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CLASSES OF TWO-DIMENSIONAL LANGUAGES
AND RECOGNIZABILITY CONDITIONS ∗

Marcella Anselmo1 and Maria Madonia2

Abstract. The paper deals with some classes of two-dimensional rec-
ognizable languages of “high complexity”, in a sense specified in the
paper and motivated by some necessary conditions holding for recogniz-
able and unambiguous languages. For such classes we can solve some
open questions related to unambiguity, finite ambiguity and comple-
mentation. Then we reformulate a necessary condition for recognizabil-
ity stated by Matz, introducing a new complexity function. We solve
an open question proposed by Matz, showing that all the known nec-
essary conditions for recognizability of a language and its complement
are not sufficient. The proof relies on a family of languages defined by
functions.

Mathematics Subject Classification. 68Q45, 68Q70.

1. Introduction

The increasing interest for pattern recognition and image processing has mo-
tivated, in the sixties, the research on languages of pictures or two-dimensional
languages, and nowadays this is a research field of great interest. Since then,
many approaches have been presented in the literature in order to generalize the
well-founded theory of formal languages of strings, and various models of finite au-
tomata, grammars, logics and regular expressions have been proposed. In [13,14]
the family REC of recognizable picture languages was defined as an equivalent of
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the class of recognizable (or regular) string languages. This definition takes as
starting point a characterization of recognizable string languages in terms of local
languages and projections (cf. [11]). A two-dimensional language is said recogniz-
able when it is the alphabetic projection of a local language defined in terms of a
finite set of 2× 2 pictures called tiles; the recognition is given by a so called tiling
system.

REC family inherits several properties from the class of regular string languages.
A crucial difference lies in the fact that REC family is not closed under comple-
mentation: there are languages in REC whose complement is not in REC [14]. It
is then important to take into account also the class co-REC of languages whose
complement is in REC. The strict inclusion REC ⊂ (REC ∪ co-REC) holds even
in the unary case [22] and it fits the fact that the definition of recognizability
by tiling systems is intrinsically non-deterministic. The notion of determinism on
tiling systems have been recently discussed in [4,6,20].

The non-closure of REC under complementation motivated the introduction
of unambiguous two-dimensional languages, whose family is denoted UREC [13].
Informally, a picture language belongs to UREC when it admits an unambiguous
tiling system, that is if every picture has a unique pre-image in its corresponding
local language. In [3], the proper inclusion of UREC in REC is proved; it holds
true in the unary case too (see [1]). In other words there exist in REC inherently
ambiguous languages. An open question is whether UREC is closed under com-
plementation or not. Its answer depends on the following open problem, where L
denotes the complement of language L.

Question 1. Does L ∈ REC and L /∈ REC imply that L /∈ UREC?
Question 1 was firstly stated in [25]. The converse is actually an open question

too: Does L ∈ REC\UREC imply that L /∈ REC? Note that positive answers to
both Question 1 and the converse mean that UREC=REC ∩ co-REC and that
UREC is the largest subset of REC closed under complementation. Also note that
such question is related to some difficult problems on complexity classes [7].

All the inherently ambiguous languages known in the literature are infinitely
ambiguous, in the sense that it is not possible to recognize them by a tiling system,
in such a way that each picture has a fixed number of pre-images at most (see
Sect. 2 for more details). The question whether this is always the case or not is
open. Let us state it as follows.

Question 2. Does there exist a language L ∈ REC\UREC such that L is finitely
ambiguous?

In this paper we will answer Questions 1 and 2 in some particular cases, where
languages involved have “high complexity”, as specified in the following. We will
introduce a class HP ⊆ co-REC\REC of not-recognizable languages and a class HK
⊆ REC\UREC of ambiguous recognizable languages, whose languages are “hard”
with respect to some complexity functions. We will show that:

1. If L ∈ REC and L ∈ HP then L /∈ UREC.
2. If L ∈ REC and L ∈ HK then L is infinitely ambiguous.
Let us emphasize that it is not known whether the inclusions HP ⊆ co-REC\REC

and HK⊆ REC\UREC are strict or not. No example (nor a candidate) exists
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showing the inclusions are strict. Hence in the case HP = co-REC\REC and/or
HK =REC\UREC, our results would be an answer to Questions 1 and/or 2, in
their general setting.

The introduction of classes HP and HK is motivated by some necessary condi-
tions for languages in REC and in UREC, respectively, stating that: if L ∈REC
then the size of some permutation matrices associated to L cannot grow so quickly;
and if L ∈UREC then the rank of the same matrices associated to L cannot grow
so quickly. Here “HP” stands for “High Permutation” and “HK” stands for “High
ranK”. In the literature, all examples of languages that witness the strict inclusions
UREC ⊂ REC ⊂ (REC ∪ co-REC) have been provided applying the necessary
conditions we have just mentioned.

The main difficulty in this framework is that there are no characterizations of
REC and UREC, that could be easily and fruitfully applied. A question that
naturally arises is whether these conditions are also sufficient, so that they could
characterize the classes. In this paper we will show that the considered condi-
tions, that are necessary for the recognizability of a language or its complement,
unfortunately are not sufficient.

Let us give some more details on the ideas on which the mentioned necessary
conditions are based, since our results will be basically related to them.

In [21] Matz isolated a technique to obtain necessary conditions for the belong-
ing of a picture language to REC. It consists in reducing the problem from two
dimensions to one dimension and applying some known lower bounds on string
automata. More precisely, for any recognizable picture language L and integer m,
he considered the string language L(m) of all pictures in L of fixed height m. He
proved that, if L ∈ REC, then it is possible to associate to any tiling system rec-
ognizing L a family {Am}, where, for some constant c, each Am is an automaton
accepting L(m) with cm states at most. Finally, he used the extended fooling set
technique as a lower bound on the size of a string automaton [8,18].

