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A COMBINATORIAL THEOREM ON p-POWER-FREE WORDS
AND AN APPLICATION TO SEMIGROUPS (*)

by Aldo de LUCA (*) and Stefano VARRICCHIO (*)

Communicated by J.-E. PIN

Abstract. - Some combinatorial properties of infinité words having a subword complexity which
is linearly upper-bounded are considered. The main resuit is a theorem giving a characterization of
infinité words having a linear subword complexity in terms of the number of complétions of the
factors which do not contain multiple overlaps. An interesting application of this theorem is that
the monoid of the factors of an infinité p-overlap-free word is weakly-permutable. This generalizes
previous results obtained by Restivo and the authorsfor the Fibonacd and the Thue-Morse monoids
respectively.

Résumé. — On considère certaines propriétés combinatoires des mots infinis ayant une croissance
linéaire du nombre des facteurs. Le résultat principal est un théorème caractérisant les mots infinis
possédant une croissance linéaire en termes de nombres de prolongements des facteurs qui ne
contiennent pas de chevauchements multiples. Une application intéressante de ce théorème est que
le monoïde des facteurs d'un mot infini sans chevauchement d'ordre p>0 possède la propriété de
permutation faible. Ceci généralise les résultats précédents obtenus par Restivo et les auteurs pour
les mots de Fibonacd et de Thue-Morse respectivement.

0. INTRODUCTION

The paper is concerned with the study of some combinatorial properties
of infinité séquences of letters (or infinité words) over a finite alphabet.
Infinité words can be described in terms of the factors (or subwords) of finite
length occurring in it. A relevant rôle in our analysis is played by the so-
called special factors. A factor ƒ of an infinité word wis called special if there
exist at least two distinct letters, x and y, such that fi and_/y are still factors.

(*) Received February 1988, revised November 1988.
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206 A. DE LUCA, S. VARRICCHIO

For any infinité word w one can consider two functions called subword
complexity and special-subword complexity counting for any length n, respec-
tively, the number of factors and the number of special factors of length n
occurring in w. These two functions are related as shown in Sec. 2. Cases of
particular interest are when (1) the subword complexity of w is linearly upper-
bounded, or (2) the word w is p-overlap-free (or p-power-freé), i. e. w has no
factors of the kind (uv)p u (resp. up) with u different from the empty word
and p>\.

By using some results of combinatorics on words proved in Sec. 3 it is
shown in Sec. 4 (cf. Theorem 4.1) that condition (1) is verifîed if and only if
w satisfies the following property (k-completion-property): for any fixedp>\
and f or any n and k the number of factors of Yt of length (k+\)n having a
common prefix u which is a p-overlap-free word of length n, is upper-bounded
by Dk, where D is a constant which does not depend on n.

Moreover in Sec. 5 it is proved that if w satisfies conditions (1) and
(2) then the special-subword complexity is upper-bounded by a constant
(cf. Theorem 5.2). In Sec. 6 it is shown by examples that the fc-completion-
property does not hold, in gênerai, if condition (1) is not verified. Also
Proposition 5.1 does not hold, in gênerai, if condition (2) is not verified.

In Sec. 7 we consider DOL-infinite words, i. e. infinité words such that
the set of their finite factors is a DOL-language. To this class of words
belong the Fibonacci and the Thue-Morse words in two and three symbols.
By using the previous results and a theorem of Ehrenfeucht and Rozenberg [5]
on the subword complexity of DOL- languages, one can prove that a p-
power-free infinité word having a constant distribution of the letters vérifies
the &-completion-property.

In Sec. 8 an application to semigroups of the foregoing results is shown.
We are able to construct a very large class of infinité monoids which are
weakly permutable in the sense of Blyth [2] and not permutable in the sense of
Restivo and Reutenauer [9], This construction generalizes widely the previous
results obtained by Restivo [10] in the case of the Fibonacci monoid and by
us (cf. [3], [4]) in the case of Thuç-Morse monoids in two and three symbols
respectively.

1. PRELIMINARIES

Let A be a finite non-empty sq o r alphabet and A* the free-monoid over
A. The éléments of A are usùallycaiied letters and those of A* words. The
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A. COMBINATORIAL THEOREM ON />-POWER-FREE WORDS 2 0 7

identity element of A* is called empty wordend denoted by A. In the following
we set ^4 + =^[* \{A} . For any word we A*, alph(w) dénotes the set of
letters which occur in w and \w\ the length of w. The length of A is taken
equal to 0. A language L over A is any subset of A*.

A word ƒ is & factor of a word w if there exist h, h'eA* such that w = hfh'.
If h = A (resp. h' = A) then ƒ is called a prefix (resp. suffix) of w. If h or h' are
different from A then the factor ƒ is said to be proper. For any word we A*
we dénote by F(w) the set of ail its factors. A same factor ƒ of a word w can
occur many times as a factor in w. Any particular occurrence is then determi-
ned by the pair (h, h'), or context, of A* x A* such that w = hfh'.

A word w has a period q, 0<q^ \w\, if w can be factorized as w = (uv)pu1>

with u, ve A*, p>0 and # = | uv |. Let p> 1 ; if w = A (resp. u ̂  A) then w = t>p

and we say that w is a p-power (resp. p-overlap). A word w which is a 2-
power (resp. 2-overlap) is simply called square (resp. overlap). It follows that
a word w is a square (resp. an overlap) if and only if w has a period q such
that 2#= |w| (resp. 2#> |w| ) . A word w is called primitive if it is not a
/>-power for ail /? > 1.

For any integer p i we say that the word w is p-power-free (resp. p-
overlap-freé) if F(w) does not contain p-powers (resp. /?-overlaps). If w is p-
overlap-free then it is obviously (/?+l)-power-free. A 2-power-free word
(resp. 2-overlap-free word) is usually called square-free (resp. overlap-free).

