A BOUND FOR THE ω-EQUIVALENCE PROBLEM OF POLYNOMIAL D0L SYSTEMS

JUHA HONKALA1,*

Abstract. We give a bound for the ω-equivalence problem of polynomially bounded D0L systems which depends only on the size of the underlying alphabet.

Mathematics Subject Classification. 68Q45.

1. INTRODUCTION

Infinite words generated by iterated morphisms are widely studied in combinatorics of words and language theory, see [8]. Culik II and Harju [1] have shown that equivalence is decidable for infinite words generated by D0L systems. This is one of the deepest results concerning iterated morphisms.

While the ω-equivalence problem for D0L systems is known to be decidable, very little is known about bounds for the problem. Here, by a bound we understand an integer computable from two given D0L systems which indicates how many initial terms in the sequences have to be compared with respect to the prefix order to decide whether the systems are ω-equivalent. No such bounds have been explicitly given in the general case. It is an open problem whether there exists a bound depending only on the cardinality of the alphabet. Indeed, no such bound is known even for the D0L sequence equivalence problem.

In this paper we give a bound for the ω-equivalence problem of polynomially bounded D0L systems which depends only on the cardinality of the alphabet. To obtain this result we first use elementary morphisms (see [3]), and then apply the recently established bound for the sequence equivalence problem of polynomially bounded D0L systems (see [6]).

Keywords and phrases. Infinite words, D0L systems.

1 Department of Mathematics, University of Turku, 20014 Turku, Finland; e-mail: juha.honkala@utu.fi

* Research supported by the Academy of Finland.

© EDP Sciences 2003
It is assumed that the reader is familiar with the basics concerning D0L systems, see \cite{7,8}. For infinite D0L words see also \cite{2,4,5}.

2. Definitions and results

We use standard language-theoretic notation and terminology. In particular, the \textit{cardinality} of a finite set X is denoted by $\text{card}(X)$ and the \textit{length} of a word $w \in X^*$ is denoted by $|w|$. By definition, the length of the empty word ε equals zero. If w is a nonempty word, $\text{first}(w)$ is the first letter of w. If $w \in X^*$ and $x \in X$, then $|w|_x$ is the number of occurrences of the letter x in the word w. If $w \in X^*$ and $Z \subseteq X$ we denote $|w|_Z = \sum_{z \in Z} |w|_z$.

If $w \in X^*$, the set $\text{alph}(w)$ is defined by

$$\text{alph}(w) = \{x \in X \mid |w|_x \geq 1\}.$$

Two words $u, v \in X^*$ are called \textit{comparable} if one of them is a prefix of the other.

A D0L \textit{system} is a triple $G = (X, h, w)$ where X is a finite alphabet, $h : X^* \rightarrow X^*$ is a morphism and $w \in X^*$ is a word. The \textit{sequence} $S(G)$ generated by G consists of the words $w, h(w), h^2(w), h^3(w), \ldots$.

The \textit{language} $L(G)$ of G is defined by

$$L(G) = \{h^n(w) \mid n \geq 0\}.$$

A D0L system $G = (X, h, w)$ is called \textit{polynomially bounded} (or \textit{polynomial}) if there exists a polynomial $P(n)$ such that

$$|h^n(w)| \leq P(n) \quad \text{for all } n \geq 0.$$

A D0L system $G = (X, h, w)$ is polynomially bounded if and only if there does not exist a letter $x \in \text{alph}(L(G))$ such that for some $n \geq 1$ we have $|h^n(x)|_x \geq 2$ (see \cite{9}).

Suppose $G = (X, h, w)$ is a D0L system such that w is a prefix of $h(w)$ and $L(G)$ is infinite. Then we denote by $\omega(G)$ the unique infinite word having prefix $h^n(w)$ for all $n \geq 0$. If, on the other hand, $G = (X, h, w)$ is a D0L system such that w is not a prefix of $h(w)$ or $L(G)$ is finite, we say that $\omega(G)$ does not exist.