Later on, in [3], Matz’s technique was used together with a lower bound on
the size of unambiguous string automata. This provided a necessary condition
for unambiguous picture languages, based on the growth of some parameters of
the Hankel matrices of the string languages L(m). Recently, in [15,16], the idea
of finding necessary conditions for picture languages, using Matz’s technique, has
been considered again introducing some complexity functions of Hankel matrices
of L(m). It provided a necessary condition for belonging to REC ∪ co-REC,
by rephrasing Cervelle’s one (see [10]), and a necessary condition for belonging
to REC, using the fooling set technique [17] (instead of the extended fooling set
technique) as a lower bound on the size of a string automaton.

Moreover, in 1998, Matz wondered whether the necessary condition for REC
in [21] is also sufficient, in order to have a handy characterization of REC. He
proposed as a counter-example the language of pictures over {a, b} with same
number of a’s as b’s, that satisfies his condition. But then Reinhardt [26] proved
that the language is recognizable. Since then, other candidate languages have been
proposed as counter-examples, but they always failed. Here we negatively answer
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the open question, after rephrasing Matz’s condition in the framework of Hankel
matrices.

The analogous question regarding other necessary conditions for REC and for
REC ∪ co-REC can be considered. We prove that all these conditions are not
sufficient. The counter-examples are given by a family of languages defined by
functions. Recently another counter-example showing that Matz’s condition is not
sufficient was independently found (see [9]) by a completely different technique.
This technique has provided a family of binary languages, whereas our counter-
example is a family of unary languages.

The paper is organized as follows. After giving the basic definitions and re-
sults on two-dimensional languages in Section 2, in Section 3 we recall the above
mentioned necessary conditions for two-dimensional languages and introduce the
classes HP and HK. Section 4 contains the main results concerning Questions 1
and 2. In Section 5 we introduce a new complexity function of picture languages
that allows us to reformulate Matz’s condition in terms of the growth of this func-
tion. At last in Section 6 we show that the considered recognizability conditions
are not sufficient.

Some results of this paper can be found in [2].

2. Preliminaries

In this section we recall some definitions about two-dimensional recognizable
languages. More details can be mainly found in [14].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ
is denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates (i, j),
�1(p), the number of rows and �2(p) the number of columns; the pair (�1(p), �2(p))
is the size of p. Note that when a one-letter alphabet is concerned, a picture p is
totally defined by its size (m, n), and we will write p = (m, n). Remark that the
set Σ∗∗ includes also all the empty pictures, i.e. all pictures of size (m, 0) and of
size (0, n), for all m, n ≥ 0, that we denote by λm,0 and λ0,n, respectively. The set
of all pictures over Σ of size (m, n) is denoted by Σm,n, while Σm,∗ denotes the set
of all pictures over Σ with m rows. It will be needed to identify the symbols on
the boundary of a given picture: for any picture p of size (m, n), we consider the
bordered picture p̂ of size (m + 2, n + 2) obtained by surrounding p with a special
boundary symbol # �∈ Σ.

A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-blocks of size (2, 2)
of a picture p. Given an alphabet Γ, a two-dimensional language L ⊆ Γ∗∗ is local
if there exists a set Θ of tiles over Γ∪ {#} such that L = {p ∈ Γ∗∗ | B2,2(p̂) ⊆ Θ}
and we will write L = L(Θ).

A tiling system is a quadruple (Σ, Γ, Θ, π) where Σ and Γ are finite alphabets, Θ
is a finite set of tiles over Γ∪{#} and π : Γ → Σ is a projection. A two-dimensional
language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system (Σ, Γ, Θ, π)
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such that L = π(L(Θ)) (extending π in the usual way). For any p ∈ L, a local
picture p′ ∈ L(Θ), such that p = π(p′), is called a pre-image of p. We denote by
REC the family of all tiling recognizable picture languages.

The family REC is closed with respect to many operations. The column con-
catenation of p and q (denoted by p �q) and the row concatenation of p and q
(denoted by p �q) are partial operations, defined only if �1(p) = �1(q) and if
�2(p) = �2(q), respectively, and are given by:

p �q = p q p �q =
p
q

As done in the string language theory, these definitions of picture concatenations
can be extended to define two-dimensional languages concatenations. If L1, L2 are
picture languages over an alphabet Σ, the column concatenation and the row con-
catenation of L1 and L2 are defined respectively by L1

�L2 = {p �q|p ∈ L1, q ∈ L2}
and L1

�L2 = {p �q| p ∈ L1, q ∈ L2}. Furthermore, by iterating the concatenation
operations, we obtain the column and row closure or star. More precisely: the
column closure of L (denoted by L∗ �

) and the row closure of L (denoted by L∗ �
)

are defined as L∗ �
=

⋃
i Li �

and L∗ �
=

⋃
i Li �

where L0 �
= {λm,0 | m ≥ 0},

Ln �
= L(n−1) �

�L and L0 �
= {λ0,m | m ≥ 0}, Ln �

= L(n−1) �
�L.

REC family is closed under row and column concatenation and their closures,
under union, intersection and under rotation (see [14] for all the proofs).

Let us give some examples.

