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NONUNIFORM COMPLEXITY CLASSES SPECIFIED BY LOWER
AND UPPER BOUNDS (*)

by José L. BALCÂZAR (*) and Joaquim GABARRÔ (*)

Communicated by J. DIAZ

Abstract. - We characterize in terms of oracle Turing machines the classes defined by exponential
lower bounds on some nonuniform complexity measures. After, we use the same methods to giue a
new characterization of classes defined by polynomial and polylog upper bounds, obtaining an
unified approach to deal with upper and lower bounds, The main measures are the initial index,
the context-free cosU ond the boolean circuits size. We interpret our results by discussing a trade-
off between oracle information and computed information for oracle Turing machines.

Résumé. - NOMS caractérisons en termes de machines de Turing avec oracles les classes définies
par des bornes inférieures exponentielles pour des mesures de complexité non uniformes. Nous
utilisons ensuite les mêmes méthodes pour donner une nouvelle caractérisation des classes définies
par des bornes supérieures polynomiales et polylogarithmiques, obtenanrainsi une approche unifiée
pour les bornes inférieures et supérieures. Les mesures principales sont Findex initial, le coût
grammatical et la taille des circuits booléens. Nous interprétons nos résultats en étudiant, pour les
machines de Turing avec oracle, la relation entre l'information due à Voracle et l'information
calculée par la machine.

I. INTRODUCTION

There are two fundamental aproaches to complexity theory, known as
"uniform" and "nonuniform". The uniform approach considers each problem
as a global object and measures the amount of resources needed to solve it
using models of computation usually equivalent to Turing machines. The
nonuniform approach considers finite approximations to the problem and
measures the complexity of these approximations. This nonuniform approach
uses computational models adequate to the finiteness of the approximations.
The most widely used model is the boolean circuit model [20]. Many other
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178 JOSÉ L. BALCÂZAR, JOAQUÏM GABARRÓ

models of nonuniform complexity measures exist, as the initial index [11] or
the context-free cost [6].

Many connections exist between uniform and nonuniform
measures [1, 4, 16, 20]. These papers are mainly devoted to the study of
classes defined by small (for example polynomial) upper bounds on the
uniform resources and/or the nonuniform complexity.

We investigate here the connection between uniform and nonuniform
models for problems requiring a high amount of resources. Several interesting
results can be shown about high lower bounds on different nonuniform
models:

— Consider the initial index (11] {see définitions below). To prove exponen-
tial lower bounds for problems is not difficult: the two type-parenthesis
language has an exponentially growing initial index. The same happens with
the set of palindromes over an alphabet of at least two letters. It is also
known [22] that almost all languages in S" have an initial index of

II V lln
(1-e).-

— Consider the context-free cost. For almost all the languages in E" a
similar bound as the one above has been established in [12]. Another interest-
ing property regarding context-free cost appears in £10]. It is shown there
that the set of words containing an square is not context-free; actually, the
proof shows that this set has exponential context-free complexity.

— Consider the boolean circuit complexity [20]. It is well known (see [13])
that almost all boolean functions of n variables need

2M

(1-8).-
n

gates to be synthesized.
This set of facts induces us to consider the classes defined by exponential

lower bounds on these nonuniform measures. We give a characterization of
these families in terms of oracle Turing machines. As usual {see [1]) the
oracles are used to "break up" the uniformity. These results are presented in
section III; section II is devoted to basic définitions and facts.

In section IV we give new characterizations of the classes defined by upper
bounds. These characterizations use methods similar to the methods employed
in the previous section. Here we approach the problem from the view point
of the "quantity" of oracle as opposed to the approach of the "quality" of
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NONUNIFORM COMPLEXITY CLASSES 179

oracle taken in [1]. With these new characterizations, iower and upper bounds
adopt a very similar treatment and appear as dual forms of the same
phenomenon. We close this paper with a short section of conclusions.

n. PRELIMINARIES

We assume the reader familiar with the basic concepts of Formai Language
Theory. Problems are encoded as subsets of words over a fixed finite alphabet
S consisting of at least two symbols. Hence a language is a subset of S*.
Computational models are finite automata, pushdown automata, and time
or space bounded Turing machines, in their respective deterministic or non-
deterministic versions. Relativized computations are performed by oracle
Turing machines which query the oracle in one step about words written in
a special oracle tape.