Let H, K be languages over A\ H~XK and KH'1 will dénote the sets
H-1K={weA*\Hwr\K^0}, KH~1= {weA*\wH C\K^ 0 } . For any
real number x^O, [x] and [x] dénote, respectively, the integer part of x and
the smallest integer greater than or equal to x.

An infinité word w over the alphabet A is any map w.N ^ A. We dénote
w also as:

where for any neN, wn = w(ri).
For any infinité word w, we dénote by F (Y?) the set of all its factors of

finite length. Then we say that w is />-power-free (resp. />-overlap-free) if
all the words of F(Y?) are /?-power-free (resp. />-overlap-free). We set
alph(w)= U alph(w).

ueF(w)

The subword complexity (or structure-function) of an infinité word w is the
map f^\N^N defmed for all neNas:

vol 24, n° 3, 1990



2 0 8 A. DE LUCA, S. VARRICCHIO

To give some examples we introducé now the following three important
infinité words:

f= abaababaabaab. . ., t = abbabaabbaaba. . .

m = abcacbabcbacab. . .

f is called the Fibonacci word and t and m the Thue-Morse words in two
and three symbols respectively. They can be constructed as the limit-words
obtained by iterating on the letter "a" the following three morphisms
0, n: {a, b}* -• {a, è}* and \|/: {a, b, c}* -> {a, b, c}* defmed as (cf. [1, 8]):

0 (a) = ab, 0 (b) = a, u (a) = ab, \i (b) = ba

\|/ (a) = abc, \|/ (b) = ac, v|/ (c) = b.

It is well known that f is 4-power-free (cf. [7]), m is square-free and t is
overlap-free. Moreover for any neN one has that (cf [1, 3, 4]):

2. SPECIAL FACTORS OF AN INFINITE WORD

Let w be an infinité word over the alphabet A of cardinality q> 1. A factor
^ of F(w) is called a right special factor, or simply, special factor if there exist
at least two distinct letters x, yeA such that sx, syeF(vt). We dénote by
iS(w) the set of all special factors of w and by q>w:N-> N the map defined
for all n e N as

For any neN, <pw(«) counts the number of special factors of w of length n;
we call cpw the special-subword complexity of w. The value cpw (0) can be taken
as equal to 1 since A has to be considered as a special factor. It is obvious
from the définition that any suffix of a special factor is still a special factor.

Special factors of the Fibonacci word and of the Thue-Morse words in
two and three symbols have been studied in [1] and [3, 4] respectively. It has
been shown that in the case of the Fibonacci word for all neN there exists
one and only one special factor of length n whereas in the case of the words
t and m for all n> 1 the number of special factors is either 2 or 4.

Informatique théorique et Applications/Theoretical Informaties and Applications



A. COMBINATORIAL THEOREM ON />-POWER-FREE WORDS 2 0 9

The subword complexity of w and the special-subword complexity. of w
are related for ail n e N by the following basic inequality

ƒ„ (ri) + <pw (ri) <fw (n + 1) è / w («) + (<7 - 1) <PW (»)• (2.1)

In fact, for any factor u of w of length w there exists at least one letter x
such that uxeF(yt); however when u is a special factor then there exist
re[l,q-l] more letters x f e^4 \{x} ( i=l , . . ., r) each different from the
other and such that uxieF{yi). By itération of Eq (2.1) one obtains

l) E <pw(*) (2.2)
s = l , . . . , n s = 1, . . . , n

Hence if one knows the special-subword complexity cpw then one can déter-
mine an upper and a lower bound to the subword complexity fw. We remark
that when q = 2, Eq (2.1) becomes simply

The same formula holds if w is a square-free word in a three letter
alphabet A. In fact in this case any factor of w of length n is right-prolongable
by the letters of A, at least in one factor and at most in two factors of w.

From Eq. (2.1) and the fact that the suffixes of special factors are still
special factors one easily dérives that /w is upper limited by a constant if and
only if there exists an integer n0 such that cpw (n0) = 0. From this and Eq. (2.2)
it follows that when lim fw(n) is infinité then for all n^O, fw(n)^n+ 1.

Another conséquence of the fact that the set S(w) of the special factors of
w is closed by suffixes is that for all w^O

9 w(n)^(l/<7)q\>+l) (2.3)

in fact if one drops the first letter to the cpw(«+ 1) special factors of w of
length n+ 1 one obtains at least (\/q)(pw(n+ 1) special factors of length n.

In a symmetrie way one can define also left-special factors. A factor s of
wis a left-special factor if there exist at least two distinct letters x, y e A such
that xs, yseF(vf). We dénote by \|/w the function \|/w : 7V-» N which gives for
any integer n^O the number \|/w(n) of the left special factors of w of length n.

We observe that for any factor jeF(w) there exists always at least a letter
x for which xseF(w) with the only exception when s occurs in w as a prefix
of w only. Hence for any n the number of factors of w of length n which
cannot be completed on the left by one letter in F(w) is always ^ 1 . From

vol. 24, n° 3, 1990



2 1 0 A. DE LUCA, S. VARRICCHIO

this one dérives that

/ w («+l)^ w («) + i|fw(«)-l (2.4)

By comparing Eq. (2.4) and (2.1) it follows that for ail n^O

iM«)^l+(?-l)<Pw(«) (2-5)

3. MULTIPLE OVERLAPS

A word weA + has an overlap if w has a factor of the kind (uv)2u, with
M ^ A . This is also equivalent to saying that in w there are two distinct and
overlapping occurrences of the same non-empty factor of w (cf. [8]). We can
generalize this result by introducing the concept of multiple overlap. Let p be
a positive integer; we say that a word w has a multiple overlap of order p if
there exist p + 1 distinct occurrences of the same non-empty factor u of w
such that any two distinct occurrences of u are overlapping. A multiple
overlap of order 1 reduces itself to the usual concept of overlap. It holds the
following.