Example 2.1. Let Lfc= lc be the language of pictures over Σ = {a, b}, with more
than one column, whose first column is equal to the last one. Language Lfc= lc ∈
REC. Informally we can define a local language where information about first
column symbols of a picture p is brought along horizontal direction, by means of
subscripts, to match the last column of p. Tiles are defined to have always the
same subscripts within a row; moreover in left and right border tiles, subscripts
and main symbols should match. Below it is an example of a picture p ∈ Lfc= lc

together with a pre-image p′ of p.

p =

b b a b b
a a b a a
b a a a b
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

Let Lfc= c′ be the language of pictures such that the first column is equal to
some i-th column, i �= 1. Note that Lfc= c′ = Lfc= lc

�Σ∗∗ and thus Lfc= c′ ∈
REC. Similarly we can show that the languages Lc′ = lc = Σ∗∗ �Lfc= lc, and
Lc = c′ = Σ∗∗ �Lfc= lc

�Σ∗∗ are in REC.

Example 2.2. Consider the language CORNERS of all pictures p over Σ = {a, b}
such that whenever p(i,j) = p(i′,j) = p(i,j′) = b then also p(i′,j′) = b. Intuitively,
whenever three corners of a rectangle inside a picture all carry symbol b, then also
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the fourth one does. In [21], it is shown that CORNERS /∈ REC. Consider now,
the language L = CORNERS. We have L ∈ REC; indeed, we can set

L1 = Σ∗∗ �(Σ∗∗ �( b �Σ∗∗ � b ) �Σ∗∗ �( b �Σ∗∗ � a ) �Σ∗∗) �Σ∗∗,
and then L is equal to the union of L1 with the languages obtained by its 90◦,
180◦ and 270◦ rotations.

A recognizable two-dimensional language L ⊆ Σ∗∗ is unambiguous if and only
if it admits an unambiguous tiling system T ; a tiling system T = (Σ, Γ, Θ, π) is
unambiguous for L if and only if any picture p ∈ L has an unique pre-image in the
local language L(Θ) (see [13]). The family of all unambiguous recognizable two-
dimensional languages is denoted by UREC. In [3] it is proved that the inclusion
of UREC in REC is strict and in [1] that this strict inclusion holds even if the
alphabet is unary. Therefore in REC there exist languages that are inherently
ambiguous.

Let us now recall the definitions of k-ambiguity, finite and infinite ambiguity
given in [5] for languages in REC. Note that a similar definition of k-ambiguity
is contained in [24]. A tiling system T = (Σ, Γ, Θ, π) recognizing L is said to be
k-ambiguous if every picture p ∈ L has at most k pre-images. A recognizable
language L is said k-ambiguous if k = min{s | T is s-ambiguous tiling system and
T recognizes L }. A language L is finitely ambiguous if it is k-ambiguous for some
k, whereas a language L is infinitely-ambiguous if it is not finitely ambiguous.

3. Classes HP and HK

In this section we introduce the definitions of the classes HP and HK of picture
languages of high complexity (“HP” stands for “High Permutation”, and “HK”
stands for “High ranK”) motivated by some recognizability conditions we recall
as well. These conditions are based on the idea of reducing the problem from two
dimensions to one dimension and, then, using some known lower bounds on string
languages.

Let L ⊆ Σ∗∗ be a picture language. For any m ≥ 1, we can consider the
subset L(m) ⊆ L containing all pictures in L with exactly m rows. Note that
the language L(m) can be viewed as a string language over the alphabet of the
columns of height m.

Recall that a nondeterministic automaton (NFA) over an alphabet Σ is a
quadruple A = (Q, q0, F, δ) where Q is the finite set of states, δ: Q × Σ → 2Q is
the transition function, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states.
The transition function δ can be extended to strings to δ̂ in a standard way. The
language accepted by A is L(A) = {w ∈ Σ∗ | δ̂(q0, w) ∩ F �= ∅}.

Let us state the recognizability condition proved by Matz (Lem. 3.2). It is based
on Lemma 3.1 (that relates the recognizability of a two-dimensional language with
the complexity of some associated one-dimensional languages) together with the
extended fooling set tecnique (that gives a lower bound on the complexity of a
one-dimensional language). Remark that Lemmata 3.1 and 3.2 can be used to
show that a language is not recognizable (as for language CORNERS in Ex. 2.2).
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Lemma 3.1 ([21]). If L is in REC then it is possible to associate to any tiling
system recognizing L a constant c and a family {Am} such that each Am is an
automaton accepting L(m) with cm states at most.

Lemma 3.2 ([21]). Let L ⊆ Σ∗∗, L ∈ REC and let {Pm} be a sequence such that,
for any m, Pm ⊆ Σm,∗ × Σm,∗ and

(1) for all (p, q) ∈ Pm, p �q ∈ L;
(2) for all (p, q), (p′, q′) ∈ Pm, with (p, q) �= (p′, q′), {p �q′, p′ �q} �⊆ L.
Then |Pm| is 2O(m).

Lemma 3.1 is the starting point for other necessary conditions we are going to
deal with. They are formulated in terms of Hankel matrices. Recall that, for any
string language L ⊆ Σ∗, the infinite boolean Hankel matrix associated to L, is
ML = ‖aαβ‖α∈Σ∗,β∈Σ∗ where aαβ = 1 if and only if αβ ∈ L (see [19]). Observe
that, when L is a regular language, the number of different rows of ML is finite
(Myhill-Nerode Theorem). A sub-matrix M(U,V ) of an Hankel matrix ML is a
matrix specified by a pair of languages (U, V ), with U, V ⊆ Σ∗, that is obtained
by intersecting all rows and all columns of ML that are indexed by the strings in
U and V , respectively. Moreover, given a matrix M , we denote by RankQ(M),
the rank of M over the field of rational numbers Q. A permutation matrix is a
boolean matrix that has exactly one 1 in each row and in each column.