On-line machines are also used. In these machines the input tape head is
only one-way, and the machine is not allowed to read back its input. For
this model we assume that the length of the input is given to the machine in
binary on a separate read-only tape. For undefined notions see [15].

We study the following nonuniform complexity measures:
— Given a language L, its initial index [11] is given by the function aL{n)

whose value is the size (L e., number of states) of the smallest nondeterministic
finite automaton accepting exactly L n £"•

— Given a language L, its context-free cost [6] is given by the function
c/z/(rc) whose value is the size (i. e., number of rules) of the smallest context-
free grammar accepting exactly L H 2".

— Given a language L, its boolean size complexity or combinational
complexity [20] is given by the function cL(n) whose value is the size (i.e.,
number of gates) of the smallest boolean circuit with fan-in 2 synthesizing
the characteristic function of L O £"•

Other simüar functions, like branching program size [24], boolean formula
size [20], and circuit depth [20], will be introduced in section IV,

III. EXPONENTIAL LOWER BOUNDS

In this section we characterize the classes defined by exponential Iower
bounds on the nonuniform complexity of the languages. Our notation for
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1 8 0 JOSÉ L. BALCÂZAR, JOAQUIM GABARRÓ

orders of magnitude follows [23]; see also [2] and [17]. It is as follows:

NOTATION: Given a function ƒ, we dénote:

(1) O (ƒ) is the set of f unctions g such that for some c>0 and for ail but
finitely many n, g(n)<c.f(ri).

(2) o (f) is the set of functions such that

(3) DQO(/) is the set of functions g such that for some c>0 and for
infinitely many n? g(n)>c.f(n).

(4) GO (ƒ) is the set of functions g such that

lim sup = oo.
«-«, ƒ(»)

(5) The family of functions with an exponential lower bound ("expo-
nentials" for short) is

c > 0

(6) The family of subexponentials is

c>0

It is not difficult to prove that the following fact holds. Related facts and
discussions can be found in [2].

Fact. o(exp) = O(2o(n))

Let m be a nonuniform complexity measure associating to every language
L a function mL, such as the ones defined in section IL The family of sets
having exponential lower bound on m is:

m(Q^(exp)) = {L\mL(n)eQo0(exp) }.

We can also define classes by considering subexponential upper bounds.

The family of sets having subexponential upper bound on m is:

m (o (exp)) = { L | mL (ri) e o (exp) }.

Infonnatique théorique et AppHcations/Theoretical Informaties and Applications



NONUNIFORM COMPLEXITY CLASSES 181

Denoting by P(D*) the powerset of E*, the following holds:

Fact 1

(1) m(Q

(2) m (Qœ (exp)) Hm (o (exp)) = 0 .

There is no full agreement in the literature about the "correct" définition
of space bounded oracle machine; several définitions have been proposed,
bounding in different ways the oracle tape. See [19] for a discussion and a
smart proposai. We take here the position of expliciting a bound on the
oracle tape, which may or may not coincide with the worktape space bound.

Thus, in order to give the characterization in terms of Turing machines,
we introducé some simple notation. Consider the oracle Turing machine
model; it présents two very different memory devices: work tapes and oracle
tape. A bound on the work space available imposes a limitation on the
calculation capabilities of the machine, whereas a bound on the oracle tape
imposes a bound on the amount of external help obtained by the machine.
We dénote:

V (Space (Q^ (n)) v Oracle (Qœ (n)))

the class of ail sets L such that for every machine M and oracle A with
L = L(M, A\ either the work space or the oracle tape used by M are in
Q^ (n). Dually, we dénote

3 (Space (o (n)) A Oracle (o (n)))

the class of ail sets L such that there is a machine M and an oracle A with
L = L{M, A), such that both the work space and the oracle tape of M are
bounded by fonctions in o (n).

