
RAIRO-Theor. Inf. Appl. 41 (2007) 411–424

DOI: 10.1051/ita:2007021

UNIFORMLY BOUNDED DUPLICATION CODES ∗

Peter Leupold
1

and Victor Mitrana
1, 2

Abstract. Duplication is the replacement of a factor w within a word
by ww. This operation can be used iteratively to generate languages
starting from words or sets of words. By undoing duplications, one
can eventually reach a square-free word, the original word’s duplica-
tion root. The duplication root is unique, if the length of duplications
is fixed. Based on these unique roots we define the concept of duplica-
tion code. Elementary properties are stated, then the conditions under
which infinite duplication codes exist are fully characterized; the rele-
vant parameters are the duplication length and alphabet size. Finally,
some properties of the languages generated by duplication codes are
investigated.

Mathematics Subject Classification. 68R15, 68Q45, 94B60.

1. Introduction

A fundamental concept concerning words is primitivity. A word is primitive,
if it is not a non-trivial power of another word. For every non-primitive word,
there is a unique primitive one the original word is a power of. This is often
called the original word’s primitive root. Thus, words having the same root can
be generated by iterated catenation starting from the same word; in this sense
they share a common primitive source.

Keywords and phrases. Duplication, duplication primitive word, duplication root, duplica-
tion code.

∗ This work was done, while the first author was funded by the Spanish Ministry of Culture,
Education and Sport under the Programa Nacional de Formación de Profesorado
Universitario (FPU).
1 Research Group in Mathematical Linguistics, Rovira i Virgili University, Pça. Imperial
Tàrraco 1, 43005 Tarragona, Catalunya, Spain;
klauspeter.leupold@urv.cat, victor.mitrana1@urv.cat
2 Faculty of Mathematics and Computer Science, Bucharest University, Str. Academiei 14,
70109 Bucureşti, Romania.

c© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.rairo-ita.org or http://dx.doi.org/10.1051/ita:2007021

http://www.edpsciences.org
http://www.rairo-ita.org
http://dx.doi.org/10.1051/ita:2007021

412 P. LEUPOLD AND V. MITRANA

Here we will take as underlying operation not catenation but duplication, that is
replacement of factors w by ww within a given word. Analogously to the primitive
root, we define the duplication root of a word. It is obtained by undoing all
possible duplications within the word and thus reaching a word without any non-
empty factor of the form ww. However, in contrast to the primitive root, the result
of this reduction need not be unique in general; for example, the word ababcbabc
can be reduced to abcbabc via un-duplication of abab︸︷︷︸ cbabc, and to abc via un-
duplication of a babcbabc︸ ︷︷ ︸ and then abab︸︷︷︸ c. Here, we investigate duplications of a

fixed length n only, which makes the duplication root to be unique [6].
The primitive words under this notion are the ones not containing any rep-

etition of a given length. Different variations of the duplication operation have
received interest in the last years: the mentioned one of fixed length [6] as well as
ones of bounded length and unrestricted length [2,5,11]. In all these investigations
the main focus was on the generative power of the iterated duplication operation
starting from a given word. A somewhat related topic is that of semigroups gener-
ated by the idempotency relation w = ww as investigated in the book of Lothaire
[7]; seen as an operation on words, this amounts to admitting besides duplications
also their reversals.

As primitivity plays a central role in the investigation of codes [1, 10], it seems
natural to see if some special type of code can be based on the notion of duplication.
Here the uniqueness of the root is very desirable. This is why we restrict ourselves
to only uniformly bounded duplications, meaning that all the duplicated factors
are of a fixed, uniform length. We define such a notion of code also with an eye
to the original motivation for investigating the duplication operation on words.

This operation was inspired by observing the behavior of DNA strands. There,
through the formation of loops in space, parts of a strand can be duplicated in
the place of the original strand. In an article from [4] which marks the latest
milestone in the historic project of Human Genome Sequencing one claims that
“5% of the human genome is involved in segmental duplications, and that the
distribution of these regions varies widely across the chromosomes. Knowing the
nature and extent of such duplications is important for understanding the evolution
of the human genome, and for studying the many medically relevant disorders that
are involved in segmental duplications, such as DiGeorge syndrome and Charcot-
Marie-Tooth syndrome”.

In an environment, where such duplications are possible, code words should
satisfy the following property to adhere to the original idea of a code: even if
arbitrary duplications within code words are performed, their catenation should
allow a unique factorization into the original code words, possibly modified by
duplications. This is exactly what our definition of an n-dup code guarantees.