The investigation of some parameters of the Hankel matrices associated to L(m),
when m grows, will provide a uniform setting for several recognizability conditions.

Definition 3.1. [15] Let L be a picture language.
(i) The row complexity function RL(m) gives the number of distinct rows of

the matrix ML(m).
(ii) The permutation complexity function PL(m) gives the size of the maximal

permutation matrix that is a sub-matrix of ML(m).
(iii) The rank complexity function KL(m) gives the rank of the matrix ML(m).

Remark that, obviously, KL(m) ≤ RL(m) for any picture language L and in-
teger m. The following theorem collects some necessary conditions for picture
languages.

Theorem 3.1. Let L ⊆ Σ∗∗.
1. If L ∈ REC ∪ co-REC then there is a c ∈ IN such that, for all m ≥ 1,

RL(m) ≤ 2cm

.
2. If L ∈ REC then there is a c ∈ IN such that, for all m ≥ 1, PL(m) ≤ cm.
3. If L ∈ UREC then there is a c ∈ IN such that, for all m ≥ 1, KL(m) ≤ cm.
4. If L ∈ REC \UREC and L is finitely ambiguous then there is a c ∈ IN

such that, for all m ≥ 1, KL(m) ≤ cm.

Proof. Item 1 is essentially due to Cervelle [10]; it is rephrased in the matrix
framework as in [15]. Item 2 is the analogous of Matz’s Lemma 3.2, but it is
obtained applying the fooling set technique (instead of its extended version) and
rephrasing the condition on Hankel matrices [15]. Item 3 is proved in [3]. Item 4
can be found in [24], for a bit different definition of k-ambiguity, but it holds
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even for the definition presented in this paper. Indeed if L is k-ambiguous then
there exists a constant c such that, for any m ≥ 1, the automaton Am, defined in
Lemma 3.1, that recognizes language L(m) with cm states at most, is k-ambiguous.
Then we can apply a lower bound on the number of states of k-ambiguous automata
in [19] that guarantees that |Qm| ≥ RankQ(ML)1/k −1, where Qm denotes the set
of states of Am. Therefore KL(m)1/k ≤ dm, for some constant d ∈ IN , and finally
KL(m) ≤ (dk)m. �

Note that in [4,6], some subclasses of REC have been introduced and similar
necessary conditions founded on RL(m) have been proved for them. Now a ques-
tion naturally rises: are all these necessary conditions also sufficient? We will
come back to the question in Section 6.

We are now ready to introduce classes HP and HK.

Definition 3.2. HP is the class of all picture languages L ∈ co-REC for which
there does not exist a constant c such that PL(m) ≤ cm, for all m ≥ 1.

HK is the class of all picture languages L ∈ REC for which there does not exist
a constant c such that KL(m) ≤ cm, for all m ≥ 1.

From Theorem 3.1, if L ∈ HP then L /∈ REC and if L ∈ HK then L /∈ UREC.
Let us now show some examples of languages in HP and in HK. We will use a
technical result, proved in the following lemma, concerning the rank of some special
boolean matrices. In the following, for any matrix A = ‖aij‖ with i = 1, · · · , m,
j = 1, · · · , n, Aij will denote the (i, j) minor of A.

Lemma 3.3. Let A = ‖aij‖ be a boolean square matrix of size k such that, for
any 1 ≤ i, j ≤ k, aij = 0 if and only if i + j = k + 1. Then RankQ(A) = k.

Proof. It suffices to prove that det(A) �= 0. Remark that A is a square matrix with
0 in all counter-diagonal positions and 1 elsewhere. Let us evaluate det(A) along
its first row: det(A) =

∑k
i=1(−1)1+ia1idet(A1i) = det(A11)+ (−1)det(A12)+ . . .+

(−1)kdet(A1k−1) + 0 det(A1k).
Since, for any i = 2, . . . , k − 1, the matrix A1i can be obtained from the matrix

A1i−1 by swapping its (k − i + 1)-th row with its (k − i)-th one, we can say that
det(A) = (k − 1)det(A11). Therefore, in order to prove that det(A) �= 0, it suffices
to show that det(A)11 �= 0. Note that A11 is a square matrix, of size k − 1, that
has 0 in all the positions immediately above the counter-diagonal and 1 elsewhere.
Let us denote by Bh the square matrix of size h of this form and let us show
that, for any h, Bh has a non-null determinant. The proof is by induction on
h. The basis, h = 2, is obvious. Suppose that it is true for Bh−1 and consider
the matrix Bh = ‖bij‖. If we evaluate det(Bh) along its first column, we have
det(Bh) =

∑h
i=1(−1)1+ibi1det(Bh

i1). Remark that the first (h − 2) terms of the
sum are equal to 0 (every matrix Bh

i1 has two identical rows, the last one and the
second-last one, and therefore it has a null determinant) and the (h−1)-th term is
equal to 0 too (note that b(h−1)1 = 0). So we have det(Bh) = (−1)h+1det(Bh−1)
and, therefore, by inductive hypothesis, det(Bh) �= 0. �
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Now, let us fix some notation: we denote by ε the empty string and, for Σ = {a}
and n ∈ N , by an the string over Σ∗ of length n. Moreover, for n1, n2, . . . , nm ∈ N ,
we denote by lcm(n1, n2, . . . , nm) the lowest common multiple of n1, n2, . . . , nm.

Example 3.1. Consider, for any m ≥ 0, the function f(m) = lcm(2m+1, . . . , 2m+1)
and the language L over the unary alphabet Σ = {a}, L = {(m, n) | n is not a
multiple of f(m)}. In [22,23] it is shown that L ∈ REC.