PROPOSITION 3 . 1 : Let weA+ and p a positive integer. The following condi-
tions are equivalent

(i) w has a multiple overlap of order p.

(ii) There exist p+\ factors u, fu . . . , / p of w such that for all
z ( / = l , . . . , / ? — 1) f is a proper prefix of fi+1 and, rnoreover, for all
i(i—\, . . . , / > ) , f can be factorized as f — Xt st X\, Xt, st, X'teA + , having

(iii) w has a 2 p-overlap, i. e. w has a factor (aP)ftoc, with a ̂  A

Proof: (i)=>(ii). By hypothesis in w there a r e ^ + 1 distinct occurrences of
a non- empty factor u of w. We can then factorize w as w = kiuk'i, kt, k[eA*
(i'=0, . . ., p). Since the occurrences are distinct we can denumerate them in
such a way that \ko\ < \kx \ < . . . < \kp\. Thus (k0, k'o) détermines the left-
most occurrence of u in w. By hypothesis all the occurrences determined by
the contexts (kt, fc,') (i= 1, . . . , / ? ) have to overlap with the left-most. Hence
one has for any fixed i(i= 1, . . . , /> ) :

w^kouk^ktuk'i (3.1)

Informatique théorique et Applications/Theoretical Informaties and Applications



A. COMBINATORIAL THEOREM ON p-POWER-FREE WORDS 211

Since | k t | > | k0 \ (i— 1, . . . , ƒ > ) o n e c a n w r i t e

kt = k0Xh XteA+, (3.2)

with | Xt | < | u\. By replacing in Eq. (3.1) kt by k0Xt one obtains

uk^^ukl (3.3)

From this one dérives

u^XiSh SikQ^uk'i, steA + .

From the second équation it follows u = siX[, X[eA + so that one has

u = Xisi = siX'i ( i = l , . . . , />) (3.4)

From Eq. (3.3) one has

having set ft = Xt st X[. One has then ft k\ =fi+1k
f
i + 1(i=l, . . ., p). By Eq. (3.2)

and (3.4) since | kt | < | ki+x |, it follows | Xt | = | X[ \ < \ Xi+x \ = \ X'i+x |. Thus
\fi\ < \A+i | and then ƒ is a prefix offi + x.

(ii)=>(iii). Under the condition (ii) one has that there exists a non-empty
factor u of w such that

u = Xisi = siX[ ( i = l , . . . , / ? ) (3.5)

From a classical resuit of Lyndon and Schützenberger on the équations in
free monoids one has that for any fïxed i(i~ 1, . . . ,ƒ>) the solution of
Eq. (3.5) can be expressed as:

where a ; p;, p; a ; are primitive words, qi > 0, r; ̂  0, a,- # A (z = 1, . . ., /?). More-
over one has that

We set in the next a x = a and p t = p. We prove now tha t for any fïxed

/ ( / = 1, . . . , / > ) one has that a t P1 = a i p i .

Since /£ = / i ^, £>eA+ the w o r d / x has periods m= | a p | and « = | oc£ p£ |.

Moreover | / i | = |X1s iX[ | > m + « as l ^ l ^ j a P l and | M | ̂  | a , . p f | . Hence

vol. 24, n° 3, 1990



2 1 2 A. DE LUCA, S. VARRICCHIO

from the theorem of Fine and Wilf (cf [8]) fx has also a period equal to the
greatest common divisor d of m and n. We can then set m = rdy n = sd and
otP = zr, a^i — z3, ZEA + . Since ocp and a ^ are primitive it foliows that

Let us now prove that for ail z, (f= 1, . . ., p), OL = at (and then p= pf). One
has, in fact, setting k~q1^-rl and ki — qî-

irri

If A: = A:i then a = a£. Suppose now fc>&;. One has

This equality implies k = kt and a=aI-, otherwise one would reach a contradic-
tion. In the case k<kt by a similar argument one dérives that a=a£. Hence
one has that for ail /(/= 1, . . . , / ; ) a = af and P=P^. From this resuit one has
that

Since ( A , ^ ! ^ < . . . < | À - J and ^ = (ap)^0'= 1, • • •> P) one has that
€ti<cl2< - • - <qP- From this it follows that

Thus 2qp^2p and/p = (ap)fta, with h^
(iii)=>(i). Suppose that w has a factor (ap)fta with a ^ A and h^2p. We

can write w as w = £(aP)2pa£', ^, k'eA*. The word w has then/?+ 1 distinct
occurrences of the factor w = (ap)poc determined by the contexts (k9 ($a)pkf),
(A:ap5 (Pa)^"1^'), . . . , (k(<x$)p, k'). One easily vérifies that the left-most
occurrence of u overlaps with all the others. Thus w has a multiple overlap
of order p.

Q.E.D.

As an application of the preceding proposition we give the foUowing:

COROLLARY 3.2: Let u be a non-empty word over A and dénote by fu(k)9

k>0, the number of factors ofu oflength k.Ifu is q-overlap-free and p=\q/2~\
then for any k, 1 Sk^ [ | « 112\

Proof: Let A; be a positive integer such that l ^ f c ^ [ |tt|/2~|. We can
factorize u as u = ht vt h[ with | ht \ = i, | vt \ = fc, 0 <£ « ̂  A:. We have then the fc + 1

Informatique théorique et Applications/Theoretical Informaties and Applications
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factors v0, . . ., vk of length k. lïk>fu{k)p then, by the "pigeon-hole" prin-
ciple, p +1 of the above factors will be equal to a same factor v of u, Since
any two of these occurrences of v overlap then u has a multiple overlap of
order p. From Proposition 3.1, u has a factor which is a ̂ -overlap and this
is a contradiction. Hence fu(k)^k/p.

Q.E.D.

