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ON GEOMETRIC AUTOMATA WHICH CAN
NONDETERMINISTICALLY

CHOOSE AUXILIARY POINTS (*)

by Ulrich HUCKENBECK (*)

Communicated by J. BERSTEL

Abstract. - In this article we present and investigate abstract geometrical automata which can
simulate the use of compass and ruler; moreover they have the following capability: Ifa point Q is
given they can nondeterministically choose some (auxiliary) point Q' ef(Q) where f is an element
of afixed set 3F of fonctions; this machine will be caîled by &-GCMQ.

We shall mainly compare the power s of these machines: For a "large" class of pairs {JF^SF')
we shall show that the concept of the ^-GCMQ and îhat of the ^'-CGMQ have the same
capabilities. On the other hand we shall prove some gênerai results about the different power of
^-GCM0's and ^'-GCM0's; these results are obtained by topological and fixed point theoretical
means.

Résumé. - Dans cet article, nous présentons et étudions des automates abstraits géométriques
qui peuvent imiter l'emploi du compas et de la règle; en outre, ces machines ont la capacité
suivante: Si un point Q est donné, ils peuvent f aire un choix non-déterministe d'un point (auxiliaire)
Q'ef(Q), où f est un élément d'un ensemble fixe 3F de fonctions.

Avant tout, nous voulons comparer les capacités de ces machines: Pour une grande classe de
paires (3F, &') nous démontrons que les modèles 3F-GCM0 et tF'-GCM0 sont équivalents. D'autre
part, nous prouvons quelques théorèmes généraux qui affirment que les capacités de certaines $>-
GCM0's et ^r-GCM0's sont différentes; à cet effet, nous appliquons des méthodes topologiques et
la théorie des points fixes.

INTRODUCTION

One of the fundamental problems of Computational Geometry is the
design of appropriate abstract geometrie autamata. The most well-known of
them is the modified RAM described in [6], p. 28. This machine can apply
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4 7 2 U. HUCKENBECK

+, —, *, / and comparisons to reals. But all of these opérations are arithmetic;
therefore they are not very adequate to geometrie problems.

This shortcoming is avoided e. g. in [7], p. 260 where P. Schreiber présents
his geometrie Turing machine; this automaton can modify tiles with small
drawings in them; it is clear that this is a geometrie opération. In opposite
to this, the works [2], [3] and [4] do not deal with Turing machines but with
geometrical register machines whose primitives correspond to the use of the
most important drawing tools: compass and ruler; in particular, the thesis
[2] was influenced by the overview given in [8], p, 232-233.

In this paper we want to extend these register machines: in addition to the
normal opérations with compass and ruler, our machines can nondeterministi-
cally choose auxiliary points within particular sets of points; e. g. the machine
in Example 1.4 will be able to take a point Q' on the x-axis which is unequal
to a given point Q. Obviously this kind of opérations enable our automata
to simulate the behaviour of a human drawer very realistically.

Consequently our investigations are not only relevant for Computational
Geometry; they are also very interesting for Euclidian Geometry, and in the
proofs to our last three theorems there even occur some surprising aspects
of topology and of fïxed point theory.

The structure of this paper is the following: In Chapter 1, we present the
automaton 'GCM0' and its extended version ^-GCMQ'; we investigate some
basic properties of them. In Chapter 2, we shall compare the powers of our
machines. We first shall see that a large class of GCM0-extensions are
equivalent; in the last part of Chapter 2, however, we prove some genera!
theorems about different powers of different GCMo-extensions. By the way,
a similar result can be found in the last part of [5].

Let us finish our introduction with the définition of some basic terms:

For every set A, the set II04) çontains all subsets of A which are not
empty.

For every relation R^ A* B and aeA we define
i£<a ) : = {èeB\(a,b)eR). Moreover the domain of définition is given as
follows: def(R): = {aeA\R(a)ï0}.

Let P be the Euclidian plane, G the set of the straight Unes and IK the set of
the circular Unes in P. Gx is the x-axis and Gy is the y-axis of the cartesian
coordinate system.