We first provide the definition of uniformly bounded duplication and then com-
pile some basic properties of the related duplication root; these will be used in
the proofs of the later sections. Then we proceed to formalize the notion of dupli-
cation code as informally described above. Some elementary properties and first
examples are provided. In Section 4 we fully characterize the conditions, under

UNIFORMLY BOUNDED DUPLICATION CODES 413

which infinite duplication codes exist; the relevant parameters are the length of
duplication and the size of the alphabet. In Section 5 we then state some proper-
ties of the languages generated by duplication codes, mainly about their density.
In a final section we summarize the perspectives opened up by the work presented
here.

2. The duplication operation and n-dup primitive words

We now provide the formal definitions concerning the duplication operation. For
this, we take for granted elementary concepts from the theory of formal languages
as exposed, for example, by Salomaa [9]. A few notations we use are: |w| for the
length of the word w, w[i] for the i-th letter of w, and w[i . . . j] for the factor of
w starting at position i and ending at position j. A period of a word w is an
integer k such that for all i ≤ |w| − k we have w[i] = w[i + k]. A word w is called
unbordered, if it has no factorization uvu with a non-empty factor u. With this we
come to the central notion of this article.

Let Σ be an alphabet; for a word w ∈ Σ+ and a positive integer n we define
the n-duplication set of w by

w1♥n :=
{ {ruus | w = rus, r, s ∈ Σ∗, u ∈ Σ+, |u| = n}, if |w| ≥ n

{w}, otherwise.

Here the heart nicely symbolizes the duplication operation: from one origin at the
bottom it goes to two equal halves in the upper part. The number one signals that
only one duplication is enacted. If the constant n is omitted, this means that the
condition |u| = n is dropped; if n is replaced by ≤ n, then the condition is changed
to |u| ≤ n. We then speak of (general) and bounded duplication respectively. Now
we define recursively the languages

w0♥n := {w}, wi♥n :=
⋃

u∈w(i−1)♥n

u1♥n, i ≥ 1, w♥n :=
⋃
i≥0

wi♥n.

Thus w♥n is the language of all words that can be obtained from w by a finite
number of duplications of length n. For example, (abcabc)♥3 = abc(abc)+ and
(aaa)♥2 = a(aa)+. In what follows, we will generally use n without specifying
its range; this shall mean that n ≥ 1. All other cases will be explicitly indicated.
Languages w♥ and w♥≤n are defined analogously.

In the canonical way, the duplication operation is extended to sets of words,
setting for such a set W its language generated by duplication as

W♥n :=
⋃

w∈W

w♥n.

One can also look at the effects of undoing duplications rather than duplicating
factors. By this, one finally arrives at a word with no n-square, that is no factor

414 P. LEUPOLD AND V. MITRANA

vv where |v| = n. No more duplications can be undone, and we call the resulting
word the n-duplication root of the original word w. This root has been shown to
be unique [6]. We denote the root by ♥n

√
w. In the sequel, we simply say root,

when we speak about the n-duplication root and n is clear. First off, we note that

♥n
√

uv = ♥n

√
♥n
√

u · ♥n
√

v = ♥n

√
♥n
√

uv = ♥n

√
u ♥n

√
v

follows directly from the uniqueness of the root. The simpler equation ♥n
√

uv =
♥n
√

u· ♥n
√

v does not hold true in general. A trivial counterexample is a = ♥1
√

a · a �=
♥1
√

a · ♥1
√

a = aa.
Every word which is its n-duplication root is called n-dup primitive. The lan-

guage of all n-dup primitive words over Σ is denoted here by ♥n(Σ). We recall
from [6]:

Theorem 2.1. For all positive n and all alphabets Σ, ♥n(Σ) is regular.

It is worth mentioning that the union of these languages for all n ≥ 1 is known
to be not even context-free, see, e.g., [8], provided that the alphabet Σ has at least
three letters.

We now compile a few elementary properties of n-dup primitive words and the
corresponding roots. Some of these will prove useful in the later sections.

Proposition 2.2.
1. If for an n-dup primitive word u, ♥n

√
uu = u holds, then also ♥n

√
u+ = {u}

holds.
2. If w is a word of length n, then w♥n = w+.