A conséquence of Corollary 3.2 is that if w is an infinité ^-overlap-free
word then for ail n^O, /w(«)^«. Indeed by taking any factor M of w of
length 2n(n>0) one has that fu(ri)^n/p and then f^(n)^fu(ri)^n/p; thus
lim/w(n)=oo.

4. A COMBINATORIAL THEOREM ON ̂ -POWER-FREE WORDS

Let w be a given infinité word. We say that /w is linearly upper bounded if
there exists a constant c>0 such that /„(rijden, for ail n>0. For any ueA*
and r > 0 we dénote by Fu r the set:

FUtr={uveF(w)\ \v = r

L e, Fu r is the set of factors of w of length ( r + l ) | i / | having a common
prefix u. In this section we prove the following.

THEOREM 4.1: The subword complexity fw of an infinité word w is linearly
upper-bounded if and only if the word w satisfies the following property
(r-completion-property): For any fixed p>\ and f or any p-overlap-free word
ueA* and r>0 one has that Card(Fu>r)^Dr, where D is a constant which
does not depend on the length of u.

To prove the theorem we need some preliminary lemmas:

LEMMA 4.2: Let w be an infinité word such that f^ is linearly upper-bounded.
For ail positive integer s n, r and h such that n = 0 (mod. h) consider the partition
of the interval [0, rn] in the sub-intervals [sn/h, (s+ \)njh). Let us dénote by \is

the minimal value of cpw in the interval [sn/h, (s+l)n/h). One has that
Y, us is upper-bounded by Cr, where C is a constant which does not depend

se[0,rh)

on n.

Proof: By hypothesis/w is linearly upper bounded, /. e, /w(n)^c«, for ail
«>0, where c is a suitable positive integer. From Eq. (2.2) one has that

ƒ„(/*) è/w(0)+ I <pw(jc)è I E <pwO)è(«//0 I M».
xe[0,77>) se[0,rh) je[sn/h, (s+l)n/h) se[O,rh)

vol. 24, n° 3, 1990



2 1 4 A. DE LUCA, S. VARRICCHIO

Since /w (rn) ̂  cm one dérives that

Z (4.1)
s e [0, r/i)

Q.E.D.

LEMMA 4.3: Le/ /f be afinite subset of A+ whose éléments have a common
prefix (or suffix) ueA+ and such that the lengths of the words ofu'1 H (resp.
Hu~x) lie in the interval [/, L] wit h 1<L and L-l<\ \u\\l\ If u is p-overlap-
free then

Card (/J)^ 0 /2 ~[w,

where m is the minimal value of cardinality of the set (A*)~xHC\Ak [resp.
H(A*)~1 H Ak] for k ranging in the interval ([ | u | /2] + L, | u | + /).

TVöö/; Let f = 0 / 2 ] . We prove that if Card{H)>tm then u has a multiple
overlap of order t, so that by Proposition 3.1 the result will follow. We
consider here only the case in which the éléments of H have a common prefix
u which is a /?-overlap-free word. A perfect symmetrie proof can be done in
the case in which the éléments of H have a common suffix u which is a
/?-overlap-free word.

We dénote by k0 an integer in the interval ([ | u \ f2] + L, | u | +1\ such that
Card((^*)~x HDAk°) = m. Since there exist only m distinct suffixes of length
k0 of the words of H, from the "pigeon-hole" principle there must exist t+ 1
words h0, hu . . ., hteH having the same suffix s of length kQ. Moreover the
words of H have the same prefix u, so that we can write

hi^uwi (/ = 0, ..., t).

Since ko>L then for any pair z,ye{0, ..., t), i^j, one has \ht\ =£ \hj\. In
fact, otherwise, hi — hj which is a contradiction. One can then always suppose
that

|Â0| < l/î  | < . . . < |/^|. (4.2)

Since k0 < | u | + / one can write

hi=PiS, pteA* 0 = 0, . . ., t).

Moreover ko= \s\ > [\ w|/2] + Z ,^ [ |M | /2 ]+ | w(\(i = 09 . . ., 0 so that one has

J = ZÏ£XW£ and u=piviX (i^O, . . ., 0 (4.3)

Informatique théorique et Applications/Theoretical Informaties and Applications



A. COMBINATORIAL THEOREM ON /Ï -POWER-FREE WORDS 2 1 5

From Eqs. (4.2) and (4.3)! one dérives

\vo\>\v1\>...>\vt\;

hence from Eq. (4.3)t one has that for ail Ï ( / = 1 , . . ., i)viX is a prefix of
v0 X, i. e.

From Eq. (4.3)2 one has \vt\ ^ \u\ ~ \X\ < [|w|/2] + 1 - |X\(i=09 . . ., *)•
Thus it follows that in v0 X there are t + 1 distinct occurrences of the factor X
such that any two distinct occurrences of X are overlapping. Since v0 X is a
factor of w, one has from Proposition 3.1 that u contains a /?-overlap that is
a contradiction.

Q.E.D.

LEMMA 4.4: Let w be an infinité word and dénote f or any ueA+ and r>0
by Sur the set:

SUtr={uveS(yv)\Q^\v\<r\u\}.

One has that Card (Fu> r) ̂  1 + (g - 1) Card (Su> r), wAere q = Card (^).

Proof: Suppose that r is a fixed positive integer and dénote by
PfO'^O, 1, . . ., r\u\) the set of préfixes of length |«|+*" of the words of
Fu r. One has that Po = {u} and Pr, u, = ^ r. We set, moreover, 71,. = Pt O ^ (w)
(Ï = 0, 1, . . ., r | « | ) . One has for ie[0, r\u\)

Card(P i+X)£Card(P^ + fe- 1) Card(^).