Now, we will show that L ∈ HK. Indeed, for any m > 1, consider languages
L(m) as defined above and the corresponding boolean matrix M = ML(m). Let
us denote by v the picture over the alphabet Σ with m rows and one column and
consider the set S of the f(m) rows of M indexed by v, v2, . . ., vf(m). They are
all distinct (for every i, j with 1 ≤ i < j ≤ f(m), the rows indexed by vi and
vj differ in the position corresponding to the column indexed by vf(m)−i) and,
moreover, any other row in M is equal to one of the rows in S. So RL(m) = f(m).
Consider now, in M , the finite sub-matrix Mc composed by the f(m) rows indexed
by v, v2, . . ., vf(m), in this order, and the f(m) columns indexed by ε, v, v2, . . .,
vf(m)−1, in this order, as in the following figure.

ε v v2 · · · vf(m)−3 vf(m)−2 vf(m)−1

v 1 1 1 · · · 1 1 0
v2 1 1 1 · · · 1 0 1
v3 1 1 1 · · · 0 1 1
...

...
...

...
...

...
...

...
vf(m)−2 1 1 0 · · · 1 1 1
vf(m)−1 1 0 1 · · · 1 1 1
vf(m) 0 1 1 · · · 1 1 1

Then, the i-th row of Mc, for i = 1, 2, · · · f(m), carries symbol 1 in all its
entries except the f(m)+1− i position that carries symbol 0. Matrix Mc satisfies
the hypothesis of Lemma 3.3, and, therefore, RankQ(Mc) = f(m). But f(m) =
RankQ(Mc) ≤ KL(m) ≤ RL(m) = f(m), so we have KL(m) = f(m). Since
f(m) = 2θ(2m) (see [21,22]), then KL(m) cannot be bounded by cm, where c is a
constant, and therefore L ∈ HK.

At last, it is easy to see that, for any m > 1, PL(m) = 2.
Consider now the language L and, for any m > 1, languages L(m). Remark

that the Hankel matrix of the complement of a language can be simply obtained
by exchanging 0 and 1 occurrences in the Hankel matrix for the language. Then
the finite sub-matrix of ML(m), with rows and columns indexes as in Mc, is a
square matrix of size f(m) with 1 in all counter-diagonal positions and 0 elsewhere.
We have that, for any m, PL(m) = RL(m) = f(m) and, therefore, L ∈ HP.
Furthermore, it is easy to show that KL(m) = f(m) too.

Example 3.2. Let CORNERS be the language defined in Example 2.2. We are
going to show that CORNERS ∈ HP, following the proof that CORNERS /∈ REC
in [21].
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Consider for any n ≥ 1 a partition P of {1, 2, · · · , 2n} into two-element sets
and fix a bijection αP : P → {1, 2, · · · , n}. Then define picture PP over {a, b}
as the picture of size (2n, n) such that the position (i, j) in PP carries sym-
bol b if and only if j = αP({i, i′}) and {i, i′} ∈ P . As an example let n =
3, P= {(1, 2), (3, 4), (5, 6)} and P ′= {(1, 3), (2, 4), (5, 6)}; then fix αP((1, 2)) =
1, αP((3, 4)) = 2, and αP ((5, 6)) = 3; αP′((1, 3)) = 1, αP′((2, 4)) = 2, and
αP′((5, 6)) = 3. Pictures PP and PP′ are as follows:

PP =

b a a
b a a
a b a
a b a
a a b
a a b

PP′ =

b a a
a b a
b a a
a b a
a a b
a a b

Let ML(2n) be the Hankel matrix of the language L(2n) of pictures in CORNERS
of fixed height 2n, and M(U,V ) its sub-matrix specified by the pair of languages
(U, V ) with U = V = {PP | P is a partition of {1, 2, · · · , 2n} into two-element
sets}. We have that M(U,V ) is a permutation matrix. Indeed the entry (PP , PP′)
of M(U,V ) is 1 if and only if P = P ′.

Furthermore the size of matrix M(U,V ) is equal to the number An of partitions
of {1, 2, · · · , 2n} into two-element sets. And it can be shown that An ≥ n! and
then there does not exist c ∈ IN such that An ≤ cn. Hence CORNERS ∈ HP.

Let us mention that another language in HK is Lc= c′ as introduced in Exam-
ple 2.1 (see [4]), while its complement is in HP (see [15]).

4. Some results on classes HP and HK

In this section we answer Questions 1 and 2 as stated in the Introduction, in the
case the involved languages belong to classes HP and HK introduced in Section 3.
Firstly let us compare the values of the complexity functions RL(m), PL(m) and
KL(m) introduced in Section 3, for a language L and its complement, in the case
L is in REC ∪ co-REC (and therefore functions RL(m), PL(m) and KL(m) have
finite values).

Proposition 4.1. Let L ∈ REC ∪ co-REC.

1. RL(m) = RL(m).
2. PL(m) + PL(m) ≤ RL(m) + 2 and the bound is tight.
3. KL(m) + KL(m) ≤ 2RL(m) and the bound is tight.
4. KL(m) ≥ PL(m) and the bound is tight.
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Proof.

(1) The Hankel matrices for L can be obtained by exchanging entries 0 with
entries 1 in the Hankel matrices for L.