Proof.
1. Note that ♥n

√
uuu = ♥n

√
u ♥n

√
uu = ♥n

√
uu = u. Inductively, ♥n

√
u+ = {u}

holds.
2. The inclusion w∗ ⊆ w♥n is obvious. We show the converse inclusion by

induction on the number of duplications necessary to obtain a word u ∈ w♥n

starting from w. Clearly, by one duplication only ww can be obtained, and it is in
w∗. Now suppose that v ∈ w∗ and u ∈ v1♥n. Then the factor v[i . . . i + n − 1] to
be duplicated is a conjugate of w. Therefore there is a j such that v[j + 1 . . . i +
n − 1]v[i . . . j] = w and v[1 . . . j], v[j + 1 . . . |v|] ∈ w∗. Now v[i . . . i + n − 1]2 =
v[i . . . j]wv[j + 1 . . . i + n − 1], and thus also u ∈ w∗. �

By a quite similar reasoning, we obtain another related result, which shows that
duplications (and just as well unduplications) preserve periods, which divide their
length.

Lemma 2.3. If a word w has a period k, which divides n, then all words in w♥n

and ♥n
√

w have period k, too.

Proof. For ♥n
√

w the statement is trivial, because removing factors of length n
from a word with period k maintains this period. For w♥n we prove the claim
by induction. Of course, w has period k by assumption. Now, we suppose some

UNIFORMLY BOUNDED DUPLICATION CODES 415

� �� �

� �� �

the new square

the first square

�
w[m . . . k − 2n + 1] w[k − 2n + 2 . . . k − n + 1] λ w[k + 1 . . . m + 3n]

w[m . . . k − 2n + 1] w[k − 2n + 2 . . . k − n + 1] w[k − n + 2 . . . k + 1] w[k + 1 . . . m + 3n]

Figure 1. Undoing the first n-square starting at position k − 2n + 1.

word u ∈ w♥n has period k, and a factor u of length n is duplicated starting from
position i. The resulting word is w[1 . . . i + n − 1]uw[i + n . . . |w|] = w[1 . . . i −
1]uuw[i + n . . . |w|]. Now w[1 . . . i− 1]u and uw[i + n . . . |w|] are a prefix and suffix
of w, therefore have period n. Since at the point of catenation they agree on the
n letters of u to both sides, also the catenation has period n. This, together with
the fact that w♥n = {w} for words shorter than n, suffices to prove the claim. �

Now we turn our attention to cases, where a word and some of its powers have
the same root. This is not always the case and thus some implications regarding
the structure of the words satisfying this condition can be inferred.

Proposition 2.4. If ♥n
√

ww = ♥n
√

w for some word w, then |w| is a multiple of n.

Proof. ♥n
√

ww = ♥n
√

w implies ♥n
√

♥n
√

w ♥n
√

w = ♥n
√

w. This means that one can
get from ♥n

√
w to ♥n

√
w ♥n

√
w via duplications of length n. Because every such

duplication increases the word’s length by n, | ♥n
√

w| must be a multiple of n. As
also w can be reached from ♥n

√
w via duplications of length n, its length must be

a multiple of n, too. �

For general powers wk with k > 2 (instead of ww) this statement is not true
anymore; for example, whenever k is a multiple of n there are trivial counterexam-
ples over the one-letter alphabet. Before we can make a more general statement,
we prove an auxiliary lemma and recall the well-known periodicity lemma of Fine
and Wilf.

Lemma 2.5. If w[1 . . . k] is an n-dup primitive prefix of w, then w[1 . . . k−n+1]
is a prefix of ♥n

√
w.

Proof. If w[1 . . . k] is an n-dup primitive prefix of w, then the first n-square in w
can start at position k − 2n + 2. Suppose that unduplicating this square creates a
new one starting at a position closer to the beginning, say m. Then the 2n letters
w[m . . . k − 2n + 1]w[k − 2n + 2 . . . k − n + 1]w[k + 2 . . .m + 3n] form this new
n-square as can be seen in Figure 1.

This in turn implies that w[m . . . k−2n+1] is a suffix of w[k−2n+2 . . . k−n+1]
and w[k+2 . . .m+3n] is a prefix of it, in fact, because w[k−2n+2 . . . k−n+1] has

416 P. LEUPOLD AND V. MITRANA

length n and the square has length 2n, we must have w[k − 2n + 2 . . . k− n + 1] =
w[m . . . k − 2n + 1]w[k + 2 . . .m + 3n] = w[k − n + 2 . . . k + 1]. But this shows
that w[k + 2 . . .m + 3n] is also a suffix of w[k − n + 2 . . . k + 1], and thus a square
starting at position m was already present in the original word, which contradicts
our assumption. �

This bound is tight as shown by the example of ♥3
√

babaaba = baba, where the
longest 3-dup primitive prefix has length 6, and the root has length 4 = 6− 3 + 1.
Of course, the same reasoning applies from the end of the word.