In fact for any ƒ e ^ there exists at least one letter x such that fxePi+1;
moreover when ƒ is special (i.e. feTt) there exist re [ l , #—1] more letters
XjeA\{x}(j= 1, . . ., r) different each other and such that fxjePi+1. By
iterating the above formula one has:

Card ( iv ,)^Card (Po)+ ( ? " ! ) I Card
i e [ O f r - | u | )

vol. 24, n° 3, 1990



2 1 6 A. DE LUCA, S. VARRICCHÏO

Since Card (Po)= 1 and SUt P= U ^ the resuit follows.
*e[0, r |u|)

Proof of Theorem4.1

Q.E.D.

By hypothesis/w is linearly upper-bounded , i.e. fw(ri)^cn for ail n>0,
where c is a suitable positive constant. If u is not a factor of w then Fu r— 0
and the resuit is trivially true. Let us then suppose that weir(w) and dénote
by n the length of w. We consider fïrst the case that «==0 (mod. 4).

If n — 0 then Card (Fu> r)= 1 and also in this case the resuit is trivial. Let
us then suppose that n^4. We consider the set SUt r={uv^S(w)10g | v|<rn}
and we show fïrst that Card (SUf,) is less then or equal to dr, where d ïs a
constant which does not depend on n. For any fixed u we can décompose
SUt r as follows:

Su,r= U U QUJ9 (4.4)
j e [ l , r] ie[O, 3]

where

We observe that the lengths of the words of w"1 Qt j range in the interval
[(4j+i-4)n/49 (4j+i-3)n/4- 1]. Thus from Lemma 4.3 one has:

aud(Qufê[pf2]muj9 (4.5)

where mt- s is the minimal value of the cardinality of the set (A*)'1 Qu j f) A
k

of the suffixes of Qt j of length k, for k ranging in the interval
[ (4 j - l + On/4, (47 +O»/*].

Since (A*)~l Qu jC\Ak is included in ^(w) one has that mf j^\iit j where
\iu j is the minimal value of cpw in the interval [{4j— l + i)n/4, (4j+i)n/4).
Hence from Eq. (4.4) it follows:

j e [ l , r] ie[0, 3]

For ail .yG[0, 4(r+ 1)) dénote by ^s the minimal value of cpw in the interval
[sn/4, (s+ l)n/4). By Lemma 4.2 and Eq. (4.1) one has

I Z Hjè. I Hŝ 4c(r+1).
je[l, r) ie[O, 3] se[0, 4(r+l))
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Hence

Caxd(SUtr)£4c[p/2](r+l).

By using Lemma 4.4 one obtains

Card (FU r)£l+(q-l) Card (SUt , ) ^

where d is a constant which does not depend on «. (The constant d can be
taken equal to 1 + 8 c(q~ 1) [ p/2 ]).

Let us now suppose that n is not congruent to 0 (mod. 4). In this case let
ri be the smallest integer greater than n such that w' = 0 (mod. 4). We dénote
by uu . . ., ut the complétions of u in factors of w of length ri, Since ri — n^3
one has obviously that * g; (Card A)3 = q3. Moreover any element of Fu r is a
prefix of some element of Fu. r for somejefl, t]. Hence one has:

Card (ƒ•„,,)£Card ( U F.hr)£ £ Card (F,., r)^9
3dr.

Thus in any case Card (FUf r)^Dr, where D is a constant depending only on
p, q and c>

Conversely let us suppose that Card (Fu> r)^Dr. Any word of length 1 can
be completed on the right in a word of length n in at most D{n— 1) ways.
Hence for any n > 1 one has

Q.E.D.

Let us now dénote for any r > 0 by Gu r the set

Le. the set of all the factors of w of length (r-f l ) |w| having a common
suffix u, It holds the following theorem symmetrie to Theorem 4 . 1 :

THEOREM 4.5: The subword complexity /w of an infinité word is linearly
upper bounded if and only if w satisfies the following property: For any fixed
p>\ and for any p-overlap-free word ueA* and r>0 one has that
Card (GUi r)^Kr, where K is a constant which does not depend on the length
ofu.

Proof: The proof is symmetrie and similar to the proof of Theorem 4.1.
For this reason we shall not give it in the details. One has take into account
the set L (w) of left special factors and for any r > 0 the set
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A*, r= { vueL(w) 10û | v|<r |u | }. One first prove that Card (Lu> r)^Cr where
C is a constant which does not depend on |u|. To this end we observe that
from Eq. (2.5), \|/w(w)^l +(q~ 1) (pw(«) so that Lemma 4.2 holds also for
the function \|/w enumerating the left special factors of w. In fact denoting,
for any s in the interval [0, rh), by oos the minimal value of \|/w in the interval
[sn/h, (s + l)n/h), one has

a>s^l+(?-l)ns and £ ©s^r* + ($-l)Acr = (/ï + (0-l)*c)r.
se[0, rft)

One has then to use the version of Lemma 4.3 in which H is a set of
words having a common /?-overlap-free suffix u. From this one dérives that
Card (Lu r)^Cr. Finally in a way symmetrie to that of Lemma 4.4, one
proves that Card (Gu r) ̂  1 + (q— 1) Card (Lu r). From this the resuit follows.

Q.E.D.

5. THE CASE OF INFINITE -̂OVERLAP-FREE WORDS

In this section we shall consider some conséquences of Theorems 4.1 and
4.5 in the case of infinité p-overlap-free words. From Theorem4.1 one
obviously dérives as a corollary the following:

PROPOSITION 5.1: Let w be an infinité p-overlap-free word, The subword
complexity of w is linearly upper-bounded if and only if f or any ueA* and
r>0, Card (FM r)?^£>r, where D is a constant which does not depend on the
length of u.

The next theorem gives some insight on the special factors of a p-overlap-
word:

THEOREM 5.2: Let w be an infinité p-overlap-free word, The subword com-
plexity fw is linearly upper bounded if and only the special-subword
complexity (pw is upper-limited by a constant.