Suppose $G = (X, h, w)$ is a D0L system such that $\omega(G)$ exists. Then, if v is a prefix of $\omega(G)$ and $|w| \leq |v|$, the word v is a proper prefix of $h(v)$.

Let $G_i = (X, h_i, w_i), i = 1, 2,$ be D0L systems. G_1 and G_2 are called \textit{sequence equivalent} if $S(G_1) = S(G_2)$. G_1 and G_2 are called ω-\textit{equivalent} if both $\omega(G_1)$ and $\omega(G_2)$ exist and are equal.
Next, if m is a positive integer, denote

$$A(m) = 4^{m+2}((m + 2)! + 1)^{(m+2)^2}.$$

The following result is proved in [6].

Theorem 1. Let m be a positive integer. If $G_i = (X, h_i, w)$, $i = 1, 2$, are polynomially bounded D0L systems and $\text{card}(X) \leq m$, then

$$S(G_1) = S(G_2)$$

if and only if

$$h^n_1(w) = h^n_2(w) \text{ for all } 0 \leq n \leq A(m).$$

The purpose of this paper is to prove a similar result for the ω-equivalence problem of polynomially bounded D0L systems.

Let $G = (X, h, a)$ be a D0L system such that $a \in X$. Denote $X_1 = X - \{a\}$. G is called a 1-system if

1. $h(a) \in aX_1^*$;
2. $h(x) \in X_1^*$ if $x \in X_1$;
3. $L(G)$ is infinite;
4. if $x \in X_1$, then x occurs infinitely many times in $\omega(G)$.

In the preliminary section of [1] Culik II and Harju show that in studying the ω-equivalence problem for D0L systems it suffices to consider 1-systems.

Let $G_i = (X, h_i, a)$, $i = 1, 2$, be 1-systems. We say that G_1 and G_2 satisfy the growth condition if there do not exist integers $1 \leq s \leq \text{card}(X)^2$, $1 \leq j_1, \ldots, j_s \leq 2$ and a letter $x \in X$ such that

$$|h_{j_1} \cdots h_{j_s}(x)|_x \geq 2.$$

(1)

If m is a positive integer, denote

$$C(m) = 2(m! + 1)^{m+1}$$

and

$$\omega(m) = 2(A(m + 1) + 2)(C(m) + 1).$$

Now we can state the main result.

Theorem 2. Let m be a positive integer. If $G_i = (X, h_i, a)$, $i = 1, 2$, are polynomially bounded 1-systems and $\text{card}(X) \leq m$, then

$$\omega(G_1) = \omega(G_2)$$
if and only if
(i) \(G_1 \) and \(G_2 \) satisfy the growth condition;
(ii) all words in the set
\[
\{ h_{i_n} \ldots h_{i_1}(a) \mid 0 \leq n \leq \omega(m), i_1, \ldots, i_n \in \{1, 2\} \}
\]
are comparable.

It is not difficult to see that to check condition (ii) in Theorem 2 only \(2\omega(m) \) comparisons are needed.

If \(G_i = (X, h_i, a), i = 1, 2, \) are polynomially bounded \(\omega \)-equivalent 1-systems then the growth and comparability conditions of Theorem 2 hold. Indeed, the \(\omega \)-equivalence implies the comparability condition while the growth condition follows by Lemma 7 in [4]. In the following sections we prove that the conditions of Theorem 2 are also sufficient for the \(\omega \)-equivalence.

3. Simplification of 1-systems

In this section we simplify 1-systems by using elementary morphisms as in [3]. First we recall some results from [6].