Corollary 2.6. If w[k . . . |w|] is a square-free suffix of w, then w[k + n− 1 . . . |w|]
is a suffix of ♥n

√
w.

In what follows we will use a result originally due to Fine and Wilf; the formu-
lation for words can for example be found in the book by Lothaire.

Lemma 2.7. [3,7]. If a word w has periods k and l, then also k + l − gcd(k, l) is
a period of w.

Now we are ready to make a statement about the case where general powers of
a word have the same root as the word itself. This result will be used later in the
proof of Proposition 5.2.

Lemma 2.8. If ♥n
√

wk = ♥n
√

w for some word w and some integer k ≥ 2, then n
has a period of w as divisor.

Proof. First notice that due to the uniqueness of the root, one can undo first
all duplication within the different factors w of wk. By Lemma 2.3 this would
not change the fact that a period of w divides n. Thus, without restriction of
generality we can suppose that w is n-dup primitive. For words shorter than n,
♥n
√

wk = ♥n
√

w can never hold; for |w| = n, obviously always ♥n
√

wk = ♥n
√

w and
also n trivially is a period of w. Therefore we can suppose |w| > n in the following.

Because w is n-dup primitive any duplication to be undone in wk must cross a
border in between two of the factors w. Further, we suppose that the first n-square
in wk involves at most the last n letters of the first factor w. This means that
the entire word w remains unchanged by unduplicating this square, and thus by
Lemma 2.5 it remains unchanged in the whole process of arriving at ♥n

√
w. If the

first square starts earlier, the same reasoning will work from the end of the word,
and the last factor w will remain unchanged.

The only case, where neither is true is the occurrence of a third power uuu such
that the central u includes the border between the ws. If w has length at least 2n,
then these blocks do not overlap each other, we can just delete the initial n letters
of each w and proceed with the resulting word; this preserves squares uu and also
preserves any period not longer than n. For shorter w, since |w| > n also k > 2,
and the factors uuu overlap. This implies that the entire word w has period |u|.
Since |u| = n, by Lemma 2.3 the initial claim is proved in this case.

Summarizing the reasoning to this point, we can now assume that w is n-dup
primitive, |w| > n, and that the first n-square in wk involves at most the last n
letters of the first factor w. This means that we can cancel the last copy of each

UNIFORMLY BOUNDED DUPLICATION CODES 417

occurrence of this n-square within each of the second to k-th factor w, and arrive
at a new word w(w′)k−1. Since we started at the left-most n-square, according to
Lemma 2.5 this process can be continued, until we arrive at a word of this form,
where w′ is shorter than n – under the assumption ♥n

√
wk = ♥n

√
w this has to

be possible, because we must be able to arrive at a word of length only |w|. If
the length of w′ is a divisor of n, then (w′)k−1 has a period dividing n, and by
Lemma 2.3 this holds also for wk−1, which proves our initial claim.

If the length of w′ is not a divisor of n, there still must be an n-square in
(w′)k−1. Since it has period n and also period |w′| < n, by Lemma 2.7 w′ has
period gcd(n, |w′|), which by definition divides n, and again our initial claim follows
with Lemma 2.3. �

3. n-dup codes

We now proceed to define the central notion of this article, the n-duplication
code, or shortly n-dup code. It is closely oriented after the definition of a conven-
tional code, only instead of the catenation of words we consider the catenation of
their n-duplication sets. Recall that a set of words W is a conventional code, if
for two integers k, l and words u0, . . . , uk, v0, . . . , vl ∈ W the equation

u0u1 . . . uk = v0v1 . . . vl

implies that k = l and all ui = vi hold for 0 ≤ i ≤ k. Analogously, in the sense
described above, we say that W is an n-dup code, if

u♥n
0 u♥n

1 . . . u♥n
k ∩ v♥n

0 v♥n
1 . . . v♥n

l �= ∅

implies that k = l and ui = vi for 0 ≤ i ≤ k. From the definition it is clear that
every n-dup code is also a code in the conventional sense, because always w ∈ w♥n.
The converse is trivially not true. According to the definition, the sequence of
words u0u1 . . . uk such that w ∈ u♥n

0 u♥n
1 . . . u♥n

k must be unique for any word w;
this, however, still might admit some ambiguity as to the actual factorization of w.
Different combinations of words from the sets u♥n

i might provide factorizations of
w. We would like to point out here a few more considerations. Let W = {abb, aab};
clearly, W♥1 = a+b+ is a code, but W is not an 1-dup code. On the other hand,
W = {ab, bc} is a 1-dup code while W♥1 = a+b+ ∪ b+c+ is not a code.