Let Qu Qi> S^P ; then QUQ2 is the (closed) line segment between Qx and
Q2; in the degenerate case of Qx = Q2, this line segment collapses to the point
öi- If Qx^Qi, we additionally define (ôi^ôa) a s the straight line through

Informatique théorique et Applications/Theoretical Informaties and Applications
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Qi>Ü2 an(* (Q'IQDQI)
 a s t n e circular Une centered in Q with radius — length

For every r>0 we define B(0,r) as the open circular disk around (0|0)
with radius r; its closure is 5(0, r), and S(0,r) is the corresponding circular
Une.

A partial function F: P—• P is called rational integer (r. i.) if there exist
polynomials a, P, y, 5: U2 -> U with integer coefficients such that for every
Q = (x\y)edef(F) the following is true:

1. THE DEFINITION OF OUR GEOMETRICAL AUTOMATA AND THEIR BASIC
PROPERTIES

We begin this paragraph with the définition of the CGM0. This is an
abstract automaton which can simulate the use of compass and ruler. (The
subscript '0' is to make it possible to modify this définition, i.e. to create a
GCMl or a GCM2 etc. basing on other drawing tools. E. g. this is done
in [3], Def.2.2.)

DÉFINITION 1.1: (See [3], Def. 2.1, [4], Définitions 2.1, 2.2).
A Geometrie Construction Machine of type 0 (GCM0) is an automaton with

the following properties:
The machine has three types of memory registers, namely
p 0, p 1, p 2,. . . for points,
gO, g 1, g 2,. . . for straight Unes and
kO,k\,k2, . . . for circles.
Note that we distinguish between the registers and their contents. Therefore

we dénote the current contents of a register by the corresponding capital
letter with a subscript; e. g. P17 is the point stored in pli, and the current
circle in k39 is K39.

The GCM0 has the following capabilities:
(1) intersecting two unes, e. g. pi:ekï C\gi"\ (If these two Unes have exactly

two points of intersection, then Pt is chosen nondeterministically; this situa-
tion can arise if one of the Unes is a circle.)

(2) finding the second of two points of intersection if one of them ( = Pj)
is already given; i. e. pi : e gi' f\ ki"\{ pj} ; pi: G ki' Ç\ gi"\{ pj } ;
pi:ekïnki"\{pj};

(3) creating the straight line with two given points on it, i.e. gi: = (pi\pi");

vol. 24, n° 5, 1990



4 7 4 U. HUCKENBECK

(4) generating the circle K^{Pt; PV,PV)\ this is effected by the instruction
kj: = (pi;pï,pf);

(5) copying registers (e.g. g 12: = g3;), output of data (e.g. write (£47);),
executing dummy statements (nop;).

The program of such a CGM0 is a fini te séquence (cpt. . . (pn) where the
statements q>l9 . . .,q>n-1 are according to (l)-(5); the last instruction cp„ is
'end'.

Before executing its program, the registers are initialized such that all
important geometrie objects of the cartesian coordinate System are available.
In particular,

p 0, p 3, p 6, p 9, . . . are initialized with (010),

p 1, pA, pi, p 10, . . . are initialized with (110),

p 2, p 5, p 8, ̂  11, . . . are initialized with (011),

g0, g2, g4, g 8, . . . are initialized with Gx,

g 1, g 3, g 5, g 9, . . . are initialized with Gy,

kO, kl, kl, k3, . . . are initialized with the unit circle around (010).

After this, the GCM0 loads the input points Pu . . .,?„ into the registers
p\, . . .,/?« resp.; the input straight Unes Gu . . ,,Gn, and the input czVc/es
Kx, . . .,Kn,, are loaded into gl, . . .,g«', fcl9 . . .,ÀT2" resp. The remaining
registers keep the contents effected by the initialization.

Then the program of the GCM0 is executed. •

Remark 1.2: From the définition of the GCM0 the following problem
arises: How does the automaton behave if some instruction cannot be exe-
cuted correctly (e.g. finding the point of intersection of two disjoint circles)?
This problem is treated with the help of the three states N ( = normal), E
( = error) and F( = final). During its work the GCM'O is in the state N. If it
has to exécute a "forbidden" instruction, then it falls into the state E; the
state F, however, occurs if the machine arrives at the 'end'-statement without
any incident.