Let \(h : X^* \rightarrow X^* \) be a morphism. The set of cyclic letters is defined by
\[
\text{CYCLIC}(h) = \{ x \in X \mid |h(x)|_x \geq 1 \}.
\]
The relation \(\leq_h \) on \(X \) is defined by setting
\[
x \leq_h y
\]
for \(x, y \in X \) if and only if there is \(n \geq 0 \) such that
\[
|h^n(x)|_y \geq 1.
\]
If \(Z \subseteq X \), a letter \(z \in Z \) is called \(\leq_h \)-minimal in \(Z \) if \(x \leq_h z \) holds for no \(x \in Z - \{z\} \).

Lemma 3. Let \(G = (X, h, w) \) be a polynomially bounded D0L system such that \(\text{CYCLIC}(h) = X \). Then the relation \(\leq_h \) is a partial order on \(\text{alph}(L(G)) \).

Proof. See [6]. \(\square \)

Let now \(h_i : X^* \rightarrow X^*, i = 1, 2, \) be morphisms. Then the triple \((f, p_1, p_2) \) simplifies the pair \((h_1, h_2) \) if the following conditions hold:
1. there is an alphabet \(Y \) such that \(f : X^* \rightarrow Y^* \) and \(p_i : Y^* \rightarrow X^*, i = 1, 2, \) are morphisms;
2. there exist sequences \(i_{11}, \ldots, i_{1k} \) and \(i_{21}, \ldots, i_{2k} \) of elements from \(\{1, 2\} \) such that
\[
h_1h_{i_{11}} \ldots h_{i_{1k}} = p_1f, \quad h_2h_{i_{21}} \ldots h_{i_{2k}} = p_2f;
\]
3. the morphisms \(p_i \) and \(fp_i, \ i = 1, 2, \) are elementary;
4. CYCLIC\((fp_i) = Y, \ i = 1, 2.\)

Note that \(k, i_{11}, \ldots, i_{1k}, i_{21}, \ldots, i_{2k} \) are not uniquely determined by the triple \((f, p_1, p_2).\) Any value of \(k \) such that there exist \(i_{11}, \ldots, i_{1k}, i_{21}, \ldots, i_{2k} \) satisfying (2) is called an index of the triple \((f, p_1, p_2).\) Whenever we consider a triple \((f, p_1, p_2)\) simplifying a pair \((h_1, h_2)\) it is tacitly assumed that \(Y, \) \(k \) and \(i_{11}, \ldots, i_{1k}, i_{21}, \ldots, i_{2k} \) are as above.

A morphism \(h : X^* \rightarrow X^*\) is called nontrivial if \(h(X) \neq \{e\}.\) If \(h_i : X^* \rightarrow X^* \), \(i = 1, 2,\) are morphisms, the pair \((h_1, h_2)\) is called nontrivial if all products of \(h_1 \) and \(h_2 \) are nontrivial.

Lemma 4. Let \(m \) be a positive integer. If \(X \) is an alphabet with at most \(m \) letters, \(h_i : X^* \rightarrow X^*, \ i = 1, 2,\) are morphisms and the pair \((h_1, h_2)\) is nontrivial, then there exists a triple \((f, p_1, p_2)\) simplifying the pair \((h_1, h_2)\) and having index \(k \) such that \(2m \leq k \leq C(m).\)

Proof. See [6].

The following lemmas study in detail the simplification of 1-systems.

Lemma 5. Let \(G_i = (X, h_i, a), \ i = 1, 2,\) be 1-systems and let \((f, p_1, p_2)\) simplify the pair \((h_1, h_2).\) Denote first\((f(a)) = c \) and \(Y_1 = Y - \{c\}.\) Then

\[
\begin{align*}
(i) & \quad fp_i(c) \in cY_1^*; \\
(ii) & \quad fp_i(y) \in Y_1^* \text{ if } y \in Y_1, \ i = 1, 2.
\end{align*}
\]

Proof. Because \(G_1 \) and \(G_2 \) are 1-systems, \(p_i(f(a)) \in aX_1^* \) and \(p_i(f(x)) \in X_1^* \) if \(x \in X_1.\) Hence \(p_i(c) \in aX_1^* \) implying \(f(a) \in cY_1^* \) and \(f(x) \in Y_1^* \) if \(x \in X_1.\) Therefore \(fp_i(c) \in cY_1^*.\)