Example 3.1. As a first example of an n-dup code, n ≥ 2, we look at the set
{aba}, which is a 2-duplication code. Clearly (aba)♥2 = a(ba)∗. Thus any catena-
tion of words from (aba)♥2 has two consecutive a exactly at the borders between
the catenated words; this provides the unique factorization of these catenations.

We now compile some simple properties of words contained in n-dup codes.
The first one is obvious, because for words shorter than n the duplication language
generated contains only the original words itself.

418 P. LEUPOLD AND V. MITRANA

Proposition 3.2. A set of words all shorter than n is an n-dup code if and only
if it is a code.

Further, for every word w of length n, we have w · w ∈ w♥n. Therefore con-
tainment of w in an n-dup code would result in two distinct factorizations of ww.
Thus we can state two conditions that necessarily makes a set of words not an
n-dup code.

Proposition 3.3.
1. An n-dup code cannot contain any word of length n.
2. An n-dup code cannot contain two words with the same n-duplication root.

Proof. The second statement follows immediately from the next result that ap-
pears in [6]:

Lemma 3.4. [6]. Let k ≥ 1, if u, v ∈ w♥n for some w, then u♥n ∩ v♥n �= ∅. �

Therefore, the only words really interesting which belong to an n-dup code are
the ones of length greater than n with at least two letters. Having stated several
conditions for a set of words not to be a code, we now state a property that makes
a set of two words an n-dup code in a non-trivial way.

Proposition 3.5. If uu, vv, uv and vu are n-dup primitive words longer than n,
then {u, v} is an n-dup code.

Proof. If uu, vv, uv and vu are all n-dup primitive and longer than n, then all
words in {u, v}∗ are n-dup primitive. Thus every such word w0w1 . . . wn is the
unique root of any word in w♥n

0 w♥n
1 . . . w♥n

n , if all wi are from the set {u, v}.
Suppose now that some word has two such factorizations into words from {u, v}♥n.
If they are distinct, then they result in two distinct duplication roots as just
exposed. This is in contradiction to the uniqueness of the root. Therefore no word
can have two distinct factorizations of this type, and {u, v} is an n-dup code. �

Of course, the argumentation from the proof of Proposition 3.5 can be general-
ized to any number of words. Hence, we state:

Corollary 3.6. Let W be a set of words all longer than n such that all words in
W 2 are n-dup primitive. Then W is an n-dup code.

4. Infinite n-dup codes

Of course, there are infinite conventional codes, however, it is not self-evident
that also infinite duplication codes exist. As we will see, this depends on the size
of the alphabet and on the length of the duplications. We start with a negative
result, i.e. with a case where no infinite dup code exists.

UNIFORMLY BOUNDED DUPLICATION CODES 419

Proposition 4.1. There is no infinite 1-dup code over a two-letter alphabet.

Proof. Let W be a 1-dup code over the alphabet {a, b}. Suppose that W contains
a word w that starts with a and ends with b. If there is another word u from W
with the same properties, then let k be the number of changes from a to b; that is
reading u from left to right, we read k non-empty blocks of consecutive a, which
are followed by non-empty blocks of consecutive b. Let l be the corresponding
number for w.

We now start from the word (ab)(k·l) and duplicate the initial a so often, that
the initial block of a is as long as the longer one from ul and wk. Then the same
is done for the first block of b and so on for all blocks. Clearly the resulting word
is in both (w♥1)k and (u♥1)l. Thus W is a code only if u = w, and any 1-dup
code can contain at most one word starting with a and ending with b.

For words starting with b and ending with a the argumentation is the same,
for words starting and ending with the same letter (a or b), a very similar line
of thought works. As there are only four possibilities of different first/last letter
combinations, and for every one at most one word can be in W , no 1-dup code
can be infinite. �

From the proof we immediately see an even tighter bound for the size of a 1-dup
code. Namely that over a two-letter alphabet there is no 1-dup code consisting of
more than four words, because there are only four possible combinations of first
and last letter. This, however, is not yet optimal. In fact, the maximum number
of words in a 1-dup code is only one – considerations only slightly more intricate
than above show this.

Proposition 4.2. Over a two-letter alphabet there is no 1-dup code consisting of
more than one word.

Proof. An argumentation analogous to that of the proof of Proposition 4.1 works
for any two words having a change of letter inside. Only, if they do not start
and end with the same letters the construction gets slightly more intricate, some
“padding” at the start and end may be necessary. �

The situation changes, when we increase the size of the alphabet. Already three
letters suffice to construct an infinite code.