A complete list of the forbidden instructions can be found in [3], Def.
2.1. •

We next introducé that extension of the GCM0's which is the main subject
of this paper:

Informatique théorique et Applications/Theoretical Informaties and Applications
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DÉFINITION 1.3: (a) Let ^ be a set of functions ƒ : P -> II (P). Then an
^-GCM0 is a GCMQ with the following additional type of instructions:

This means that the machine nondeterministically chooses the (auxiliary)
point Pt within the set / ( P / ) # 0 .

(b) It should be mentioned that this définitions can easily be generalized
by considering sets §? of functions/: U-* II (V) where £/= P" x Gn' x Kn" and
y= p™ x <Gm' x Km". These machines can choose a tuple v within /(w) ç F;
this tuple v consists of m points, m'lines and m" circles.

(c) In this paper we only deal with those sets SF which are defined in (à),
and we very often consider the case that êF only has öne element ƒ Then we
Write/-GCAf0 instead of {f}-GCM0. M

In reality, even the class of machines given in 1.3. (c) is too gênerai for
us; therefore we shall concentra te ourselves on the following special case:
$?={/}, a n d / : P->I1(P) has the very simple structure / ( g ) = ^4\{ g } ;
this means that ƒ helps to fmd a point g' which lies in a fixed set A and is
different from the given point g. Note that the additional condition g # g '
is very useful since it allows to construct the line (g, g') and circles (g; g, g')
without entering the ERROR-state E; e. g. the correctness of the second
program line in the next example is based on the fact that P1^P2.

Let us now consider this example of an £F-GCM0 M. It will make the
previous définitions more transparent; furthermore, the machine M will
simulate a human drawer very realistically:

Example 1.4: Let/: P -> II (P), g i—• Gx\{ Q}. Then we consider a machine
M which constructs the perpendicular projection of any point (x | y) = Pl e P
onto Gx, i. e., M outputs (x \ 0). The program of M is the following:

P2 :e
g1 := (p1,p2);
k1 :- (p2;p1>p2);
p3 :e k1 n g1 \ {pi};
k2 := (p1;p1,p3);

(Note that K„ is large enough to
intersect Gx - GQ twice.)

p4 :e gO n k2;
p5 :e gO n k2 \ {p4};

Figure 1 a.

vol. 24, n° 5, 1990
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(The next step is constructing
the mid-perpendicular of P4

and P-.)

k4
k5

P6
P7
g7
P9

= (p4ip4,p5)i

= (p5;P4,p5);

€ k4 n k5;

.€ k4 n k5 \ <p6};

:« (P7,p6>;

:€ g7 n gO;

write(p9);

end

Figure 1 b.

We now describe the outputs of a ^-GCM0. For this end we make the
following définition:

DÉFINITION 1.5: Let n, n', n", m, m', m"eN and let U: = P>" x <G«'x |Kn"
and V: = Pm x Gm' x Km". Given the relation R ç C/x F.

Then we say that a ^-GCM0 M constructs the relation R iff the following
conditions are satisfied:

(i) For every wedef(jR) and every séquence of nondeterministic décisions,
the machine M arrives at the state F; this means that never a forbidden
opération occurs if wedef (R) is input.

(ii) R(u} is exactly the set of those outputs which are effected by a
séquence of nondeterministic décisions.

After input of w, the machine M
cannot enter the state E9 and v is a
possible output of M.

This means that R =

Remark 1.6:
(a) Let R be a partial function, i.e. R: £/—> V. Then condition (ii) of

Def. 1.5 means that R(u) has to be output for every possible séquence of
nondeterministic décisions; this définition is different from the usual ones
where only one of these séquences has to effect the desired output R(u). But
although this point of view is unusual in Automata Theory, it very often
occurs in Euclidean Geometry where the resuit of a construction must indeed

Informatique théorique et Applications/Theoretical Informaties and Applications
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be the same for every (nondeterministic) choice of auxiliary points. A typical
example is the machine in 1.4, which constructs the projection function
F: P -> P, Px = (x |y) h-> (x 10). By the way, this point of view was also treated
in [9].