Proof: Let ueA* and h be an integer such that O^/zg \u\. We dénote by
Qu h the set QUt h={vueF(y9)\0^\v\ = h^\u\}. We first prove that

Card (Qu h)^g, where g is a constant which does not depend on h and on
\u\. To this end we observe that for A = 0, Card (Qu o ) ^ ^ F° r h>0 one
has

Card (g,. *+1)^Card (&,, J + fc-l) Card (gtt,
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One has only to note that all the éléments of Qu h with the possible exception
of one can be complétée! on the left in éléments of F(w). By itération of this
formula one dérives that

j e [0 , h]

£ l + ( ? - l ) Card(Lu>1)-

As we have seen in the proof of Theorem 4.5, Card (Lu i)SC, where C
does not depend on \u\. From this it follows that Card (Qu h)Sg, where the
constant g does not depend on h and on | u |.

Let us now prove that for ail w>0, (pw(«) is upper limited by a constant.
We shall do this by considering first the even values of the arguments of <pw.
Let j be any integer in the interval [n, 2ri\. From the above resuit a special
factor of length j can be completed at the left in a factor of length 2 n in at
most g ways, where g does not depend on n and on j . Hence one can write
that:

<pw(2/i)^<pw0'), for ail j G [H, 2«].

Since/w is linearly upper-bounded, Le./w(n)^c«5 n>0, one has

je[n, 2n]

and then cpw(2n)^cg.
Let us now consider arguments of cpw which are odd integers. From

Eq. (2.3) one has that

Thus in any case cpw is upper limited by the constant 2 cgq.
Let us now suppose that (pw is upper limited by a constant. From Eq. (2.2)

it follows that/w is linearly upper-bounded.
Q.E.D.

6. REMARKS AND EXAMPLES

A first remark is that since a /?-power-free word is /?-overlap-free and,
conversely, a /?-overlap-free word is (p+ l)-power-free then one can replace
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in Theorems 4 .1 , 4.5, 5.2 and Proposition 5.1 the term /?-overlap-free by p-
power-free obtaining new propositions substantially equivalent to the previous
ones.

As we said in Section 2 the Fibonacci word and the Thue-Morse word in
two or three symbols are such that the subword complexity is linearly upper-
bounded. Hence Proposition 5.1 and Theorem 5.2 hold true for these infinité
words.

Example 1 shows that Proposition 5.1, as well as Theorem 4.1 , do not in
gênerai hold if the subword complexity of a /7-overlap-free infinité word is
not linearly but only quadratically upper bounded.

Example 1: Let A~{a9 b}, B = A{J {c} and for any z>0 dénote by tt the
prefix of length i of the Thue-Morse word t on A. We introducé the infinité
word T on the alphabet B defined as

x=t1ct2cct3ct4cc . . . t2a-1ct2ncct2n + 1ct2n + 2cc... (6.1)

The word x vérifies the following properties the proof of which is reported
in the Appendix:

PROPERTY 6.1: The word x is overlap-free.

PROPERTY 6.2. The subword complexity of T is of quadratic order, i.e.
there exist positive integers c and C such that for all n > 0

We show now that x does not verify the 1-completion property. In fact
for any z>0 the factor tt of x has at least i +1 complétions of length 2i in
factors of x. Indeed suppose that i is odd (the case i even is dealt in a similar
way). The words ti + 2rcti+2r+1 and ti + 2r + 1 ccti+2r+2 (r = 0, . . ., [i/2]) are
z+1 factors of x ha ving z+1 distinct préfixes of length 2/ and the same
prefix tt of length L

The following example shows that Proposition 5.1 does not hold if we
miss the hypothesis that the infinité word is /7-overlap-free.

Example 2: Let u the infinité word over A = {a, b):

a4b. . ,banb. . ., with n = 2\

The word u has factors which can be arbitrarily large powers. Moreover one
has (cf. Appendix) that

PROPERTY 6.3: The subword complexity of u is linearly upper bounded.
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Proposition 5.1 does not hold true for u. In fact consider for any n>0
the factor ƒ = an with n = 21; ƒ has n + 1 complétions of length 2 « in factors of
u. They are fui(i = 0, . . . , « ) with vo = an and ^ = an~lèû1"1 (i = 1, . . ., n).

7. INFINITE DOL-WORDS

Let L b e a language over the alphabet A. We dénote by F(L) the set of
the factors of the words of L and by FL : N -• N the map defined as

FL(/i)-Card (F(L)rU").

FL is also called the subword complexity of the language L (cf. [5, 6]). L is
said to have a constant distribution if there exists an integer c such that any
word ueF(L) OAC+1A* is such that alph(w) = A, where À is a subset of A.
In other terms if L has a constant distribution then in all sufficiently long
factors of the words of L occur all letters belonging to a same subset of A.
Let p i . A language L is called p-overlap-free (resp. p-power-freè) if F(L)
does not contain/?-overlaps (resp. /?-powers).

A language L over A is a DOL-language (cf. [5]) if there exists a word
coe^l* and a morphism h:A*^>A* such that

where /*°(CO) = Û). The tripiet G =(^, h, co) is called DOL-s>\s/em and the
language L is denoted by L(G).

We say that an infinité word w is an infinité DOL-word if the set F(w) of
its factors is equal to the set F(L) of the factors of a DOL-language L.
Moreover we say that w has a constant distribution if F(w) (or L ) has a
constant distribution. One easily recognizes that the Fibonacci word f and
the Thue-Morse words t and m are infinité DOL-words since they are defined
by iterated morphisms starting on one letter.