Proposition 4.3. There exist infinite 1-dup codes over a three-letter alphabet.

Proof. We prove this by providing an example for such a code. The language
W = (ab)+c is an infinite 1-dup code. First off, we note the fact that the dupli-
cation of a single letter can never change the number of letter-changes in a given
word. From this, a 1-dup code factorization for every word w from W♥n can be
found by splitting it after every block of c. Further, the number of changes from
a to b uniquely determines the word from W , from which the respective factor
originated. �
Proposition 4.4. There exist infinite n-dup codes over a two-letter alphabet for
any n ≥ 2 .

420 P. LEUPOLD AND V. MITRANA

Proof. The language W = a(abb)+ is a 2-dup code. To see this consider the
effects of possible 2-duplications on a word from W : aa → aaaa, ab → abab, and
bb → bbbb. All of them preserve the number of blocks of the same letter of length
greater than one in the original word – for this one needs to look also at the letters
immediately preceding and following the duplicated factor.

Because in W+ all W -factors of a word start with aa and this is the only
occurrence of aa, the W -factorization is unique. Further, for every positive integer
the word from W having this number of bb-blocks unique. Thus it is easy to
reconstruct from any word in W [♥2] its unique 2-dup factorization by separating
the word at the beginning of every (maximal) block of a, which is longer than one.

With slight modifications we can now construct analogous examples for all
n ≥ 3: the language W = a(an−1bn−1)+b is an n-dup code. We first note that
any n-duplication applied to a word in W can produce neither a factor an to the
right of any occurrence of b nor a factor bn to the left of any occurrence of a.
Therefore, all W♥n-factors of a word in (W♥n)+ start with an and end with bn,
hence the W♥n-factorization of every word in (W♥n)+ is unique. Checking the
possible results of all duplications of length n, we see that the number of blocks
of an−1bn−1 is preserved within each code word. Therefore they are uniquely
identifiable in the factorization, which proves the property of being a duplication
code. �

Summarizing the results of this section and adding a few trivial considerations
for one-letter alphabets, we obtain the following theorem, which fully characterizes
the conditions under which infinite duplication codes exist.

Theorem 4.5. There exist infinite n-dup codes over a k-letter alphabet, if and
only if k, n ≥ 2 or if n = 1 and k ≥ 3.

All the examples for infinite n-dup codes provided in this section have been
regular, however there are arbitrarily complex n-dup codes with respect to the
Chomsky hierarchy, over a two letter alphabet, for any n ≥ 2. It suffices to take
arbitrarily complex subsets of the n-dup codes W from the proof of Proposition 4.4.

5. Languages generated by n-dup codes

An interesting concept in relation with codes is the density of the languages
they generate. Informally speaking, density means that any word appears as a
factor of some word in the generated language. Formally, a language L ⊂ Σ∗ is
called dense, if for every word w ∈ Σ∗ we have Σ∗wΣ∗ ∩ L �= ∅.

The constructions used to prove that the languages generated from one word by
general duplication [11] and by (non-uniformly) bounded duplication [6] show that
in most cases those languages are also dense; for example the occurrence of a factor
abc suffices to guarantee this over the corresponding three-letter alphabet. For
uniformly bounded duplications, however, these construction techniques cannot
be applied.

UNIFORMLY BOUNDED DUPLICATION CODES 421

Proposition 5.1. There exists an infinite n-dup code W , such that the language
generated by W , (W♥n)∗, is not dense for all n ≥ 1.

Proof. The language W = {d}T3{d} ⊆ {a, b, c, d}∗ is an infinite n-dup code, where
T3 is the infinite set of n-dup primitive words over {a, b, c}. Following the argu-
mentation showing that this is so, we also see that words from (W♥n)∗ do not
contain any factor caac. Thus (W♥n)∗ is not dense. �

On the other hand, density of W , or even of W ∗ guarantees the density of
(W♥n)∗. These observations raise the question, whether there is an n-dup code
W , such that W ∗ is not dense, but its generated language (W♥n)∗ is dense. If we
require only W not to be dense, then there are trivial solutions like Σ itself, which
is an n-dup code for any n > 1 and generates entire Σ∗.

The most prominent result concerning conventional codes in this respect is that
density is given if and only if a code is maximal [1]. We now present two somewhat
contrasting results, the first showing that there are always infinitely many n-dup
primitive words not in the root of the language; then we will see that this still
allows the languages generated to be dense.

