one of them is a variable, let tp be the variable of name x:

(a) if tq is a term different from a variable and is not containing x, then

replace each pt with p{ [x «- tq] and

each qt with q([x <~ tq]

(b) if tq is a term different from a variable and is containing x, then stop
with 0

(c) if tq is the variable of name ;/, let w be a new variable name, then

replace each pt with pt [x, j> <- w] and

each qi with qt [x, y +- w].

3.2. otherwise: Itop with 0

4. Repeat steps 2. and 3.

PROPOSITION 4.1: Let

Hl=hll9 ...,hlk and H2 = h2l9 . . ., hlk

be two k-tuples of Herbrand terms and,

f-max{ü(fcU v(h2j) \ ije[h k]}9

where v(h) is the number of variable occurrences in the term h;

c=max{c(h\ù, c(h2j) \ ije[h k]},

where c(h) is the number of constructors in the term h;

x=mnx{VD(Hl), VD(H2)},

vol. 22, n° 4, 1988

4 0 6 M. BELLIA

where VD(H) is the number of différent variables symbols occurring in the tuple
H, then ifthere exists Mgi(iï 1, H 2), it is such that:

CD(Mgï(Hh H2)) ^ ((f + l) * " 1 ,c)

where CD(H) is the number of constructors occurring in the tuple H.

Proof: It is a conséquence of the occur-check given in steps 3.1a and 3.1b
of the Mgi algorithm. At each step 3, either the tuples structure are left
unchanged by 3.1c (only a variable renaming is produced) or some variable
y is replaced by a term tp such that c(tp) ^ (f + l ^ c and r ^) ^ (x —l)-r, if
y has been produced in the current term after r applications of step 3 to that
term.

Example 4.1: Let us consider the computation of:

Intset(ïn(2, n)9

pe(In(2, n))=x2_y, pe(® n9 n<g)) = x, x

by Mgi stepl (renaming):

P»P2 = xl,y, ql9 q2 = x2, x2

step 3.1 c:

step 3.1c:
p1,p2 = w21wl} ql9 q2 =

step 2:

stop with r\ (w2, wl\

which (according the définition of r\) results In (2, n).

4.1. An example of évaluation based on Mgi

Defined peï i\9 and the Mgi algorithm, we can now complete the language
semantics with the following operational semantics for our operators.

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 4 0 7

In order to evaluate the expression E = op (El, . . ., En), where op is the
primitive operator:

•: We compute El. KEI results different from 0 , then we return it and
the compilation of op(£2, . . ., En) is suspended until a further évaluation
of E is required. Otherwise, the évaluation proceeds with op (E 2, . . ., En)
if n > 1, or returns 0 .

< — >, ® — ®, cfc5 e*!, Pe, Pr, In: We compute each Ei in order to obtain
a constant expression.

Intset: If n > 2, we arbitrarily select a pair of arguments, E i and Ej, and
replace it with the constant expression resulting from the computation of
Intset (E i, Ej).

If n = 2, we compute both E1 and £ 2, which, due to the implementation
of •, could result in a constant expression (which does not contain •) and in
a suspension. If a suspension is returned, a corresponding suspension is
generated for Intset. In any case, pe is applied to the constant expressions
resulting from the évaluation of E 1 and E 2, and then the Mgi algorithm is
applied to the resulting tuples of Herbrand terms.

We return the result of Mgi (and, possibly a suspension).

Note that in this semantics all the primitive operators are lazy. Moreover,
computations are driven by the request for a value which possibly results in
a data and a suspension. The suspension is activated if the computed data is
not sufficient for the request.

As an example, consider the following program

where

Intset (w, Pe (13 2, <g> In (2, n), 0 <g>)) = u,

S(2, S(3,FADD(w'))) = i>

where

S i (2, S i (3, 2» = w', Intset (w, S (2, S (3, ® n, n, n ®))) = z.

It defines a function from HUf to HUf, which is the retraction [Bellia88]
for the predicate ADD, defined by the following PROLOG-like program
[Kowalski74]

ADDQc, 0, x)<-. , ADD (x, 5 Q), S (z)) <- ADD (x, y). (5)

vol. 22, n° 4, 1988

408 M. BELLIA

In SuperLOGLISP [Berkling82], ADD can be defined by the following
program

A D D - { O , 0, z> | x = z}U{<x9 S (y), S(z)> \ ADD(x, y, z)}. (6)

The expression FADD(® S (n), S (0), n®) corresponds to the query ADD
(S (x), S (0), z), and Us évaluation proceeds as follows.