(b) The machine M in Remark 2.2 (c) constructs a relation R which is not
a function; it is R={(Px,P3)\P3eS(03 1)\{PX}}.

A further example can be found in [4, Example 2.4] where a CGM0

constructs the relation {((PuP^,P^\Pi¥*P2 and P3 is the third point of
the equiiateral triangle (PX,P2,P3)}.

At the end of this paragraph, we deal with a basic theorem about the
power of f-GCMç s. We want to show that a particular class of f^GCM0's is
able to construct every rational integer function F: P-—• P. At the first sight,
this problem seems to be solvable easily even by a normal CGM0. But in
reality it is very difficult to avoid the error-state E; this means that not ail
of these functions F are GCMo-constructible (see the results (2.3,2) in [2]
and 4.4 in [4]); therefore it is necessary to extend the GCM0 and to study
its constructions carefully:

THEOREM 1.7: Let A^P such that there is a point Qx with rational
coordinates which is not situated in A. Let f: P -> IÏ(P)» Q*->A\{Q}.

Then every rational integer function F: P• -> P can be constructed with the
help of an f-GCM0.

Proof: We do not want to prove this resuit in detail, but the reader will
be able to do so with the help of the given références.

We first observe that M can create the following points if Px — (x | y) is
input: go : = (010), the point Qx with Q1$A,Q2 çƒ(PJ, Q3 : - Px (see Fig. 2).

Then it is obvious that Qx ̂ Q 2 ̂ Q 3 = Px.

According to Theorem 3.2 in [4] the machine M can construct the line
PAR(Ô,Ô'9G

!)S which is the parallel to the line G through the point QeP
where the auxiliary point Q' € < J \ { Q } is given. Consequently, M can generate
parallels G^ and G^ to Gx and Gy resp. which pass gi* (If ö i = (0|0) then
nothing must be done, otherwise M constructs PAR(g l 5 g 0 , Gx) and
PAR(QuQ0,Gy). After this the following opérations are executed recursively
for /= l , 2 :U(£ + 1 >: -PAR(f i , + 1 , 0 , , (^ and C^+1): = PAR(ft+1,&,<?»).
These constructions yield the horizontal hne G(

x
3) and the vertical line G(

y
3\

and each of them passes g 3 = P1.

vol. 24, n° 5, 1990



478 U. HUCKENBECK

V
(1)

Figure 2.

Hence the points (x \ 0) e Gx H G<,3) and (01 j>) € Gy H Ĝ 3> are available. Then
the results (2.3.11) - (2.3.14) in [2] and the theorems 3.5 - 3.7 in [4] imply
that F is indeed constructible with the help of a f-GCM0.

2. COMPARBVG THE POWER OF

2 .1 . Basic ternis and simple examples

In this chapter we compare the power of !F-GCM0's with that of ^'-
GCM0's where !F and !F' are different. For this end we fîrst precisely define
what it means that "#" is as least as powerful as $F' ".

DÉFINITION 2.1: Let & and &' be two sets of functions from P to n(P);

Moreover, let M be an J^-GCM0.
{a) We say that M simulâtes f iff every input point P1eP effects an output

e f (Pi), and this is true for arbitrary nondetenninistic décisions of M, (I. e. M
constructs a relation R ç {( Pu Q) | ̂  e P and ô e/C?i)} with def (7?) = P. -
Consequently the nondetenninistic choice of a point Qef(Q) can be done
by M.)

(è) We say that J^ is at least as powerful as &' {^'^^) if every f e^'
can be simulated according to (à). (This means that for every fe !F\ the
statement 'piefipj*);' can be replaced by instructions of ^-GCM0's).

<*?)• ff^eliave two ruhaïöns^jP such that {f)%{f} and {ƒ}§{ƒ}» then
we say that ƒ and y are equivalent (f~f). •

Informatique théorique et Applications/Theoretical Informaties and Applications
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Remark 2.2; (à). Let f(Q) ^f{Q) for every Q. Then {ƒ} is indeed at least
as powerful as {f}, since the following [f}-GCM0 M simulâtes f:

p2:ef(pl); write (p2); end.