The subword complexity of square-free DOL-languages and of DOL-
languages with a constant distribution has been studied quite extensively by
Ehrenfeucht and Rozenberg in [5] and [6]. We recall here the foliowing
important

THEOREM 7 .1 : Let L be a DOL-language that thas a constant distribution.
Then the subword complexity is linearly upper bounded.
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From this resuit and Proposition 5.1 one dérives in the case of infinité
DOL-words with a constant distribution, the following:

PROPOSITION 7.2: Let w be an infinité p-overlap-free (resp. p-power-free)
infinité DOL-word with a constant distribution. Thenfor any r>0 and ueA*
one has that Card (Fu> r)^Dr where D is a constant which does not depend on
the length ofu.

Proof: By hypothesis F(w)~F(L) where L is a DOL-language with a
constant distribution. Since w is /?-overlap-free then the language L will be
(p+ l)-power-free. From Theorem 7.1 it follows that the subword complexity
FL is linearly upper-bounded. Since for any n^Q, fw(n) = FL(n) then from
Proposition 5.1 the resuit follows.

Q.E.D.

It is noteworthy that in some cases of interest one can eliminate in the
preceding proposition the hypothesis that w has a constant distribution. This
occurs, for instance, when Card (alph (w)) = 2 and w is /;-overlap-free (or p-
power-free) or when Card (alph (w)) = 3 and w is square-free. Indeed in the
fîrst case one has that any finite factor v of w of length >p is such that
Card (alph(x;)) = 2 so that w has a constant distribution. In the second case w
has a constant distribution since any square-free word in a three letter
alphabet of length > 3 has to contain three letters. In particular one has that
the Fibonacci word and the Thue-Morse words in two and three symbols
are DOL-words with a constant distribution.

8. AN APPLICATION TO SEMIGROUPS

Let L be a language over A. One can define the monoid M(L) of the
factors of L as M(L) = F(L) U {0} where the product (°) in M(L) is defined
as: for any mu m2eM(L)

f = m1m2 if m1 )m2andm1m2ei r(L)
m1

om2 {
l — 0, otherwise.

We observe that JL = A*\F(L) is a two-sided idéal of A* and that M(L)
is isomorphic to the Rees-quotient monoid A*/JL. It is clear that, by the
finiteness of A, that M(L) is finitely generated. Moreover if L is />-power-
free (resp. />-overlap-free) then M(L) is torsion. Indeed if L is />-power-free
then for any meF(L), m^A, the power mp does not belong to F(L) so that
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the product m°m° . . . °m, p times, is 0. Thus for any meM(L) one has
mP = mP+i

We shall refer in the following to the case in which L = F(yv) where w is
an infinité word. In this case the monoid M(F(w)) will be simply denoted
by M(w) and called the monoid of the factors of w. The monoids M (f), M(t)
and M (m) are called respectively the Fibonacci monoid and the Thue-Morse
monoids in two and three generators.

We recall now the following property of semigroups called permutation
property (cf. [9]) :

Let S be a semigroup and n>\. S is called n-permutable if for any séquence
su . . ., sn of n éléments of S there exists a non-trivial permutation a of the
symmetrie group Sfni such that

S is called permutable if there exists an integer n>\ for which S is n-
permutable.

The importance of this permutation property, which is a generalization of
commutativity, is due to the following theorem of Restivo and Reutenauer [9]:

THEOREM 8.1: A finitely generated and torsion semigroup S is finite if and
only if S is permutable,

A weaker permutation property may be introduced by the following défini-
tion (cf. [2, 3, 4, 10]):

A semigroup S is n-weakly permutable, n>\, if for any subset { sx, . . ., sn}
of n éléments of S there exist two permutation a, T6^ n , a^x , for which

J o ( l ) * ' •SG(n) = S<c(l)' • 'Sx(n)'

S is weakly permutable if there exists n > 1 such that S is w-weakly permut-
able.

In the case of groups the two above concepts coincide as it has been shown
by Blyth [2]:

THEOREM 8.2: .4 weakly permutable group is permutable.
In the case of semigroups the permutation property and the weak-permuta-

tion property do not coincide, in gênerai, even if one makes the hypothesis
that the semigroups are finitely generated and torsion. This latter fact has
been recently shown by Restivo [10] for the Fibonacci monoid M(f) and de
Luca and Varricchio [3, 4] for the Thue-Morse monoids M(t) and M (m).
The proof given in [3] makes use of a method which has been widely
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generalized in this paper so that we are now able to obtain a more gênerai
resuit including ail previous cases.

PROPOSITION 8.3: Let w be an infinité wordsuch that the subword complexity
is linearly upper-bounded and p be a fïxed integer > 1 . Then there exists a
constant D with the porperty that f or any integer k such that (k~l)l>D the
following property holds: For any set [u, ut, . . ., uk} of k+\ words of A +

such that u is p-overlap-free and \ u | ̂  | u{ | (/= 1, . . ., k) one of the two following
conditions is verifïed:

(i) there exist two permutations a, x e ^ fc, a ^ x, for which

(ii) there exist at least k ! - Card (Fu k) ( ̂  k ! - Dk) permutations
such that the words uucil). . . ua{k) are different each other and such that

«wo(1 ) . . .ua(k)eA*\F(w).

Proof: Let us consider the set V~ { wa (1). . . uo (k) e A* \ a e ïfk}. If
Card (V)<k\ then obviously there exist two permutations a, x e ^ , a # x ,
for which condition (i) is verifïed. Let us then suppose that Card (V) — k\.
We set m = ]T | ut | ̂  k \ u \ and consider the set

Tu m={uveF(w)\ \v\ = m}. Since any element of Tu m is a prefix of one
element of Fu k then from Theorem 4.1 one has that

Caïd (Tu, JZCaid (Fu, J^

Let us set

One has that Vu k is included in Tu m so that

Card (Ftts fc)^

Hence there exist at least k ! - Card (Fu k) permutations or e Sfk such that
condition (ii) is verifïed.