This notation is not standard. A notation like Space, Oracle ( ƒ, g) for
the class that we call 3 [Space (ƒ) A Oracle (g)] would match better standard
expressions like Time-Space (t, 5). However, it is not easy to design a clear,
coherent notation for classes specified by lower bounds, like
V [Space(Qœ ( ƒ)) v Oracle (Q^ (g))]. We choose to use dual notations for upper
and lower bounds, instead of sticking to a more classical notation for upper
bounds and designing a different one for lower bounds.

The following very easy fact will be called "duality principle". Similar
duality principles for other measures will be introduced later on.
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Fact 2

Given any set L,
L e V (Space (Q^ (n)) v Oracle (flœ (n))) if and only if
L $ 3 (Space (o (n)) A Oracle (o (n))).
Now we prove the relationship between exponential initial index and the

oracle Turing machine classes as given in the following theorem.

THEOREM 3; For initial index and nondeterministic on-line oracle Turing
machines:

( 1) a ( Q . (exp)) = V (Space (Qœ (n)) v Oracle (Uœ (n)));
(2) a (o (exp)) = 3 (Space (o (n)) A Oracle (o (n))).
Proof: We start by proving (2). Then (1) follows from the duality principle

and lemma 1. Let L be a language with subexponential initial index. We
construct an oracle D and a machine M with sublinear space bounds, such
thatL = L(M, D).

Construction ofD

For each n, let An be a finite automaton defined by

where gn can be assumed to be {0, 1, 2 . . . }, such that L(An) = LCMt
n and

| |ôn | |e0(20 ( n )). As a conséquence a sublinear number of bits suffices for
encoding each state of Qn. Define the oracle D by:

D = {n#x#i#j#u\jebn(U x)and«=if/eFnthenlelse0}

where n, i and j are written in binary. Observe that the words in D have
sublinear length, because the code of n is logarithmic and the codes of i and
j are sublinear.

Construction of M

Machine M will simulate An on inputs of length M. This is done by storing
in the work tapes the current state i and the next state j . M obtains j from
the oracle by guessing it and querying the oracle about words of the form
n # x # f # 7 # u . Both the work tapes and the oracle tape are bounded by
max {log2 n, log21| Qn \\} e o (n).

Conversely, let L = L(M, D) where M has k work tapes with a sublinear
space bound. Consider the automata An having states of the form < q, c0, cw >?

where q is a state of M, c0 is a configuration of Afs oracle tape, and

Informatique théorique et Applications/Theoretical Informaties and Applications



NONUNIFORM COMPLEXITY CLASSES 183

cw = < cx . . . ck > is a configuration of the fe work tapes. As M has a sublinear
space bound, the number of configurations in each work or oracle tape is in
O (20(n)). Hence the number of states of An is in O (2o(n)). Transitions among
the states are defined by mimicking the transitions of M. Observe that the
automata read the input correctly since M is on-line. It is immédiate that
L(An) is then L O £n; hence aL(n)e0(2öW). This complètes the proof. •

We consider now the on-line versions of the auxiliary pushdown automata
defined in [9]. See also [5] and [8], The conventions regarding space bounds
on the work tapes and/or oracle tape are as before. Note that there is no
bound on the size of the pushdown store. Intuitively speaking, the theorem
we prove amounts to adding a pushdown to "both sides" of the previous
theorem.

The corresponding notation for denoting linear lower bounds for this
computation model is as follows:

V (Space (Q^ (n)) v Oracle (Qw (n)), Pushdown)

dénotes the class of all sets L such that for every auxiliary pushdown machine
M and oracle A with L = L(M, A), either the work space or the oracle tape
used by M are in Q^ (n). Dually, we dénote

3 (Space {o (n)) A Oracle (o (n)), Pushdown)

the class of all sets L such that there are an auxiliary pushdown machine M
and an oracle A with L = L(M, A), such that both the work space and the
oracle tape of M are bounded by functions in o (n).