(2) Let m ≥ 1, M(U,V ) be a permutation matrix of maximal size that is a
sub-matrix of the Hankel matrix ML(m) for L(m), and let M ′

(U ′,V ′) be a
permutation matrix of maximal size that is a sub-matrix of the Hankel
matrix ML(m) for the complement of L(m). We claim that |U ∩ U ′|,
|V ∩ V ′| ≤ 2. In other words the sub-matrices of ML(m) specified by
(U, V ) and (U ′, V ′), respectively, cannot overlap on a square matrix of
size greater than 2. Consider indeed a column of ML(m) indexed by a
string in |V ∩ V ′|. The set of entries on such column indexed by strings
in U are all 0’s except for one 1 and then they cannot share more than
two elements (a 0 and a 1) with the set of entries indexed by strings in U ′

(that are all 1’s except for one 0).
The bound is tight for language L in Example 3.1: PL(m) = 2 and

PL(m) = RL(m) = f(m) and, therefore, PL(m) + PL(m) = RL(m) + 2.
(3) The inequality follows from Item 1 and from the remark that KL(m) ≤

RL(m). The bound is tight for language L in Example 3.1: KL(m) =
KL(m) = RL(m) = f(m) and, therefore, KL(m) + KL(m) = 2RL(m).

(4) Let P be a maximal permutation matrix of ML(m). P is a boolean square
matrix of size PL(m) and we can assume, without loss of generality, that
P has 1 in all counter-diagonal positions and 0 elsewhere. Now, consider
ML(m) and its sub-matrix of size PL(m), say P ′, that corresponds to the
permutation matrix P of ML(m). Remark that P ′ is a square matrix
of size PL(m) with 0 in all counter-diagonal positions and 1 elsewhere.
Therefore, the matrix P ′ satisfies the hypothesis of Lemma 3.3 and we
have RankQ(P ′) = PL(m) that implies KL(m) ≥ PL(m). The bound is
tight for language L, that is the complement of language L in Example 3.1.

�

From Item 4 of Proposition 4.1, this result immediately follows.

Corollary 4.1. If L ∈ HP then L ∈ HK.

The following proposition is a positive answer to Question 1 (see the intro-
duction) in the case where L /∈ REC since L ∈ HP. Recall that if a language of
co-REC is in HP then it is necessarily not in REC; and that we do not know at
present whether this is also a sufficient condition for languages in co-REC. Note
that, if this condition in co-REC were also sufficient, then HP=co-REC\REC and
vice versa. In the case HP = co-REC\REC, Proposition 4.2 would be a positive
answer to Question 1 in its general setting.

Proposition 4.2. If L ∈ REC and L ∈ HP then L /∈ UREC.

Proof. If L ∈ HP then, from Corollary 4.1, L ∈ HK and therefore, from the
definition of HK and Theorem 3.1, L /∈ UREC. �
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The following proposition is a negative answer to Question 2 (see the introduc-
tion) in the case where L /∈ UREC since L ∈ HK. Recall that if a language of
REC is in HK then it is necessarily inherently ambiguous; and that we do not
know at present whether this is also a sufficient condition for languages in REC.
Note that, if this condition in REC were also sufficient, then HK =REC\UREC
and vice versa. In the case HK=REC\UREC, Proposition 4.3 would be a negative
answer to Question 2 in its general setting.

Proposition 4.3. Any language L ∈ REC \UREC such that L ∈ HK is infinitely
ambiguous.

Proof. The proof follows from Item 4 in Theorem 3.1. �
As an application, consider the following example.

Example 4.1. Consider the language CORNERS defined in Example 2.2. In
Example 3.2 we showed that CORNERS ∈ HP and, applying Corollary 4.1, we
have that CORNERS ∈ HK. Moreover, since CORNERS ∈ REC (see Ex. 2.2),
applying Proposition 4.2, we have that CORNERS /∈ UREC. This implies, from
Proposition 4.3, that CORNERS is infinitely ambiguous.

5. Another recognizability condition
for picture languages

A first necessary condition for recognizability of picture languages was given
by Matz in [21] (see Lem. 3.2). In the same paper, the author wondered whether
the condition was also sufficient, so that it would yield a characterization of REC.
We here introduce a complexity function for picture languages that allows us
to reformulate Lemma 3.2 as a necessary condition on the growth of the new
complexity function, in analogy to Theorem 3.1. This new formulation will be
used to negatively answer Matz’s open question (see Sect. 6).

Let us introduce the following definitions.

Definition 5.1. Let A be a boolean square matrix of size k. A is a fooling matrix if
there exists a permutation of its rows such that, in the resulting matrix B = ‖bij‖,
we have, for any 1 ≤ i ≤ k, bii = 1 and, for any 1 ≤ i, j ≤ k with i �= j, if bij = 1
then bji = 0.

Definition 5.2. Let L be a picture language. The fooling complexity function
FL(m) gives the size of the maximal fooling matrix that is a sub-matrix of ML(m).

Remark 5.1. Since every permutation matrix is a fooling matrix, for any picture
language L, it holds PL(m) ≤ FL(m).

In analogy to Theorem 3.1, we can introduce a new necessary condition for the
recognizability of picture languages, that rephrases Lemma 3.2 in the framework
of Hankel matrices.

