F. MIGNOSI
G. PIRILLO

Repetitions in the Fibonacci infinite word

Informatique théorique et applications, tome 26, n° 3 (1992), p. 199-204

<http://www.numdam.org/item?id=ITA_1992__26_3_199_0>
REPETITIONS IN THE FIBONACCI INFINITE WORD (*)

by F. MIGNOSI (1) and G. PIRILLO (2)

Communicated by J. BERSTEL

Abstract. — Let φ be the golden number; we prove that the Fibonacci infinite word contains no fractional power with exponent greater than $2 + \varphi$ and we prove that for any real number $\varepsilon > 0$ the Fibonacci infinite word contains a fractional power with exponent greater than $2 + \varphi - \varepsilon$.

Résumé. — Soit φ le nombre d'or; nous prouvons que le mot infini de Fibonacci ne contient pas la puissance fractionnaire d'exposant supérieur à $2 + \varphi$, et nous prouvons qu'il contient des puissances d'exposant supérieur à $2 + \varphi - \varepsilon$, quel que soit le nombre réel $\varepsilon > 0$.

INTRODUCTION

Many papers are concerned with the existence of integer powers in “long enough” words or in infinite words; a classical combinatorial property is whether a given infinite word is k power-free or not, with k a natural number.

No word on a two letters alphabet can avoid a square but it is well known that the Thue infinite word t on a two letter alphabet does not contain cubes and that the Thue infinite word m on a three letter alphabet does not contain squares (see [9], [10]).

The notion of overlap-free word and more generally the notion of fractional power are considered in many papers (see for instance [4], [7], [9], [10]).

In this paper we prove that the Fibonacci infinite word contains no fractional power with exponent greater than $2 + ((\sqrt{5} + 1)/2)$ and that for any real number $\varepsilon > 0$ the Fibonacci infinite word contains a fractional power with exponent greater than $2 + ((\sqrt{5} + 1)/2) - \varepsilon$.

(*) Received 1989, revised November 1990.

To our knowledge this is the first time that this property for a non rational value is looked for in a given infinite word.

DEFINITIONS AND PRELIMINARY RESULTS

We refer to [6] for the terminology.

Let A be an alphabet. We denote by A^* the free monoid on A. The elements of A^* are called words and the elements of A are called letters. We denote by 1 the empty word which is the identity of A^*; we also denote by $|v|$ the length of a word v.

A word v is a factor of a word w if there exist $u, u' \in A^*$ such that

$$w = uvu'$$

and we say that v is a left factor of w if u is the empty word.

If a word w is of the form

$$w = v \ldots v = v^k$$

with $u \neq 1$, we say that w is a k-power of v; k is called the exponent of the power and v is the base of the power.

If a word w is of the form

$$w = v \ldots vu = v^ku$$

with $u \neq 1$, $k \geq 1$ and u left factor of v, we say that w is a fractional power of u of exponent $e = |w|/|v|$ and v is the base of the power.

An infinite word s on an alphabet A is a map from the set of positive integers into A; we denote by A^ω the set of all infinite words on the alphabet A.

A word $v \in A^*$ is a factor of the infinite word s if there exist $u \in A^*$, $s' \in A^\omega$ such that $s = uvs'$. If u is the empty word then v is a left factor of s.

The Fibonacci infinite word f on the alphabet $A = \{a, b\}$ is obtained by iterating the morphism $\psi : \{a, b\} \rightarrow \{a, b\}$ given by

$$\psi(a) = ab, \quad \psi(b) = a$$

starting with the letter a (see [1]). Therefore

$$f = abaababaabaabab...$$
We define the sequence of the finite Fibonacci words by the rule:

\[f_0 = b, \]
\[f_{n+1} = \psi(f_n). \]

It is easy to see that \(f_{n+2} = f_{n+1} f_n \) and, consequently, the sequence \(|f_n|, n \in \mathbb{N} \) is the sequence of Fibonacci numbers; moreover for any \(n \geq 1 \), \(f_n \) is a left factor of \(f_{n+1} \) and of \(f \).