An obvious duality principle, similar to the stated above, holds:

Fact 4

For any set L,
LeV(Space(Q00(n))vOracle(Q00(n))5 Pushdown) if and only if
L £ 3 (Space (o (n)) A Oracle (o (n))> Pushdown).
Using these classes we obtain a characterization of the languages having

exponential context-free cost. We state first some auxiliary définitions and
lemmas. From now on, "grammar" is to be understood always as context-
free grammar.

Given a grammar G, we define its size as the number of rules it contains,
and dénote it by || G||. For a rule p = v^> w of G, its length, denoted by \p\,
is defined as \w[ The length o f a grammar, denoted by |G| , is the sum of
the lengths of all its rules.

vol. 23, n° 2, 1989



184 JOSÉ L. BALCÂZAR, JOAQUIM GABARRÓ

Given a pdaP, we define its size \\P\\ as the number of states, and its
length | P | as the sum of the lengths of its transitions, where the length of a
t ransi t ion (q, u, Z)V(q\ Zx. . . Zr) is just \quZq/Z1 . . . Zr\

The next lemma proves that we can define equivalently context-free cost
in terms of lengths of grammars or lengths of pda's.

LEMMA 5: For any L, the following are equivalent:

(1) There exists a succession of grammars Gn with L(Gtt) = Lr\1Ln such that
|[ G„ || e O (2-<">).

(2) There exists a succession of grammars Gn with L(Gt)^LC\Hn such that

|Gn|e0(2°<">).

(3) There exists a succession of pda's Pn with L{P^)~LC\Hn such that
|Pn |eO(2o(n )).

Proof: (1)=>(2). Transform each Gn into an equivalent G'n without rules
v -» X. This can be done with small overhead. In the grammar G'n every rule
v -> w has length |u[ + | w | g n + l. Hence the length of Gf

n is in n.2°(n) = 2°(B>.

(2) =>(3). Consider a pda having transitions of the form

(q, X, v)Hq,

for each rule u-^wof the grammar and each terminal symbol x. It has the
same length as the grammar.

(3) =>(1). As every transition in a pda allows to reach at most one new
state, the number of states is also bounded by 2°(n). The classical construction
of Ginsburg [15] gives a grammar Gn of size || Gn \\ e O (2°(n)). •

Observe that the size of the pda constructed above from a given grammar
is L In order to relate the size of the pda to the context-free cost of L, we
introducé the following construction: given a pushdown automaton for L O 2"
it is easy to obtain another pushdown automaton;, with stack alphabet
Zn = { 0, 1}, where the pushing rules are of the types

(u «, o) -̂  o;

Informatique théorique et Applieations/Theoretical Informaties and Applications



NONUNIFORM COMPLEXITY CLASSES 185

We call such automata normalized. The relationship between context-free
cost and the number of states of a normalized automaton is given by:

LEMMA 6: The following conditions are equivalent:

(1) cfL(n)eo(exp).

(2) There exists a succession of normalized pda P„, with sets of states Qn

such that Pn accepts L C\ £", and ]j Pn jj e o (exp).

Note that, by duality, the sets L with cfL (n) e £lm (exp) can be characterized
anaiogously in terms of the number of states of every succession of normalized
pda recognizing L O 2".

Now we can state our announced characterization:

THEOREM 7: For context-free cost and nondeterministic on-line auxiliary
pushdown machines:

(1) c/(Q00(exp))=V(Space(Q00(n))vOracle{D00(«))) Pushdown).
(2) c/(o(exp)) = 3(Space(o(n))AOracle(o(n))5 Pushdown).

Proof: (1) will follow from (2) by duality. We must prove (2), Let L be in
cf (o (exp)). There exists a succession of normalized automata Pn with sets of
states of cardinality || Qn j | e O (20(w)). Define the oracle D by:

D = { n # i # x # Z 1 # j # Z 2 # Z 3 | ( i , x, Z^hO', Z2, Z3)is a rule of Pn}.

Then i and j are always of sublinear length. The simulation by an auxiliary
pushdown machine follows the same ideas of theorem 3; the pushdown of
Pn is simulated by the auxiliary pushdown.