Theorem 5.1. Let L ⊆ Σ∗∗. If L ∈ REC then there is a c ∈ IN such that, for all
m ≥ 1, FL(m) ≤ cm.
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Proof. For any m, consider a sub-matrix A(U,V ) of ML(m) that is a fooling matrix.
Let k be the size of A(U,V ) and let B = ‖buivj‖ be the matrix obtained by a
permutation of the rows of A(U,V ) such that, for any 1 ≤ i ≤ k, buivi = 1 and,
for any 1 ≤ i, j ≤ k with i �= j, if buivj = 1 then bujvi = 0. Further, define
Pm = {(u1, v1), (u2, v2), . . . , (uk, vk)} ⊆ Σm,∗ × Σm,∗. From the definition of a
fooling matrix, it follows that Pm satisfies the condition of Lemma 3.2: for any
1 ≤ i, j ≤ k, buivi = 1 means that ui

�vi ∈ L, and the fact that for any i �= j, buivj

and bujvi are never simultaneously equal to 1, is equivalent to {ui
�vj , uj

�vi} �⊆ L

for any i �= j. Therefore, |Pm| is 2O(m). Note that |Pm| is exactly the size of
A(U,V ). Hence, in particular, FL(m), the size of a maximal sub-matrix of ML(m)

that is a fooling matrix, is 2O(m). �

6. Classes of languages defined by functions

In this section we consider a class of unary languages defined by functions,
as introduced in [12], together with their stars and complements. When such
languages are defined by super-exponential functions, we can obtain examples of
languages in HP or HK, generalizing language L and its complement, as defined in
Example 3.1. We will investigate the recognizability of the languages defined by
functions. Then, using them as counter-examples, we will prove that the necessary
conditions for recognizability stated in Theorem 3.1, Items 1 and 2, as well as the
condition in Theorem 5.1, are not sufficient. This, in particular, answers the
question stated by Matz in [21].

Definition 6.1. Given a function f , the picture language defined by f , is the set
Lf = {(m, f(m)) | m ≥ 0}.

We will also consider the languages L∗ �

f , that will be denoted Lf∗ , and their
complements Lf and Lf∗ .

Example 6.1. Language L introduced in Example 3.1 is language Lf∗ , with
f(m) = lcm(2m + 1, . . . , 2m+1).

Given a function f , if v denotes the picture with m rows and one column, the
Hankel matrix associated to the language Lf(m), carries a symbol 0 in all its
positions except for positions indexed by (ε, vf(m)), (v, vf(m)−1), . . ., (vf(m)−1, v),
(vf(m), ε). In other words it is given by the following matrix “surrounded” by an
infinite number of columns and rows of 0’s.

ε v v2 · · · vf(m)−1 vf(m) vf(m)+1

ε 0 0 0 · · · 0 1 0
v 0 0 0 · · · 1 0 0
v2 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
vf(m)−1 0 1 0 · · · 0 0 0
vf(m) 1 0 0 · · · 0 0 0

vf(m)+1 0 0 0 · · · 0 0 0
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The Hankel matrix for Lf∗(m) can be obtained by gluing an infinite number of
copies of the following matrix.

v v2 v3 · · · vf(m)−2 vf(m)−1 vf(m)

ε 0 0 0 · · · 0 0 1
v 0 0 0 · · · 0 1 0
v2 0 0 0 · · · 1 0 0
...

...
...

...
...

...
...

...
vf(m)−3 0 0 1 · · · 0 0 0
vf(m)−2 0 1 0 · · · 0 0 0
vf(m)−1 1 0 0 · · · 0 0 0

By the analysis of the above Hankel matrices, we can state the following propo-
sition.

Proposition 6.1. Let f be a function. Then for any integer m:
1. PLf

(m) = FLf
(m) = KLf

(m) = f(m) + 1, RLf
(m) = f(m) + 2.

2. PLf
(m) = 2, FLf

(m) = 3, KLf
(m) = f(m) + 1, RLf

(m) = f(m) + 2.
3. PLf∗ (m) = FLf∗ (m) = KLf∗ (m) = RLf∗ (m) = f(m).
4. PLf∗ (m) = 2, FLf∗ (m) = KLf∗ (m) = RLf∗ (m) = f(m).

Proof. Let us prove the equality FLf
(m) = 3 of Item 2. The other statements can

be easily proved. Recall that the Hankel matrix of the complement of a language
can be simply obtained by exchanging 0 and 1 occurrences in the Hankel matrix
for the language. Consider now, for any m, the Hankel matrix, say M , of the
language Lf (m) and remark that any row of M contains one symbol 0 at most.
Let B be a fooling sub-matrix of M , of size k for some integer k, and let b0 the
number of symbols 0 that occur in B. Obviously b0 ≤ k. The number of symbols 1
that occur in B, a part from the k on the counter-diagonal positions, is k2−k−b0.
Since B is fooling, it must be k2 − k − b0 ≤ b0, i.e. recalling b0 ≤ k, k2 − k ≤ 2k
that is k ≤ 3. Hence FLf

(m) ≤ 3. But it is easy to find a fooling sub-matrix of
M of size 3 and hence the equality FLf

(m) = 3 follows. �

A first result on the recognizability of languages defined by functions is the
following.

Proposition 6.2 ([12]). If Lf ∈ REC then f(m) ≤ cm.

The proof of Proposition 6.2, is obtained in [12] by applying an Iteration
Lemma [14]. Note that the proof can be also obtained from Theorem 5.1 re-
marking, as in Proposition 6.1, that FLf

(m) = f(m) + 1.
From now on, let us consider super-exponential functions, i.e. functions f(m)

for which there does not exist a constant c such that f(m) ≤ cm, for all m ≥ 1.
In this case, the associated two-dimensional languages Lf and their complements
are not recognizable. To show this, let us first state a preliminary result.
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Lemma 6.1. Let Σ = {a} be a unary alphabet. Let w ∈ Σ∗ and L be the string
language L = Σ∗ \ {w}. Then, every NFA recognizing L has at least |w|+1 states.