For \(n \geq 2 \) we denote by \(g_n \) the word \(f_{n-2} f_{n-1} \). It is easy to see that for each \(n \geq 2 \) there exists a word \(v_n \) such that \(f_n = v_n x y \) and \(g_n = v_n y x \) with \(x, y \in \{ a, b \} \)
and \(x \neq y \) and also that \(f_{n+2} = f_n f_n g_{n-1} \).

The following fact is straightforward

Fact. — If \(u \) is a left factor of \(f \) and also of \(g_{n-1} \) then \(u \) is a left factor of \(v_{n-1} \) and, consequently

\[|u| \leq |v_{n-1}| = |g_{n-1}| - 2 = |f_{n-1}| - 2. \]

In the sequel we will use the following results.

Proposition 1 (Karhumäki [4]): *The Fibonacci infinite word \(f \) contains no 4-power.*

Proposition 2 (Séébold [8]): *Let \(v \neq 1 \); if \(v^2 \) is a factor of the Fibonacci infinite word \(f \) then there exists \(n \) such that \(|v| = |f_n| \); more precisely \(v = wz \) with \(zw = f_n \) for some words \(z \) and \(w \), \(|w| > 0 \), i.e. \(v \) is a conjugate of \(f_n \).

Now let \(u \neq 1 \), \(u \in A^* \) and let \(u = x_1 \ldots x_n \), \(x_i \in A \); we denote by \(\hat{u} \) the mirror image of \(u \), that is \(x_n \ldots x_1 \).

We say that a factor \(u \) of \(f \) is **special** if \(u a \) and \(u b \) are both factors of \(f \).

Proposition 3 (Berstel [1]): *If \(u \) is a special factor of the Fibonacci infinite word \(f \) then \(\hat{u} \) is a left factor of \(f \).

Since the sequence \(|f_n|, n \in \mathbb{N} \), is the sequence of Fibonacci numbers, we have the following proposition.

Proposition 4 (Hardy and Wright [5]): *For any \(n > 1 \)

\[
\frac{|f_{n+1}| - 2}{|f_n|} = \frac{|f_n| + |f_{n-1}| - 2}{|f_n|} < \frac{\sqrt{5} + 1}{2}
\]
and

$$\lim_{n \to \infty} \frac{|f_n| + |f_{n-1}| - 2}{|f_n|} = \frac{\sqrt{5} + 1}{2}.$$

Proposition 5 (de Luca [2]): For each i the word f_i is primitive; therefore for each i the conjugates of f_i are distinct.

Results and Proofs

Let us prove the following lemma.

Lemma: No fractional power with exponent greater than $1 + (\sqrt{5} + 1)/2$ can be a left factor of the Fibonacci infinite word f. More precisely, if v^u is a fractional power which is a left factor of f then $v = f_n$ for some n and $|v^u| \leq |f_n| + |f_n| + |f_{n-1}| - 2$.

Proof: Let v^u be a fractional power which is a left factor of f.

By using Proposition 2 we have that $|v| = |f_n|$ for some n, and, consequently v^u is a fractional power which is a left factor of f with length $2|f_n|$. By inspection one can easily see that n is greater than or equal to 3.

As f_n is a left factor of f we have that $v = f_n$ for some $n \geq 3$. Thus $v^u = f_n f_n u$ and either u is a left factor of f_n or f_n is a left factor of u.

But for $n \geq 3 f_{n+2} = f_n f_n g_{n-1}$ is a left factor of f.

Hence, since g_{n-1} is not a left factor of f_n, we have that u is necessarily a left factor of g_{n-1}; by the fact

$$|u| \leq |f_{n-1}| - 2.$$

Thus $|v^u| \leq |f_n| + |f_n| + |f_{n-1}| - 2$ and, by Proposition 4,

$$\frac{|v^u|}{|v|} \leq \frac{|f_n| + |f_n| + |f_{n-1}| - 2}{|f_n|} < 1 + \frac{\sqrt{5} + 1}{2}, \quad \square$$

We are now ready to prove our main result.