Reciprocally, assume that L = L(M, D) where M is a sublinear space
bounded auxiliary pushdown machine. Without loss of generality, we can
assume that M uses ïts pushdown in the same way as a normalized pda.
Consider as states of the pda tuples describing configurations of the work
and oracle tapes of M. As the length of each tape is o{n\ the number of
states is O (2°(B)). The transitions of the pda simulate the computation of M
over inputs of length n. •

Our last result of this section relates exponential boolean circuit complexity
with a class defined in terms of time and oracle space bounds of Turing
machines. Define the following notation.

V (Time (Qœ (exp)) v Oracle (QTO («)))

denoting the class of all sets L such that for every oracle Turing machine M
and oracle A with L = L(M, A), either the running time is in ̂ ( e x p ) or the
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amount of oracle tape used by M is in Q^ (ri). Dually, we dénote by

3 (Time (o (exp)) A Oracle (o (ri)))

the class of ail sets L such that there are an oracle Turing machine M and
an oracle A with L = L (M, A), such that the running time of M is bounded
by a function in o (exp) and the oracle tape of M is bounded by a function
in o(ri). Again we can state a "duality principle":

Fact 8

For any set L,

LeV(Time(Q^ (exp)) v Oracle(Q^ (n))) if and only if

L $ 3 (Time (o (exp)) A Oracle (o (n))).

Using these classes we prove the following:

THEOREM 9: For circuit complexity and deterministic Turing machines:

(1) c (Q^ (exp)) = V (Time (fl . (exp)) v Oracle (O* (»)))•

(2) c (o (exp)) = 3 (Time (o (exp)) A Oracle (o (n)).

Proof: Again we only prove part (2); (1) will follow by duality. Let L b e a
language with subexponential cost We construct a machine M and an oracle
D such that M accepts L in subexponential time using sublinear oracle tape.

Construction of D

Consider the circuit corresponding to inputs of size n. The gates can be
numbered so that f(ri) bits suffice to write down each number, with
f(ri)eo (n). The oracle contains information about the value ƒ (ri), and also
information about the connections of the circuit. The value of ƒ (ri) is needed
by the deterministic machine in order to know when to stop querying the
oracle for new gates.

Define:

D = { n # l / w } U { n # # ï # j # f c # 9 | g a t e ï of the circuit

for length n is the opération 9 over gates;, k}.

Observe that the words in D needed to find the circuit for inputs of
length n are of length o (ri), because Ï, j and k can be written down with a
sublinear quantity of hits.
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Construction of M

The machine M works in two different phases. First, it constructs on a
worktape (which we call "circuit tape") the circuit corresponding to the
length n of the input, with the help of the oracle Z), after it évaluâtes the
circuit over the input. As the number of gates is subexponential, the whole
circuit can be constructed and evaluated by levels within subexponential time.
We omit the évaluation procedure, which is well-known.

Let us present the construction of the circuit. First, the machine queries
the oracle successively about the words of the form n#V for t = l , 2. . .,
storing the current value of £ in a separate tape. A positive answer means
that the tape contains the length of the maximum number of a gâte of the
circuit ƒ (n). Then the machine queries D about all the words of the form
n# #i#j#k#Q for i, j and k ha ving length less than or equal to ƒ (n), and
each allowed binary boolean opération G. Each time a positive answer is
received, it means that one more gate is known and stored in the circuit tape.
As f(n) is in o{n\ the time employed in the construction is 0(2o(n)). This
machine accepts L in subexponential time with oracle D.

Conversely, let L~L(M, D) where M works in subexponential time and
uses oracle space ƒ (n), where ƒ is a sublinear function. Let c0 be the charac-
teristic function of D up to size ƒ (n). It is possible to construct a circuit of
subexponential size that synthesizes c0, by comparing the input with each of
the O (20(n)) words in D with length up to ƒ (n).

Now a circuit can be built for the machine M assuming no oracle queries
are made, as in [18]. The size of the circuit is the square of the running time
of M : this is

/y° (n)\2 _ 2° («) + o (») _ 2° (")

and hence is also subexponential.