Proof. Let A = (Q, q0, F, δ) be a NFA recognizing L. Suppose that A has less
than |w| + 1 states (i.e. |Q| < |w| + 1) and consider all paths in A labelled by
w starting from q0. Let us denote them P1, . . . ,Pk and let S be the set of the
ending states of the paths Pi, for i = 1, . . . , k. Since w /∈ L, in S there are no final
states. Moreover, since |Q| < |w| + 1, any Pi contains at least a cycle, say Ci, for
i = 1, . . . , k, and, in any cycle, the state reachable from the initial state by a path
of length |w| is not final. Let us denote by λi the length of Ci, for i = 1, . . . , k,
and let λ = lcm(λ1, . . . , λk). Consider now the word a|w|+λ: the set of the ending
states of paths in A of length |w| + λ starting from q0 is exactly equal to S. But
this is a contradiction since S contains no final state and a|w|+λ ∈ L. �

Proposition 6.3. Let f(m) be a super-exponential function. Then Lf , Lf /∈
REC.

Proof. Lf /∈ REC follows from Proposition 6.2.
Suppose now, by contradiction, that Lf ∈ REC. From Lemma 3.1, there is

c ∈ IN such that, for any m ≥ 1, there exists an automaton, with cm states at
most, recognizing Lf (m). Recall that Lf(m) can be viewed as a string language
over the alphabet of the columns of height m, say Σ = {v} (see Lem. 3.1).

But this contradicts Lemma 6.1, since Lf (m) = Σ∗ \ {vf(m)} and there does
not exist a constant c such that f(m) ≤ cm, for all m ≥ 1. �

Example 6.2. Let f(m) = m! and consider the language Lf = {(m, m!) |m ≥ 0}.
Since f(m) = m! is super-exponential, from Proposition 6.3, we have Lf , Lf /∈
REC.

Previous results and examples allow us to claim the following result. In partic-
ular this answers Matz’s open question in [21], whether the reverse of Lemma 3.2
holds, i.e. whether any language with “low” fooling complexity is recognizable.

Indeed, there is a one-to-one correspondence between a fooling matrix in ML(m)

and a set {Pm} as considered in Lemma 3.2 since, for all pairs (p, q), (p′, q′) in
Pm, we have p �= p′ and q �= q′.

Proposition 6.4. The necessary conditions for recognizability stated in Theo-
rem 5.1 and in Theorem 3.1, Items 1 and 2, are not sufficient.

Proof. Examples of languages not in REC with both permutation complexity and
fooling complexity less than exponential are all languages Lf where f(m) is a
super-exponential function. Indeed (see Prop. 6.1), given a function f(m), the
language Lf is such that PLf

(m) = 2 and FLf
(m) = 3. Moreover, if f(m) is a

super-exponential function, then from Proposition 6.3, Lf /∈ REC. This implies
that the necessary conditions for languages in REC, given in Theorem 5.1 and in
Item 2 of Theorem 3.1, are not sufficient.

Languages Lf where f(m) is a super-exponential function and f(m) ≤ 2cm

,
for some constant c, are examples of languages not in REC ∪ co-REC with row
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complexity less than 2cm

. Indeed (see Prop. 6.1) RLf
(m) = f(m)+2 ≤ 2dm

, while
Lf , Lf /∈ REC as in Proposition 6.3.

In particular language Lf with f(m) = m! (see Ex. 6.2) is an example of non-
sufficiency of all three conditions, since m! ≤ mm ≤ 2cm

, for some c and sufficiently
large m. �

The situation for languages Lf∗ and their complements is different. Even if
f(m) is super-exponential, Lf∗ can belong to REC (consider language L in Exs. 3.1
and 6.1).

Proposition 6.5. If f(m) is a super-exponential function, then Lf∗ /∈ REC.
Moreover, if Lf∗ ∈REC, then Lf∗ /∈ UREC and Lf∗ is infinitely ambiguous.

Proof. Lf∗ /∈ REC follows from Theorem 5.1, recalling that FLf∗ (m) = f(m) (see
Prop. 6.1). Further if Lf∗ ∈ REC, then Lf∗ ∈ HP and Lf∗ ∈ HK by Corollary 4.1.
Hence Lf∗ /∈ UREC, from Proposition 4.2, while Lf∗ is infinitely ambiguous, from
Proposition 4.3. �

7. Conclusions and open questions

In the paper we afforded some open problems on unambiguity, finite ambiguity
and complementation (Questions 1, and 2 in the introduction) and gave some
partial answers; furthermore we dealt with some recognizability conditions for
picture languages and showed that they are not sufficient.

A complete answer to Question 1 seems far to be found, also due to its interpre-
tation in the computational complexity framework. With regards to Question 2,
we considered the possibility that in REC there exist finitely ambiguous languages,
and showed that this is not true for a class of languages in REC. Note that in a bit
different framework (see [5]), when the recognition is accomplished without border
symbols (tiles with # are not allowed), it is shown that there is an infinite hier-
archy of finitely ambiguous languages. Therefore the border symbols have to play
a major role, in order to show that in REC there do not exist finitely ambiguous
languages. We figure that when a language is recognized by a tiling system with
finite ambiguity, then it is possible to obtain an unambiguous tiling system, for
the language, by paying special attention to border tiles.

For what concerns the Matz’s condition for languages in REC (Lem. 3.2 or
equivalently Thm. 5.1), remark that the languages we considered as examples of
non-sufficiency of this condition are neither in REC nor in co-REC. We conjecture
a new formulation of the recognizability condition for two-dimensional languages:
“Let L ∈ co-REC; L ∈ REC if and only if there is a c ∈ IN such that, for all
m ≥ 1, FL(m) ≤ cm”.
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