(&) Part (a) of Définition 2.1 implies the following: If Pl is input, then
the machine M simulating f can only output points QefiPx). This trivial
observation will be very useful in the proofs by contradiction in the last part
of this article.

(c) The next two examples show that the following case can arise [cf. Part
(à)]'- (V g 6 P) f(Q) is a proper subset of/ (g), but {/} is at least as powerful
as {ƒ}. Our first example is fx : Q^B(0, l ) \ { g } , f\ : Q\-+B(Q, 1)\{Q},
which can immediately be treated with the help of the next theorem. The
second example is/2:g»->S.(0, l ) \ { g } a n d / 2 : = / i . Then the following

Figure 3.

f'2~GCM0 M simulâtes {f2 } (Fig.3): As just mentioned, M can simulate f\\
thus it can obtain a point P2ei?(0,1) which is unequal to the input point
Pv After this M draws the circle ^5 : = (P2; P2, Px) and the line G5 : = (Pl9 P2).
The next steps are the constructions of PseK5C\G5\{P1} and the mid-
perpendicular G2 of Px and P5, which is also the perpendicular to G5 through
P2. Since ^6.0(0,1), the intersection G5C^S(0,1) consists of two points;
then M finishes its work by constructing one of these points
i>3 G G5 O A:o = G 5 nS(0 3 l ) . Note now that P^PX because otherwise
P3 = Px eG5 and Px = P^eG2 so that P1eG2C\ G5\ but this would imply the
wrong équation P1=P2. Hence actually i>

3G/2CPi), i-e-5 M works
correçtly. •

voh 24, n° 5, 1990
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We now finish our basic considérations and deal with the first substancial
resuit of this paragraph:

2 .2 . A "large" équivalence class with respect to ' ~ '

THEOREM 2.3: Let Au A2 S P be two bounded sets with nonempty open
kernels. Let ft:P ->II(P), fi(Q): = Al\{Q} (r=l,2). Then fx and f2 are
equivalent.

Proof: The assumption is symmetrie with resepet to fx and f2. Therefore it
is sufficient to prove that {fx } ̂  {f2}.

For this end we observe that there are closed circular disks Dx, D2 such
that Dx £ Ax and A2 Ç i)2 .

It is clear that we can find a bijective affine mapping x : P -+ P with the
following properties:

(1) z(D2)^Dx,

(2) x is rational, i. e. for eyery (x \ y) we have

t{x\y)^(ax+$y + y\<xx + $y + y) where a,^,y,OL,^,j€Q.

Then the following is true:

(3) Also T - 1 is rational.

Obviously, x and x"1 are constructible with the help of f2-GCM0's; this
follows from (2) and (3) and Theorem 1.7. So we can simulate fx by the
following f2-GCM0 M {see Fig. 4): If Px is input then M first constructs
Q : = x"x (Px). After this M chooses a point Q' ef2 (g); then Q' e A2 ç D2 and

Figure 4.

Informatique théorique et Applications/Theoretical Informaties and Applications
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^ 1 (^ i )« Finally M constructs Q"\ = v{Q'). Then Q"eAt because of
(1), and Q" ¥"Pi because x is injective. This means that indeed ô" G / i C î)-

2.3. Some results saying that not {/ } ̂  {ƒ}

In this part of Chapter 2 we show that particular functions f cannot be
simulated with the help of a f-GCM0 M. For this end we shall replace the
machine M by a 'specialization'; this is a machine M which can nondetermin-
istically choose among fewer objects than M. This shall enable us to control
the behaviour of M better than that of M. Thus we shall see that M does
not simulate f and we shall conclude that nor does M.

Let us now begin with the définition of the term 'specialization':

DÉFINITION 2.4: Given the sets !F and #" of functions from P to TT(P).
Let M be an ^-GCM0 and let M be a &-GCM0. We assume that the
programs of M and M are the same up to the following exception:

Any statement <pv
 = '/^ :e£v (#/);' occurring in M is replaced by <pv

 = ipi: e
gv (#ƒ);' in M, where gve^ and gye^ have the following property: (V Qe P)
gv(Q) £ £v(ô)- (Le., M takes its nondeterministic décisions within gv(Q)
instead of gv(Q)i hence M can choose among "fewer" points Pj than M.)