Finally, combine both circuits by plugging a copy of the circuit for the
oracle into each step of the machine's computation, so that if on some input
a query is made at this step of the computation, it can be correctly answered.
The full circuit is again subexponential, and it is able to décide L for inputs
of length n. Therefore the boolean cost of L is subexponential, as was to be
shown. •
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IV. UPPER BOUNDS

Given a nonuniform measure we can define families of languages by
imposing upper bounds on the measure. In this section three classes of
functions are considered as upper bounds: logarithmic functions, polylog
[L e. (log2n)*] functions, and polynomials. For any nonuniform measure m,
the family of languages defined by polynomial upper bounds is:

m (O (poly)) = { L13 k e Nwith mL (n) = O (nk)}.

When m is the initial index, the context-free cost, or the boolean size
complexity, the families defined in this way were characterized in [1] (the last
case is due to A. Meyer). These characterizations used the notion of "sparse
oracles", with no bound set over the length of the oracle tape. Define the
class SP of all the so-called sparse oracles, as the class formed by all the
oracle sets consisting of a polynomiaily growing number of words. The
characterizations presented there were the following:

THEOREM 10 [1]: (1) Consider nondeterministic log-space on-line oracle Turing
machines; dénote NLOGon(S) the corresponding uniform class for oracle S.
Then

a(0{poly))= U NLOGon(5).
SeSP

(2) Dénote ANLOGon(S) the analogous class defined by on-line log-space
auxiliary pushdown machines. Then

cf(O (poly)) = U ANLOGon(S).
SeSP

(3) Let P(S) dénote the standard polynomial time class relativized to S.
Then

c(0(poly))= U P(S).
SeSP

Several corollaries were drawn regarding both uniform and nonuniform
complexity classes, and similar characterizations were shown for other nonuni-
form measures.

We present hère another set of characterizations of classes defined by
polynomial upper bounds, based on the space available for oracle queries,
rather than on the structure of the oracle set. We characterize also the dual
family

m (<Ö (poly)) = { L | mL (n) e © (poly)}

Informatique théorique et Applicatîons/Theoretical Informaties and Applications



NONUNIFORM COMPLEXITY CLASSES 189

for which a duality principle with m (O (poly)) can be stated.

THEOREM 11: For on-line nondeterministic oracle Turing machines.

(1) a (O (poly)) = 3 (Space (O(logn)) A Oracle (O(logn))).

(2) a(<o(poly))=V (Space (© (logn)) v Oracle (©(logn))),

Moreover, for on-line nondeterministic auxiliary pushdown machines.

(3) c/(O(poly)) = 3 (Space (O(logn)) A Oracle (O(logn)), Pushdown).

(4) cf (© (poly)) =V (Space (© (logn)) v Oracle (© (logn)), Pushdown).

Finally, for deterministic oracle Turing machines.

(5) c (0 (poly)) = 3 (Time (0 (poly)) A Oracle (0 (log n))).

(6) c(©(poly)) = V (Time (© (poly)) v Oracle (© (log n))).
wnere the classes that appear in right hand sides are defined in the same manner
as before.

The even-numbered statements follow from the odd-numbered statements
by duality principles. Proofs of the odd-numbered statements can be con-
structed by rephrasing the proofs of theorems 3, 7 and 9, adjusting the
bounds to poiynomials and checking that the necessary conditions of closure
of the class of bounding functions hold for poiynomials.

Observe that (5) [and similarly (1) and (3)] can be interpreted in the
following manner: a set L has polynomial size boolean circuits if and only if
there is an (arbitrary) oracle set A such that L is in P (A\ and the polynomial
time machine witnessing this fact uses only a part of the oracle tape which is
bounded by a logarithm. About the family a (©(poly)), it is possible to
define quite natural sets L (see [7]) such that aL (n) e 9 (nc •loa "), and hence
Lea(a> (poly)).