Let \(y \in Y_1.\) Because \(|fp_i(y)|_y \geq 1 \) there is a letter \(x \in X \) such that \(|f(x)|_y \geq 1.\) If \(x \in X_1 \) then \(p_i(f(x)) \in X_1^* \) and \(p_i(y) \in X_1^*.\) If \(x = a \) then \(y \in \text{alph}(c^{-1}f(a)) \) and \(p_i(c^{-1}f(a)) \in X_1^* \) implying again that \(p_i(y) \in X_1^*.\) It follows that \(fp_i(y) \in Y_1^*.\)

Lemma 6. Let \(G_i = (X, h_i, a), \ i = 1, 2,\) be 1-systems and let \((f, p_1, p_2)\) simplify the pair \((h_1, h_2).\) Assume that the words \(p_1f_2f_1(a) \) and \(p_2f_1f_1(a) \) are comparable and that the DOL systems \((Y, f_i, p_i),\) for \(y \in Y \) and \(i = 1, 2,\) are polynomially bounded. Denote first\((f(a)) = c \) and \(Y_1 = Y - \{c\}.\) Suppose \(e \) is \(\leq f_1 \)-minimal in \(Y_1 \) and \(\leq f_2 \)-minimal in \(Y_1.\) Denote \(g_1 = fp_1f_2, \ g_2 = fp_2f_1 \) and \(Z = \{x \in X \mid |f(x)|_e \geq 1\}.\) Then

\[
\begin{align*}
(i) & \quad |fp_i(c)|_e = 1, \ i = 1, 2; \\
(ii) & \quad |fp_i(y)|_e = 0 \text{ if } y \in Y_1 - \{c\}, \ i = 1, 2; \\
(iii) & \quad |g_1(c)|_e = |g_2(c)|_e; \\
(iv) & \quad |p_1f_2(c)|_Z = |p_2f_1(c)|_Z; \\
(v) & \quad |p_1f_2(c)|_Z = |p_2f_1(c)|_Z = 1; \\
(vi) & \quad |p_1f_2(y)|_Z = |p_2f_1(y)|_Z = 0 \text{ if } y \in Y_1 - \{c\}.
\end{align*}
\]
Proof. Because $e \in \text{CYCLIC}(fp_i)$ and (Y, fp_i, e) is polynomially bounded we have $|fp_i(e)|_e = 1$. Because e is $\leq fp_i$-minimal in Y_1 we have $|fp_i(y)|_e = 0$ if $y \in Y_1 - \{e\}$. This implies also

$$|g_1(e)|_e = |fp_1 fp_2(e)|_e = |fp_1(e)|_e + |fp_2(e)|_e = |fp_2(e)|_e + |fp_1(e)|_e = |fp_2 fp_1(e)|_e = |g_2(e)|_e.$$

To prove (iv) observe that one of the words $p_1 fp_2(e)$ and $p_2 fp_1(e)$ is a prefix of the other, say $p_1 fp_2(e) = p_2 fp_1(e)v$ where $v \in X_1^*$. Then

$$|fp_1 fp_2(e)|_e = |fp_2 fp_1(e)|_e + |f(v)|_e.$$

By (iii) it follows that $|v|_Z = 0$. Hence $|p_1 fp_2(e)|_Z = |p_2 fp_1(e)|_Z$.

Finally, because

$$|fp_1 fp_2(e)|_e = |fp_2 fp_1(e)|_e = 1$$

and

$$|fp_1 fp_2(y)|_e = |fp_2 fp_1(y)|_e = 0$$

if $y \in Y_1 - \{e\}$, we get (v) and (vi).