Then M is called a specialization of M. •
In the next Lemma we want to realize that specializations indeed have

something to do with the problem of simulation:

LEMMA 2.5: Let M be an ̂ -GCM0 and M an &-GCM0. We assume that
M is a specialization of M. Then the following statements are true:

(a) If M constructs a relation R^PxP then there exists a relation R^ R
such that def(R) = def(R) and R is constructed by M,

(b) If R is even a partial function, then R itself is constructed by M.
(c) If M simulâtes a function f : P -*- II (P) then also M does so.

Proof: Part (i) is proven as follows: According to Définition 1.5 we know
that M constructs the relation R: = {(PUQ)\ After input of Pu M cannot
enter the state E, and Q can be output by M). We now have to realize that
def(i?) = def(jR) and that Â ç R, But both statements immeditaly follow from
the fact that every nondeterministic décision of M can also be taken by M.

Part (ii) and Part (iii) are conséquences of (i) and the Définitions 1.5 and
2.1. •

With the help of this lemma we now prove our results about the impossibil-
ity to simulate a function f2 by an f^-GCM^ The next two theorems deal

vol. 24, n° 5, 1990
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with the case that/ ; (g) = ^4f\{ Q} where A2 is bounded and Ax is not. Note
that our results are according to the common sense: It is not possible to find
a point within the "small" bounded set ^4 2 \ {g} if only the "large"
unbounded set ^ i \ { Q } is available.

The next Theorem 2.6 is a special case of 2.7. Both proofs are based on
the same ideas but that of 2.6 is simpler. Therefore, studying the special
case helps to understand the more gênerai proof.

THEOREM 2.6: Given the following functions fx, f2 : P -> II (P) :

Then f2 cannot be simulated by any fx-GCM0 M.

Proof: Otherwise we construct the following specialization M of M:
Let / ^ P ^ n C P ) be defined as Q = (x\j>)»->{(*2 + 110)}. Then /x (g)
£ G x \ { g } = A (Ô) f° r every QeP. Therefore we indeed obtain a special-
ization M of M if we replaced every instruction 'pi : e/i (/?/');' by 'pi : ejx (pj);\

Let us now study the behaviour of M. We can easily see that all of its
steps can be described with the help of continuous functions. In particular,
the nondeterministic opérations of type (1) can be expressed with the help of
root functions, and the instructions of type (*) can only effect the computation
of the continuous function (u | v) i—• (M2 + 110).

Consequently, we can find a continuous nested root function F:P^>P
such that the following is true: For every input Pu M can output F{PX) if
taking appropriate nondeterministic décisions.

Note now that also M simulâtes f2 because of Lemma 2.5.(e). Then
2.2. (è) implies that

(1) For every QeP, F(Q) must be in f2(g).

Let us now apply our main trick. From (1) it follows that F(Q)eB(0,1)
for every Q. Hence F(B(0,1)) ç l?(0,1). Since F is continuous, Brouwer's
fixed point theorem yields a fixed point g* of F. Consequently,

This is a contradiction to (1). Hence an fx-GCM0 M simulating f2 cannot
exist. •

Informatique théorique et Applications/Theoretical Informaties and Applications
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We next treat the more gênerai version of 2.6:

THEOREM 2.7: Let Au A2 ï= IP where A2 is bounded and A1 is not. Moreover,
for 1=1,2 let /J;P->II(P), Q\-+At\{Q}. Then f2 cannot be simulated by
anyfx-GCM0M.

(Exarnple: A1 = {(x\0)\xeN}, A2 = B(0,l).)

Proof: Obviously there exists a closed circular disk D2 2 A2. Let now M
be an fx-GCM0 simulating f2.

We now shall apply almost the same ideas as in the previous proof. We
shall create a particular specialization M; if PxeD2 is input, then M will be
able to output F(Pl)eA2 ^ D2 where .Fis continuous. Finally we shall apply
Brouwer's fixed point theorem.