In [1] only poiynomials were used as upper bounds for defining nonuniform
classes. For this bound, the exact relationship between boolean formulae (or,
equivalently, circuits of fan-out 1) and branching programs is open, although
it is generally conjectured that they are not equivalent. A branching program
is a directed, acyclic graph with an initial and some final nodes. Nodes are
labeled by integers. Each internai node has exactly two outcoming edges
labeled O and 1. lts computation starts at the initial node, and at node with
label n it follows the path labeled with the value of the n-th bit of the input.
See [3] and [24], for example, for material related to branching programs.
However, the following can be proven:

THEOREM 12: A set L has polynomial size branching programs iff there is an
(arbitrary) oracle set A such that L is acceptée, by a deterministic off-line

voL 23, n° 2, 1989
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oracle Turing machine, using oracle A, with logarithmic bounds both on the
worktape space and on the oracle tape.

Proof: Let L have polynomial size branching programs. Construct an oracle
having words of the f orm n#i#j#u#k, meaning that node with code i in
branching program accepting L O £" is labeled by j , and the outcoming edge
from i labeled by u (which is 0 or 1) goes to node /c. Then a logspace machine
can simulate it by keeping the current node î and the position of the input
head in the work tapes cycling over all the words of the f orm n # i #j # 0 # k
and n#i#j#l#k un til the oracle indicates the correct one, bringing the
input head to position j on the input tape, and deciding the correct path. If
no such word is in the oracle then a final node has been reached. It is easy
to see that the required space is logarithmic.

Conversely, let M be a machine as specified, and assume without loss of
generality that M always halts. Each configuration of the machine, including
the oracle tape, is considered to be a node of the branching program. lts
label is the position of the input head in the configuration, and the edges
labeled 0 and 1 are defined by the transitions of the machine and the
answers of the oracle. The size of such branching program is polynomially
bounded. •

Let us turn for a moment to the depth of the circuits for a set. Polynomial
bounds no longer have a meaning, because every boolean function can be
synthesized with circuits of linear depth [20], In the following we consider
polylog functions and we use them to bound the depth of the circuits. If
only depth is bounded and no bound is set over the size, then there is no
différence between unbounded fan-out and fan-out 1, because fan-out may
be trivially reduced to L "unfolding" the circuit, with no incrément of the
depth. Dénote as dL the nonuniform measure which gives the minimum depth
needed to synthesize the characteristic function of L O [0, ljn.

We shall use the following well-known results about depth and size of
formulae: first, dL (n) e 0 (log cl (h)) (Spira's theorem; see [20]), where cl dénotes
the boolean complexity with ga tes of fan-out 1, or equivalently the formula
size complexity. Second, if L is in DSPACE(S) then dL(n)e0(S2 (n)) (see[4\).

Recall the standard notation of [16] for nonuniform complexity classes: a
set A is in the class C/F if and only if there is a set B in C and a function h
from {0}* to Z* whose length is bounded by a function of F, such that

xE^lifandonlyif <x, /*(0 |x |)>eR
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A very interesting situation arises when considering polylog functions and
npoiyiog functions as upper bounds. We summarize our results in the following
theorem.

THEOREM 13: The following seven classes are the same:

(1) d (O (polylog)).

(2) The class of sets having boolean formulae ofnpoiylog size.

(3) 3 (Space (O (polylog)) A (Oracle (O (polylog))), measured by off-line
deterministic Turing machines.

(4) The class

U SPACE (polylog, 5)
S e SP

measured by off-line deterministic Turing machines that use polylog work space.
No upper bound is set on the length of the oracle tape.

(5) SPACE (polylog)/npolylog, measured by off-line deterministic Turing
machines.

(6) The class of sets having initial index, measured by two-way finite auto-
mata, bounded above by a npolylog fonction.

(7) The class of sets having branching programs of npolyl°9 size.

Proof: ( l )o(2) . Immédiate from Spira's theorem.
(l)o(3) . Spira's theorem is not required here. Let L have formulae

of polylog depth. The size of these formulae cannot be more than
2Poiyiog = „poiyiog Assigning a number to each node in the formula for length
n, we can encode the formulae into an oracle D by words of the form
n#i#j#k#Q exactly like in theorem 9. We evaluate the formula using top-
down computation. A stack of polylog size suffices, because both the depth
of the formula and the size of the index of each node are bounded by a
polylog function.

Conversely, let L = L (M, D) with polylog space. The oracle can be encoded
into a polylog depth formula as in theorem 9. The simulation of the polylog-
space machine M, without queries, can be done in polylog depth by the result
of Borodin [4] cited above.