1. by Y and p réductions:

umv where

Intset (® S (TC), S (0),n®, Pe(13 2,

S (2, S (3, FADD(w0)) = i?

where

S 4 (2, S i (3, z)) = w7, Intset(® S (n)9 S (0), TI ®, S (2, S (3, ® TC, K, n ®))) = z.

To compute umv, we compute u which is bound to:

Intset(® S(ÎC), S(0), TC®, Pe(132» ®In(2, n), 0®),

which

2.

then,

0

i contains only

by Intset:

• V where

constant expressions. Then

pe(® S(TI), S (0), n ®) = S (x), S(0), z,

pe(Pe(13 2, ®In(2, n), 0®)=x, 0, x

Mgi(S(x)5S(0), z)x,Osx) = 0

S(2,S(3,FADD(W'))) = v

where

Si(2 5 S i (3 , z)) = w', Intset(® S(re), S(0), n®, S(2, S(3, ® TE, ÏC, n ®)))=z.

0mv is reduced to v, and the computation proceeds through the computation
of v. Variable v is not bound to a constant expression. Therefore

Informatique théorique et Applications/Theoretical Informaties and Applications

OPERATIONAL SEMANTICS 4 0 9

3. Y and p réductions:

S (2, S (3, x)) where

umv = x where

Intset (w', Pe(13 2, ®In(2, n), 0®) = w,

S(2,S(3, FADD(W")))=Ï;

where

SJ(2, S 1 (3, z)) = w",

Intset (w', S (2, S (3, ® TI, n, rc®))) = z

where

Si(2,Si(3,z))=w',

Intset(® S(TC), S(0), TE®, S (2, S (3, ® n, n, TC

To compute u we have to compute

Intset(v/, Pe(132, ®In(2, n), 0®),

but w' is not bound to a constant expression. Therefore

4. by intset:

pe(® S (7i), S (0), n ®) = S (x), S (0), z,

pe(S(2?S(3,

Mgi(5(xX5(0Xz? x,S(y),S(z))^S(l, S(2, S(3, ®7T, 0? TC

then,
S(2,S(3,x))

where

U9V — X

where

Intset (w', Pe(13 2, ®In(25 TC),

where

Si(2,S|(3,z))=w",

Intset (w', S (2, S(3S ® n9 n, n®)))=z

where

S |(2, S |(3, S(l, S (2, S (3, ®7c,0, n®))))

vol. 22, n° 4, 1988

410 M. BELLIA

then
5. by intset:

Pe(S 1(2, S 1(3, S(l, S (2, S (3, ®TI, 0, ic ®)))))= S (x), 0, z

pe(Pe(1325

Mgi(5(x), 0, z, x, 0, x) = S(l, S(3, Pe(132, ® In(2, ÎC), 0®

then,
S(2,S(3,x))

where
S(l, S (3, Pe(132, ®In(2, TC), 0® • u = x

where

S(2,S(3, FADD(w"))) = »
where

Sl(2, S1 (3, z)) = w",

Intset (w\ S (2, S (3, ®TC, n, TC®)))=Z

where

S j(2, S 1(3, S(l, S(2, S(3, ®TC, 0, 11®)))) = ^

which results into the value:
S(l, S(2, S(3, S(3, Pe(132, ®In(2, n), 0®))))),

and into the suspension:
(2, S (3, x))

where
S(2)S(3,FADD(w")))=x

Sj(2,Si(3,z)) = w",

Intset (w\ S (2, S (3, ®TI, it, TC®)))=Z

S 1(2, S 1(3, S(l, S(2, S(3, ®TC, 0, *®)))) = w'.

Note that in step 4 Intset reduces z to the expression S(l, S (2, S (3, ® 7i,
0, 7i ®)) which is just the set of all the triples in S (x), S (0), z which are also
in x, 5 (y), S (z). In a SLD resolution [Apt82] of ADD(S(x), S(0), z) with
(5), step 4 corresponds to résolve ADD(S (x), 5(0), z) with the second clause
in (5) and to unify the terms: S(x) with x, and 5(0) with S (y),
and z with S(z). In e-reduction [Berkling85] of ^\DD(S(x), 5(0), z) with

Informatique théorique et Applications/Theoretical Informaties and Applications