Lemma 7. Let $G_i = (X, h_i, a)$, $i = 1, 2$, be 1-systems and let (f, p_1, p_2) having index $k \geq 2\text{card}(X)$ simplify the pair (h_1, h_2). Denote $\text{first}(f(a)) = e$ and $Y_1 = Y - \{e\}$. Assume that all words in the set

$$\{h_{i_0} \ldots h_{i_n}(a) \mid 0 \leq n \leq k + 2\}$$

are comparable. Then $\text{alph}(p_i f(a)) = X$ and $\text{alph}(fp_i fp_j(c)) = Y$ for all $i, j \in \{1, 2\}$.

Proof. First, we claim that $p_i f(a)$ is a prefix of $\omega(G_1)$ for $i = 1, 2$. If not, let w_i be the longest common prefix of $p_i f(a)$ and $\omega(G_1)$. Then $h_1(w_i)$ is a common prefix of $h_1 p_i f(a)$ and $\omega(G_1)$ which is longer than w_i. This contradicts the assumption that $h_1 p_i f(a)$ and $p_i f(a)$ are comparable.

A similar argument shows that $p_i f(a)$ is also a prefix of $\omega(G_2)$ for $i = 1, 2$. Because G_i, $i = 1, 2$, are 1-systems we have

$$\text{alph}(h_1^0(a)) = \text{alph}(h_2^0(a)) = X$$

for $n \geq \text{card}(X)$. Because $p_i f$ contains at least $\text{card}(X)$ terms equal to h_1 or at least $\text{card}(X)$ terms equal to h_2 when it is regarded as a product of h_1 and h_2, this implies that

$$\text{alph}(p_i f(a)) = X, \quad i = 1, 2.$$

Hence $\text{alph}(p_i(Y)) = X, \quad i = 1, 2$. Because fp_1 is elementary $\text{alph}(fp_1(Y)) = Y$ implying that $\text{alph}(f(X)) = Y$. Therefore

$$Y \subseteq \text{alph}(f(X)) \subseteq \text{alph}(fp_1 f(a)) \subseteq \text{alph}(fp_i fp_j(c))$$

for $i, j \in \{0, 1\}$. \qed
4. Reduction to the sequence equivalence

The following two lemmas are the most essential step in the deduction of Theorem 2 from Theorem 1.

Let a, X_1 and Z be as in Lemma 6. If $u \in aX_1^*ZX_1^*$, let $\alpha(u)$ be the longest prefix of u belonging to aX_1^*Z.

Lemma 8. We continue with the notations and assumptions of Lemma 6. Suppose $|p_1fp_2(c)|_Z = |p_2fp_1(c)|_Z \geq 1$. If n is a positive integer and the words $p_1fp_2g_1^n(c)$ and $p_2fp_1g_2^n(c)$ are comparable then

$$\alpha(p_1fp_2g_1^n(c)) = \alpha(p_2fp_1g_2^n(c)).$$

Conversely, if (3) holds for all $n \geq 1$, then $\omega(G_1) = \omega(G_2)$.

Proof. Let n be a positive integer. Because $|p_1fp_2(c)|_Z = |p_2fp_1(c)|_Z \geq 1$, the words $p_1fp_2g_1^n(c)$ and $p_2fp_1g_2^n(c)$ belong to $aX_1^*ZX_1^*$. By Lemma 6 we have

$$|p_1fp_2g_1^n(c)|_Z = |p_1fp_2(c)|_Z + |g_1^n(c)|_Z$$

$$= |p_1fp_2(c)|_Z + n|g_1(c)|_Z$$

$$= |p_2fp_1(c)|_Z + n|g_2(c)|_Z$$

$$= |p_2fp_1(c)|_Z + |g_2^n(c)|_Z$$

$$= |p_2fp_1g_2^n(c)|_Z.$$ \hspace{1cm} (4)

Assume then that the words $p_1fp_2g_1^n(c)$ and $p_2fp_1g_2^n(c)$ are comparable. By (4) we have (3).