Let us now start with the details of the proof. Let (cpj. . . cp„) be the program
of M; let l ^ v x < . . . <vr<n be the indices of the type-(*)-instructions of
M,

We next create M. For this end we recursively modify the statements

Let us first treat p = l . We define E/0* £ P as the set of those points
Ph which can be generated as follows: An arbitrary P1eD2 is input, and M
exécutes its first (vx — 1) steps. We next note that all previous nondeterministic
statements are of type (1); each of them only allows a décision between
two possibilities. Hence we can find finitely many nested root functions
Fl9 . . .,Fq:D2->P such that for every input P1 eZ>2, M can only create one
of the points Ph = F1 (Px% . . ., Ph = Fq (PJ. Consequently,

(1) U<1) = F1(D2)\J..-UFq(D2).

Since Fu . . .9Fq are continuous and D2 is a compact set, we have

(2) tfl) is bounded.

Consequently there exists a point g(1) eA^lft1*. Then we define

Furthermore we replace cpvi by ipi1 : ef{1){pjx)\.

Then it is obvious that for p'= 1 the following statements are true:

(3) If PxeD2 is input then the modified statement cpv , is deterministic;
only g (p ) can be loaded intopip..

(4) fipt)(Q) e / i ( Ö ) f o r every QeP. (This follows from Q
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We next have to modify <pVp(p>l). Let <pvi, . . .,9vp-i be already altered
with the help of the points Q(p/) and the functions ƒ (p) where p' — 1, . . . 5 p - l ;
we assume that for every p' < p the facts (3) and (4) are true.

We now define If^ ç P analogically to lA1^ Let P1eD2 be an arbitrary
input of M and let M exécute its fïrst (vp— 1) steps; then ifà is the set of all
points Pj which can be generated in this way. It follows from (3) that the
opérations of type (1) are the only nondeterministic ones which have an
influence on t/(p). This implies that

(5) Zftp) has the structure described in (1) so that ift* is bounded.
Consequently we can find Qip)eAl\ü

ip); thus we can define ƒ(p) in the
same way as f{1\ and the facts (3), (4) are true for p'= p, too.

Now the modification of the statements <pvi, . . .,(pVr is fïnished. We have
obtained a {/(1), . . .,f(r) }-GCM0 M which is indeed a specialization of M
because of (4).

According to Définition 2.1, M constructs a relation and must have an
output statement <pm= \vrite(pz);'* This statement was not modified and also
occurs in the program of M. We now again apply the argumentation basing
on (3). Thus we obtain finitely many nested root functions Gl9 . . .,(/*:
D2 -• P such that for every input QsD2, M can output the points

Let us now consider Gx. It follows from Lemma 2.5.(c) that also M
simulâtes f2; then Remark 2.2.(b) implies that

(6) Gx (g) must be in f2 (Q) for every QeD2.

Consequently, Gx (D2) ^ A2^ D2 where G1 is continuous. But then
Brouwer's fixed point theorem yields a fïxed point Q* eD2. Hence,
G1(Ô*) = Ô*M 2 \ {Ô*} = / 2 (Ô*) - T h i s is a contradiction to (6). Therefore
an ƒ\-GCM0 simulating f2 does not exist. •

In the next theorem we want to disprove the relation ' { / 2 } ^ { / i } ' in the
following case: (^Q)fi(Q)z=A>\{Q}, where the open kernel of A2 is empty
and that of Ax is not. At the fïrst sight this result is obvious: It is difficult to
find a point in a "thin" set A2 if only the "thick" set Ar is available. But in
reality we have to make additional assumptions; they are commented on in
Remark 2.9.

THEOREM 2.8: Given Ax, A2 £ P such that the open kernel of Ax is not
empty. Moreover we assume that A2 is the disjoint union of countably many
closed iine-segments. (ƒ. e, there are a countable set L and points Ul9 Vx such
that V^lC\~WV\=0 for W and A2= U £V^. It is possible that

leL
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Ul9 Vx = { Ul} = { Vt} for some /.) Moreover, letf^P^U(P), Qi->At\{Q}
(i~ 1,2). Then f2 cannot be simulated with the help of any fx-GCM0 M.