Proposition 5.2. For every n-dup code W over the alphabet Σ, the set ♥n(Σ) \
♥n
√

(W♥n)∗ is infinite.

Proof. First we notice that ♥n(Σ) is always infinite. Thus, if ♥n
√

(W♥n)∗ is not
infinite, the proposition is true. In the contrary case, ♥n

√
(W♥n)∗ contains an

infinite set U , which consists of words longer than 2n + 2. For such a word u we
now look at the words v = u[1 . . .

⌊
|u|
2

⌋
] and w = u[

⌊
|u|
2

⌋
+ 1 . . . |u|], which are

both n-dup primitive, just as u.
If there existed words v1, w1 ∈ (W♥n)∗ such that ♥n

√
v1 = v and ♥n

√
w1 = w,

then also v1w1 would be in (W♥n)∗. Then by Lemma 3.4 there would also exist
words v2, w2 ∈ Σ∗ such that v2 ∈ v♥n∩v♥n

1 and w2 ∈ w♥n∩w♥n
1 . But this implies

that v♥nw♥n ∩ u♥n �= ∅. Therefore for at least one of v and w no word can be in
W that has this root, otherwise W would not be an n-dup code. Neither can this
word be composed by shorter ones, the same argumentation would apply. This
provides us with one word in the set ♥n(Σ) \ ♥n

√
(W♥n)∗.

Thus it remains to construct an infinite sequence of such words providing us
with pairwise different words from ♥n(Σ) \ ♥n

√
(W♥n)∗. For an infinite n-dup

code W , already ♥n
√

W is infinite by Proposition 3.3. Thus we can find an infinite
sequence (ui)i∈IN of words in ♥n

√
W such that always |ui| > |ui−1| + 2, which

satisfies the requirements stated.
For a finite set W , we pick a word w ∈ W , which has no period that divides

n. Then by Lemma 2.8 the sequence of ui := w2n works. If all words in W have
periods dividing n, then we take ui := (vv)2n for such a word v ∈ W . Now, if vv
still had a period dividing n, then vn+1 could be reduced via n-unduplications to
v, and consequently v cannot be in an n-dup code. Therefore vv has no period
dividing n, and can be used just as w above. �

422 P. LEUPOLD AND V. MITRANA

Proposition 5.3. Over an alphabet Σ with three or more letters, there exists an
infinite 1-dup code W , such that (W♥1)∗ is dense.

Proof. Recall that ♥1(Σ) is the language of all 1-dup primitive words. Now we
choose an arbitrary non-empty, unbordered word w from ♥1(Σ) with w[1] = b,
w[|w|] = a and |w| > 1. We set ♥′

1(Σ) := ♥1(Σ) \ (Σ∗wΣ∗ ∪ aΣ∗b). Note that
♥′

1(Σ) is infinite over an alphabet Σ with three or more letters.
Then W := ♥′

1(Σ) · w is a 1-dup code, because ♥′
1(Σ)♥1 and w♥1 are dis-

joint. Thus any word from (W♥1)∗ is uniquely factorized into words from W♥1

by separating them after any occurrence of a factor from w♥1. Note that different
occurrences of w cannot overlap, because the word is unbordered.

It remains to show that (W♥1)∗ is dense. Intuitively speaking, ♥1(Σ) is the
language one obtains from Σ∗ by condensing all blocks of the same letter within a
word to length one. From these words any other word can be obtained by doing the
appropriate 1-duplications. Therefore it suffices to show that for all u ∈ ♥1(Σ) we
have Σ∗uΣ∗∩W ∗ �= ∅. For words u not containing a factor w this is true, because
they are already contained in W .

We first look at words not starting with a. For such a word u not containing
one factor w, there is a factorization u = u1wu2. Here it is crucial to note that
u2[1] �= a, otherwise u would contain a 1-square, the same for u1[|u1|] �= b. But
now we have u1w, u2w ∈ W , and thus u1w, u2w ∈ W ∗ with a factor u. For words
with more occurrences of factors w analogous factorizations can be found.

Thus, all 1-dup primitive words not starting with a are prefixes of words in
W ∗. With the observation that words av are factors of the corresponding wvw we
conclude the proof. �

Another interesting questions is, whether the step from W to (W♥n)∗ increases
the complexity of the language with respect to the Chomsky Hierarchy. For regular
languages no increase in complexity can be observed.

Theorem 5.4. The language W♥n is regular for every regular language W and
n ≥ 1.