Conversely, assume that (3) holds for all $n \geq 1$. Denote $H_1 = (X, p_1fp_2f, a)$ and $H_2 = (X, p_2fp_1f, a)$. By (4) the languages $L(H_1)$ and $L(H_2)$ are infinite because $|g_1(c)|_Z \geq 1$. Hence $\omega(H_1)$ and $\omega(H_2)$ exist. Equations (3) and (4) together imply that $\omega(H_1)$ and $\omega(H_2)$ have arbitrarily long common prefixes. Therefore $\omega(H_1) = \omega(H_2)$. To prove that $\omega(G_1) = \omega(G_2)$ assume $\omega(G_1)$ and $\omega(G_2)$ are not equal and let w be the longest common prefix of $\omega(G_1)$ and $\omega(G_2)$. Then $h_1(w)$ and $h_2(w)$ are not comparable. On the other hand, because w is also a prefix of $\omega(H_1) = \omega(H_2)$, the words $p_1fp_2f(w)$ and $p_2fp_1f(w)$ are comparable and have prefixes $h_1(w)$ and $h_2(w)$, respectively. This contradiction proves that $\omega(G_1) = \omega(G_2)$. \hfill \Box

Lemma 9. We again continue with the notations and assumptions of Lemma 6 and suppose that $|p_1fp_2(c)|_Z = |p_2fp_1(c)|_Z \geq 1$. Assume that the D0L systems $(X, p_1fp_2, p_1fp_2(c))$ and $(X, p_2fp_1, p_2fp_1(c))$ are polynomially bounded. If (3) holds for $1 \leq n \leq A(1 + \text{card}(X)) + 1$ then (3) holds for all $n \geq 1$.

Proof. The claim follows by Theorem 1 because the sequences obtained from

$$(\alpha(p_1fp_2g_1^n(c)))_{n \geq 1}$$
and

\[(a(p_2 f_p p_2^2(c)))_{n \geq 1}\]

by barring the last letter of every term are polynomially bounded D0L sequences over an alphabet with at most \(1 + \text{card}(X)\) letters.

Next, we show that if we simplify polynomially bounded 1-systems satisfying the growth condition then the resulting D0L systems are polynomially bounded, too.

Lemma 10. Suppose \(G_i = (X, h_i, a), i = 1, 2\), are 1-systems satisfying the growth condition. Then there do not exist integers \(s \geq 1, 1 \leq j_1, \ldots, j_s \leq 2\) and a letter \(x \in X\) such that (1) holds.

Proof. Suppose on the contrary that there exist integers \(s \geq 1, 1 \leq j_1, \ldots, j_s \leq 2\) and a letter \(x \in X\) such that (1) holds. Choose \(s, j_1, \ldots, j_s\) and \(x\) so that \(s\) is as small as possible. By considering the derivation tree of \(h_{j_1} \ldots h_{j_s}(x)\) it is seen that there exist a nonnegative integer \(t\), letters \(x_0, \ldots, x_t \in X\) and pairs \((x_{t+1}, X_{t+1}), \ldots, (x_s, X_s)\) in \(X \times X\) satisfying the following conditions:

(i) \(x_0 = x\) and \(x_s = X_s = x\);
(ii) \(h_{j_s+1}(x_{\gamma}) \in X^* x_{\gamma+1} X^*\) for \(0 \leq \gamma \leq s - 1\);
(iii) \(h_{j_s+1}(X_{\gamma}) \in X^* X_{\gamma+1} X^*\) for \(t + 1 \leq \gamma \leq s - 1\);
(iv) \(h_{j_s+1}(x_t) \in X^* x_{t+1} X^* X_{t+1} X^*\).