(1)<^>(4). The proof is very similar to ( l )o(3) . The only change is that
the oracle is formed by words of the form On#i#j#k#Q. It is easy to show
that such oracle must be sparse. Of course the bound on the length of the
oracle tape no longer holds; this is the only change on the accepting machine.
For the converse, it is very easy to see that sparse oracles can be encoded in
polynomial depth formulae. The results in [1] follow the same technique.
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(2)=>(5). Consider an advice function such that for each n it gives the
formula corresponding to length n. It is bounded in length by a 2polylog

function. It can be evaluated within polylog space as in the case (1)^(3).
(5) =>(3). Given the advice function h of 2polyl°9 length for L, we construct

an oracle D with words of the form n#i#u where u is the i-th bit of h (ri).
A polylog space machine M can use it to simulate the advice by keeping in
binary (in polylog space) the position i of the head on the advice, and
querying D about n#i#Q and n#i#l in order to décide each move. Both
the work space and the oracle tape are polylog.

(3)<=>(6). It is exactly like (1) in theorem 11, with the only change that
both the automata and the polylog space machines have two-way input heads.

(3) o (7). Simulations between polylog space, polylog oracle machines and
Mpoiyiog s | z e branchmg programs can be performed exactly as in
theorem 12. •

V. CONCLUSIONS

Our main results are characterizations of classes defined by upper and
lower bounds on some nonuniform complexity measure. We characterize
these classes by considering standard computational devices (oracle Turing
machines) and bounding simultaneously some resources like the work space
or the running time, and the length of the queries. The first bound is a bound
on the computational capabilities of the machine, whereas the second bound
gives an estimate of the amount of external information given to the machine.
The techniques used for the lower bound case and for the upper bound case
are very similar, and in some sense they could be unified under appropriate
hypothesis of the families of functions used as bounds. The uniform model,
the Turing machine, is made nonuniform by using the information from the
oracle. Similar results might be possible by forcing instead the nonuniform
measures to be uniform by requiring that the automata (or whatever) be
easily computable.

Previous results [1] gave other characterizations depending on the structure
of the oracle set. These results could suggest a trade-off between the amount
of work space or time and the amount of information coded by the oracle,
similar to the trade-offs known for other computational resources (like time
for space in [14]). However, our characterizations (for arbitrary oracles) in
terms of the way the machines query the oracle show that this trade-off only
holds in a very trivial way, where the two extreme situations are "almost
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everything is given by the oracle" and "almost everything is computed", and
NO intermediate nontrivial situation holds. Let us present a simple example
of this f act. Consider the language C = {w#w|we{0>l}*} of the squares
with a central separator. It is not difficult to show [11] that its initial index
is exponential. Our first theorem shows that in order to recognize this set we
need a linear amount of space. On the one side, a machine may use no oracle
space, copy w in a separate tape until the # is reached and then check that
the second half matches w; we need linear work space. On the other side, a
machine can use no work space> just copy the input in the oracle tape, and
then query an oracle for C; we need linear oracle space. By our first theorem,
we know that we can do no better: any machine for C must use either linear
work space or linear oracle space, and hence the two trivial machines just
presented are in some sensé optimal. A similar argument for auxiliary push-
down machines follows from our theorems and the fact that C has exponential
context-free cost [12], and indicates that the trivial machines outlined above
are optimal even if they are furnished with an unbounded pushdown store.

Furthermore, we have shown that this technique works for already well-
studied classes as the ones defined by polynomial upper bounds. A duality
principle can be always stated relating an upper bound with its corresponding
lower bound, and this duality carries over to the uniform characterizations.
This phenomenon provides new characterizations of classes defined by poly-
nomial and rcPQlyl0S upper bounds. Finally, we have shown that measures that
we expected to differ for polynomial upper bounds, like formula size and
branching program size, do not differ for these npoIyl°9 upper bounds. For
this family we have obtained several different characterizations. We consider
that this collection of results présents an interesting new view of the landscape
of nonuniform complexity classes.
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