{Example: We modify the example given immediately before the proof to
2.7: Let At:=B(091) and ^ 2 : = {(JC|0) |XGN }. Then A2 indeed consists of
countably many (degenerate) closed line segments so that we can apply our
theorem. Consequently, {(x|0)|xeN } \ { ô } is so "thin" that it cannot be
replaced by the "thick" set 2?(0,1)\{ Q }, and vice versa, 2?(0,1)\{ Q } is so
"small" that it cannot be simulated by the "large" set { (x10) | jce M } \{ Q }.)

Proof: We start with the following définitions: For every IJ' eL let Slv be
the closed line segment between Ut and Vv. Let D2 := U SiwV. Then D2 is

1,1' e L

the union of countably many line segments, and D2 is obviously connected.
Moreover, Z>2 3 A2~ \J Suv We now assume again that there exists an

leL

fx-GCMQM simulating f2. Then we construct a particular specialization M.

For this end we do almost the same as in the proof to Theorem 2.7. We
define the sets t/^, the points g(p) and the functions ƒ(p) in the same way as
above. The only diffîculty is the following: In the proof to Theorem 2.7, the
points g(p) were chosen within A^U*1*; if we do the same hère, we have to
show that also in the present situation A1\U

ip) is not empty. This can be
seen as follows: We again apply the argumentation yielding (1) and (5) in
the proof to 2.7; thus we may conclude that

ü(p) = F1(Z)2)U...UFf l(Z)2), (1)

where Fl9 . . . 9Fq : D2 -• P are nested root functions. Note now that D2 is the
union of countably many line segments Slv\ then 'LM is the union of
countably many images FG(St v) ( a = l , . . .,#, IJ'eL). Since every Fa is a
nested root function and every St v is a line segment, we may conclude that
the open kernel of Fa(Sltv) is empty.

But then Baire's category theorem says that the open kernel of the counta-
ble union ï/p) must also be empty. Since Ax has a non-empty open kernel,
we can actually conclude the existence of a point Q^eA^U^.

Now the construction of M is finished. In the same way as in the proof to
Theorem 2.7 we obtain continuous functions Gl9 . . .,G*q\D2^> A2 such that
for every input P1eD2, M can output the points G1(P1), . . . ^ ( i ^ ) . But
the line segments Shl of A2 are pairwise disjoint, and D2 is connected.
Consequently, there must be an /* such that Gx (D2) ç St* ,*.
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In particular, we have Gx (SiM*) Ç SX*%1*. But then the fixed point theorem
of Brouwer yields a g*eS,* f l , such that Gx (6*) = 0*^/2(6*); t n i s means
that M does not in any case construct a point ef2(P1) if Pt = Q* is input.
Then Remark 2 . 2 . (b) and Lemma 2 . 5 . (c) imply that M does not simulate
f2. This is a contradiction to the assumption that M does simulate / 2 . •

Remark 2.9; Obviously we can weaken the assumption about the structure
of A2 as follows: A2 is the disjoint union countably many sets which are
homeomorphic to closed line segments. On the other hand, it is not possible
to drop this condition: Let A1 = B(0,1) and A2 = S(0, 1) or A2 = GX; in the
first case, f2 can be simulated by the frGCM0 described in Remark 2 .2 .
(c), and in the second case f2 is simulated by an frGCM0 constructing the

CONCLUDING REMARKS

In this paper we presented and investigated the ^-GCM0. This is a
geometrical register machine which can simulate the use of compass and ruler
and nondeterministically choose auxialiary points within particular régions.

Our investigations were on the power of these machines: Theorem 1.7 was
on the constructible functions. The result 2.3 dealt with a large class of
equivalent extensions of the GCM0. In the Theorems 2.6 — 2.8 we presented
some gênerai classes of pairs (/i , /2) such that f2 could not be simulated by
any fx-GCM0. These proofs were based on topological and fixed point
theoretical facts.

It is obvious that a lot of similar problems arises from the plenty of further
modifications of the GCM0's. E. g., we can

— treat generalized J ^ - G C M Q ' S according to Définition 1.3. (b).

— equip the <!F-GCM0's with the capability of conditional jumps,

— modify the drawing tools, e. g. define F-GCAf^s basing on a rectangu-
lar ruler instead of compass and ruler.
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