By the minimality of \(s\), no letter appears twice in the sequence \(x_0, \ldots, x_t\) and no pair appears twice in the sequence \((x_{t+1}, X_{t+1}), \ldots, (x_s, X_s)\). Furthermore, none of \((x_1, x_1), \ldots, (x_t, x_t)\) appears among the pairs. But then

\[s \leq \text{card}(X)^2,\]

which is a contradiction because \(G_1\) and \(G_2\) satisfy the growth condition. \(\square\)

Lemma 11. Suppose \(G_i = (X, h_i, a), i = 1, 2\), are 1-systems satisfying the growth condition. Let \((f, p_1, p_2)\) simplify the pair \((h_1, h_2)\) and denote \(\text{first}(f(a)) = c\). Then the D0L systems \((X, p_1 f_p p_2 f, x), (X, p_2 f_p p_1 f, x), (Y, f_p p_1 f, c)\) and \((Y, f_p p_2 f_p p_2, c)\) for \(x \in X\), \(i = 1, 2\), are polynomially bounded.

Proof. The claims follow by Lemma 10. \(\square\)

Now we are ready to prove Theorem 2. For that purpose let \(m\) be a positive integer and let \(G_i = (X, h_i, a), i = 1, 2\), be 1-systems such that \(\text{card}(X) \leq m\). Assume that \(G_1\) and \(G_2\) satisfy the growth condition and that all words in the set

\[\{h_i, \ldots h_i(a) \mid 0 \leq n \leq \omega(m), i_1, \ldots, i_n \in \{1, 2\}\}\]

are comparable. To conclude the proof of Theorem 2 it suffices to show that \(\omega(G_1) = \omega(G_2)\).

First, by Lemma 4 there is a triple \((f, p_1, p_2)\) which simplifies the pair \((h_1, h_2)\) and has index \(k\) such that \(2m \leq k \leq C(m)\). As before, denote \(\text{first}(f(a)) = c, Y_1 = Y \setminus \{c\}, g_1 = f_p p_1 f_p p_2\) and \(g_2 = f_p p_2 f_p p_1\). By Lemma 11 the D0L systems
(X, p1fp2x, x). (X, p2fp1x, x). (Y, fp1, c) and (Y, fp1fp2, c) for x ∈ X, i = 1, 2, are polynomially bounded. Also, by Lemma 7, the D0L systems (Y, fp1, y) are polynomially bounded for y ∈ Y, i = 1, 2. Further, by Lemmas 3 and 7 the relations ≤fp1fp2 and ≤fp1, i = 1, 2, are partial orders on Y.

Now, let e ∈ Y1 be ≤fp1fp2-minimal in Y1. Such a letter exists because ≤fp1fp2 is a partial order on a finite set. Then e is also ≤fp1-minimal in Y1 for i = 1, 2. Indeed, if y ∈ Y1 and |fp1c(y)|e ≥ 1 then |fp1fp2(y)|e ≥ |fp1c(y)|e ≥ 1 because |fp2c(y)|y ≥ 1. Similarly, if y ∈ Y1 and |fp2c(y)|c ≥ 1 we have |fp1fp2(y)|c ≥ |fp1c(y)|c ≥ 1. In both cases, because e is ≤fp1fp2-minimal in Y1, necessarily y = e which proves that e is ≤fp1c-minimal in Y1 for i = 1, 2.

Next, denote Z = {x ∈ X | |f(x)|e ≥ 1}. By Lemma 7 we have |p1fp2c|Z = |p2fp1c|Z ≥ 1. Now we are in a position to apply Lemmas 8 and 9. By assumption, the words p1fp2g1(c) and p2fp1g2(c) are comparable for 0 ≤ n ≤ A(m + 1) + 1. By Lemma 8 we have (3) for 1 ≤ n ≤ A(m + 1) + 1. By Lemma 9 we get (3) for all n ≥ 1. Then ω(G1) = ω(G2) by Lemma 8.

References

Communicated by J. Berstel.
Received August, 2002. Accepted May, 2003.

To access this journal online:
www.edpsciences.org