Proof. Let W ⊆ Σ∗ be a regular language and let W = W1∪W2, where W1 = {x ∈
W | |x| ≤ n}, and W2 = W \ W1. Obviously, W♥n = W♥n

2 ∪ W1. Assume that
W2 is recognized by the DFA (deterministic finite automaton) A = (Q, Σ, δ, q0, F).
We construct the DFA

A′ = (Q′, Σ, δ′, 〈q0, λ〉, F ′),
where

Q′ = {〈q, x〉 | q ∈ Q, x ∈ Σ∗, |x| ≤ n}
F ′ = {〈q, x〉 | q ∈ F, x ∈ Σ∗, |x| = n}

and the transition mapping δ′ is defined as follows:

δ′(〈q, x〉, a) =
{ 〈δ(q, a), xa〉, if |x| < n

〈δ(q, a), Sufn(xa)〉, if |x| = n.

UNIFORMLY BOUNDED DUPLICATION CODES 423

Here Sufn(z) denotes the suffix of z of length n. Clearly, the automaton A′

recognizes the same language as A does, namely W2.
We now recall a result from [6], which is very useful for the last part of our

proof. For two words x, y over an alphabet Σ such that y ∈ x♥n and p a positive
integer, we write x ��(p,k) y if x = tuv, |t| = p − 1, |u| = k and y = tuuv. The
following result appears in [6]:

Proposition 5.5. If x = x1 ��(p1,k) x2 ��(p2,k) x3 ��(p3,k) . . . xr ��(pr,k) w for
some pi, 1 ≤ i ≤ r, then x = y1 ��(q1,k) y2 ��(q2,k) y3 ��(q3,k) . . . yr ��(qr,k) w holds
for some q1 ≤ q2 ≤ · · · ≤ qr. Furthermore, for each i ∈ [r − 1], either qi = qi+1 or
qi+1 − qi > k holds.

By this, if one adds a loop labeled by x to any state 〈q, x〉 ∈ Q′ with |x| = n,
one gets an automaton (not necessarily deterministic) which accepts the language
W♥n

2 and we are done. �

Since the family of regular language is closed under Kleene closure, we obtain
a statement about the languages generated by regular n-dup codes.

Corollary 5.6. The language generated by a regular n-dup code W , n ≥ 1, is still
regular.

6. Perspectives

We have seen in Section 3 that in the case of uniformly bounded duplication
infinite duplication codes exist in most cases. From earlier research it is known
that only an upper bound on the length of duplicated factors results in much more
complicated structures. Thus w♥n is always regular, while w♥≤n is in general not.
This leads us to suspect that for bounded or even general duplication infinite codes
complying with our definition will be much harder to find and should constitute an
interesting problem. The questions of Section 5, however, would become obsolete,
because for n ≥ 4 already the languages w♥≤n for a single word w are dense.

References

[1] J. Berstel and D. Perrin, Theory of Codes. Academic Press, Orlando (1985).
[2] J. Dassow, V. Mitrana and Gh. Păun, On the Regularity of Duplication Closure. Bull.

EATCS 69 (1999) 133–136.
[3] N. Fine and H. Wilf, Uniqueness Theorems for Periodic Functions. Proc. Amer. Math. Soc.

16 (1965) 109–114.
[4] International Human Genome Sequencing Consortium, Finishing the Euchromatic Se-

quence of the Human Genome. Nature 431 (2004) 931–945.
[5] P. Leupold, V. Mitrana and J. Sempere, Languages Arising from Gene Repeated Duplica-

tion, in Aspects of Molecular Computing. Essays Dedicated to Tom Head on the Occasion
of his 70th Birthday. Lect. Notes Comput. Sci. 2950 (2004) 297–308.

[6] P. Leupold, C. Mart́ın Vide and V. Mitrana, Uniformly Bounded Duplication Languages.
Discrete Appl. Math. 146 (2005) 301–310.

424 P. LEUPOLD AND V. MITRANA

[7] M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA (1983).
[8] R. Ross and K. Winklmann, Repetitive Strings are not Context-Free. RAIRO-Theor. Inf.

Appl. 16 (1982) 191–199.
[9] A. Salomaa, Formal Languages. Academic Press, Orlando (1973).

[10] H.J. Shyr, Free Monoids and Languages. Hon Min Book Company, Taichung (1991).
[11] M.-W. Wang, On the Irregularity of the Duplication Closure. Bull. EATCS 70 (2000)

162–163.

Communicated by H.J. Hoogeboom.
Received September 8, 2005. Accepted November 14, 2006.

To access this journal online:
www.edpsciences.org