Q.E.D

From this proposition we dérive the following:

COROLLARY 8.4: Let w be on infinité p-overlap-free (resp. p-power-free)
word. If the subword complexity is linearly upper-bounded then M(w) is weakly
permutable.
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Proof: By Proposition 5.1 for any k>0, Card (jFttt k)^Dk. Let now k be
the minimal integer such that k\>Dk+\. We shall prove that M(w) is
(k+ l)-weakly permutable. In fact let {m, mu . . ., mk} be any subset of k+ 1
éléments of M(w). If at least one of the éléments is 0 then the resuit is trivial.
Let us then suppose that m and mt{i=\, . . ., k) belong to F(w) and that
|m|^|m£ | (z=l, . . ., k). From the preceding proposition if condition (i) is
verified then obviously the resuit follows. If condition (ii) is verifîed then
there exist at least 2 permutations G, x e Sfk, a / x, for which

1 ) . . .mc(kp mmx{1). . ./wT

Thus in ail cases one dérives that

m°rna(1)° . . .°mo(fc) = m°mt(1)<> . . .o^T(k)5

Le. M(w) is (k+ 1)-weakly permutable.
Q.E.D.

In the case of infinité DOL-words one dérives from Theorem 7.1 and
Corollary 8.4 the foilowing:

COROLLARY 8.5: Let w be an infinité p-overlap-free (p-power free) DOL-
wordwith a constant distribution. Then the monoid M (YÏ) is weakly permutable.

It should be remarked that the monoid M(w) in the above two corollaries
is finitely generated, torsion and infinité so that from Theorem 8.1 it cannot
be permutable. As a conséquence of the previous corollaries one dérives that
M(f), M(t) and M (m) are weakly permutable and not permutable monoids.
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APPENDIX

Proof of property 6 .1

By construction the word T has no factors such as (i) cucvc and eue ^eve
with u, veA + , £,eB* and |M| = |Z>|, (ii) ccvcc, veA* and (iii) ucvcw with u, v,
weA + . Let us now prove that x is overlap-free. In fact suppose that T has
an overlap, Le, a factor such as f=xvxvx with xeB and veB*. It follows
that z;ei?*\;4*. Indeed suppose that veA*. If xeA one reaches a contradic-
tion since t is overlap-free. If x = c then ƒ will have a factor such as eveve
which is again a contradiction in view of property (i). We can then factorize
v as v = v1cv2, v1 e A*, v2eB* and writef=xvx cv2xvxcv2x, lîvxj^K then from
properties (iii) and (ii) one easily dérives that v2 has to contain an occurrence
of the letter c. The same occurs if v1 = A. In fact in this case if v2eA* then
ƒ = xcv2xcv2x so that from property (ii) x has to be différent from the letter c
and then from property (iii) one reaches a contradiction. We can then write
v2 — v3cv4, v3eA*, v^eB* andf=xv1 (cv3c)v4xv1 (cv3c)v4x. From property (i)
it follows that t?3 = A so that f—xvxccvAxvxcçv^x. From property (ii) one
dérives that v4 has to contain an occurrence of the letter c so that v4r = v5cv6,

*, v6eB* and

ƒ= xvxc{cv5c) v6xvxc (cv5c) v6x.
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One has that T 5 # A and from property (i) one reaches again a contradiction.
Q.E.D.

Proof of property 6.2

Let us first prove that for any /z>0, f(n)^n(n-\-1). In fact let «>1 ,
/e {1, . . . , « — 1} and w any factor of t of length i. From the combinatorial
properties of the Thue-Morse séquence t (cf. [8]) it follows that there exist
infmitely many words X e A* such that Xw is a prefix of t. Hence there exists
always a XeA* such that Xw^tk and k>n-i-\. Thus if k is odd then
^ f c + 1 eF(x ) and wctn^i_1eF(x) O 2*" and if k is even then
wcctn_i_2eF(x) C) Bn. Since there are/t(z) factors of t of length ƒ and for
any i>0, ft(î)^2i (cf. [3]) one dérives

i = 1, . . . , n - 1 » = 1, . . . , n - 1

We show now that f is quadratically upper bounded. For any n>0 let
weF(x) Pi Bn> We suppose « to be odd (a similar argument can be followed
if n is even). One of the two following possibilities can occur

(i) weF(v) with v=t1ct2cctzc. . .ctn+l

(ii) weF(r) with r=tn+1cctn + 2c. . .
In the case (i) the number of factors of length n is upper limited by the
length | v | of v, so that one has

É = l W + l

In the case (ii) we have to distinguish three subcases (a) w is a factor of t. In
this case the number of factors of length n is upper-limited by An (cf. [3]).
(b) w has only one occurrence of the letter c, i. e. w = uctn_i_1 with
ueF(t)DA( 0 = 0, . . . , « — 1). The number of factors of length n is then
upper limited by

(c) w has two occurrences of the letter c, i. e. w = ucctn_t_2 with
ue F(t) H A1 (/ = 0s . . ., n — T). In a similar way one obtains an upper bound
to the number of factors of length n given by 1 + 2 (n— 2) (n — 1).
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Thus in any case an upper bound to fT(ri) is given by 5«2 + 9 and the
resuit follows.

Q.E.D-

Proof of property 6 .3

We have to show that the subword complexity of the word u is linearly
upper bounded. In fact let n>0, k the minimal integer such that n^2k and
weF(u) H An. We have to consider two cases:

(i) w G F(v) where v = aba2b2. . .amb with m = 2*.
(ii) weF{x) with r = amba2mb. . .
In the case (i) an upper bound to the number of factors of length n is

given by the length of the word v. Since \v\ = k+2k + 1 and 2k~1<«;g2* one
has \v\^k + 4n<l+ log2n + 4n^5n+\. In the case (ii) since the number of
the occurrences of the letter b in w is at most 1, the number of factors of
length n is upper bounded by n + 1.

Thus in any case one has that/n(«) is upper limited by 6« + 2.
Q.E.D.
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