Proposition 6: The Fibonacci infinite word f contains no fractional power with exponent greater than $2 + ((\sqrt{5} + 1)/2)$ and, for any real number $\varepsilon > 0$, it contains a fractional power with exponent greater than $2 + ((\sqrt{5} + 1)/2) - \varepsilon.$
Proof: Let $vvvu$ be a fractional power factor of f. As in f there are no 4 powers (Proposition 1) one can find in f a factor

$$u' xu'' u' xu'' u' xu'' u' y$$

where $u' xu'' = v$, u is a left factor of u', $u'' \in \{a, b\}^*$ and $x, y \in \{a, b\}$ with $x \neq y$.

It follows that $u' xu'' u' xu'' u'$ is a special factor of f. By Proposition 3, $\hat{u} \hat{u}'' xu'' \hat{u}'' xu''$ is a left factor of f. From the Lemma

$$\frac{|u' u'' xu'' u' xu''|}{|u' u'' x|} = \frac{|vvvu|}{|v|} < 1 + \frac{\sqrt{5} + 1}{2},$$

and, consequently,

$$\frac{|vvvu|}{|v|} \leq \frac{|vvvu'|}{|v|} < 2 + \frac{\sqrt{5} + 1}{2}.$$

At last, for $n \geq 3$, $f_{n+4} = f_{n+1} f_n f_n f_n g_{n-1} f_{n-1} f_n$.

Hence, for $n \geq 3$, $f_n f_n f_n v_{n-1}$ is always a factor of f.

Since

$$\frac{|f_n f_n f_n v_{n-1}|}{|f_n|} = 2 + \frac{|f_n| + |f_n-1| - 2}{|f_n|},$$

the second part of the proposition follows from Proposition 4. □

In the proof of the above proposition we used the fact that for $n \geq 3$, $f_n f_n f_n v_{n-1}$ is a factor of f. As a consequence all words of the form $wzwzwz$ with $zw = f_n$ and $|z| \leq |v_{n-1}|$ are factors of f; by Proposition 5 all these words are distinct. Since $0 \leq |z| \leq |v_{n-1}|$, the number of these words is $|v_{n-1}| + 1$.

Let us suppose that vvv is a factor of f and that $|v| = |f_n|$ for some $n \geq 3$.

By proposition 2, $v = wz$, $|w| > 0$, and $zw = f_n$.

Suppose that $|z| > |v_{n-1}|$; since $f_n = f_{n-1} f_{n-2} = v_{n-1} y f_{n-2}$ with $x, y \in \{a, b\}$ and $x \neq y$, we can write $f_n = v_{n-1} y u w$ with $z = v_{n-1} y u$ and, consequently, $vvv = w v_{n-1} y u w v_{n-1} y u v_{n-1} y u$.

We know that $f_n f_n f_n g_{n-1} = v_{n-1} y u w v_{n-1} y u w v_{n-1} y u w v_{n-1} x y$ is a factor of f; thus $w v_{n-1} y u w v_{n-1} y u w v_{n-1} = w v_{n-1} (y u w v_{n-1})^2$ is a special factor and by Proposition 3 its mirror image must be a prefix of f. This is impossible by the Lemma because $|w| > 0$.

Hence we have proved the following proposition.
Proposition 7: For \(n \geq 3 \) the number of distinct factors \(v \) of \(f \) with length \(| f_n | \) such that \(vv v \) is also a factor of \(f \) is exactly \(| v_{n-1} | + 1 \). More precisely they are all the words of the form \(wz \) with \(zw = f_n \) and \(| z | \leq | v_{n-1} | \).

Observation: As \(2 + ((\sqrt{5} + 1)/2) \) is an irrational number it cannot exist a fractional power with exponent equal to it.

In the Thue infinite word \(t \) on a two letters alphabet \(A \) there are clearly squares but there are no overlaps (that is factors like \(xvxvy \), \(x \in A \), \(v \in A^* \)). On the contrary it is easy to see that, for any \(\varepsilon > 0 \), in the Thue infinite word \(m \) on a three letters alphabet there exists a fractional power with exponent greater than \(2 - \varepsilon \) but it is a classical result that \(m \) is square free.

Remark: Proposition 6 and 7 were firstly proved by using techniques of Sturmian words. Following the suggestion of P. Séébold we tried to find a simpler proof; actually our proof is simpler than the previous one and use only elementary properties of the Fibonacci infinite word.

Acknowledgements

We thank P. Séébold for his useful suggestions and Professor J. Justin for his friendly advice.

References