Mohamed S. Baouendi

Extendability of C. R. functions : a microlocal version of Bochner’s tube theorem

<http://www.numdam.org/item?id=JEDP_1981____A1_0>
Conference n° 1

EXTENDABILITY OF C. R. FUNCTIONS :
A MICROLOCAL VERSION OF BOCHNER'S TUBE THEOREM

by M. S. BAOUENDI

We present some recent results obtained jointly with F. Treves. Details and complete proofs can be found in [1].

Let m and n be two positive integers, we shall denote by $t = (t_1, \ldots, t_m)$ the variable in \mathbb{R}^m and by $x = (x_1, \ldots, x_n)$ the variable in \mathbb{R}^n. Let U be an open connected set in \mathbb{R}^m and $\phi = (\phi_1, \ldots, \phi_n)$ a Lipschitz continuous mapping $U \to \mathbb{R}^n$. We consider the associated complex vector fields in $U \times \mathbb{R}^n$

$$L_j = \frac{\partial}{\partial t_j} - i \sum_{k=1}^{n} \frac{\partial \phi_k(t)}{\partial t_j} \frac{\partial}{\partial x_k}, \quad j = 1, \ldots, m.$$ \hfill (1)

We have

$$\begin{cases}
L_j z_k = 0 & 1 \leq j \leq m, \quad 1 \leq k \leq n \\
z_k(t,x) = x_k + i \phi_k(t).
\end{cases} \hfill (2)$$

We denote by $z = z(t,x)$ the mapping $U \times \mathbb{R}^n \to \mathbb{C}^n$ defined by $z = (z_1, \ldots, z_n)$.

Definition 1: Assume ϕ to be real analytic and let $t^0 \in U$ and $x^0 \in \mathbb{R}^n$. The system $\mathfrak{L} = (L_1, \ldots, L_m)$ defined by (1) is said to be analytic hypoelliptic at (t^0, x^0) if and only if any distribution u in some open neighborhood ω of (t^0, x^0), such that $L_j u$ is analytic for $j = 1, \ldots, m$, is itself analytic in a possibly smaller open neighborhood ω' of (t^0, x^0).

Before giving a necessary and sufficient condition for the system \mathfrak{L} to be analytic hypoelliptic at (t^0, x^0) we state some simple reductions and remarks.

Remarks

1. In order to prove the analytic hypoellipticity of \mathfrak{L} it suffices to prove the analyticity of the solutions of the homogeneous equations

$$L_j h = 0 \quad 1 \leq j \leq m.$$ \hfill (3)

Indeed if $L_j u = f_j$ is analytic, we can solve $L_j v = f_j$ with an analytic solution v.

Since $L (u-v) = 0$ it suffices to show the analyticity of $u - v$.

2. We can restrict ourselves to the study of the C^1 solutions of (3). Indeed it can be easily proved [2] that any distribution solution of (3) near (t^0, x^0) is of the form

$$h = \Delta_{x}^{q} h'$$

where h' is of class C^1 and also solution of (3).

3. In order to prove the analytic hypoellipticity of L at (t^0, x^0) it suffices to show that if h is a C^1 solution of (3) near (t^0, x^0) then the function

$$h_o(x) = h(t^0, x)$$

is analytic at x^0. This can be easily seen using Remarks 1, 2 and the fact that the local Cauchy problem $L_j v = 0$, $1 \leq j \leq m$, with Cauchy datum at $t = t^0$, has a solution in the class of analytic functions and uniqueness holds in the class C^1 functions.

C.R. Functions

Let V be an open set of \mathbb{R}^n. We denote

$$\Omega = U \times V.$$

We consider the "tuboid" of \mathbb{C}^n

$$z(\Omega) = V + i\phi(U).$$

Définition 2 : A function u defined on the set $z(\Omega)$ is said to be Lipschitz continuous if its pull-back via z, $\bar{u} = u \circ z$ is Lipschitz continuous on $\Omega = U \times V$.

Moreover u is said to be a C.R. function if \bar{u} satisfies (3) in $U \times V$.

Observe that the push via z of L_j, $1 \leq j \leq m$ is given by

$$\sum_{k=1}^{n} (L_j z_k) \frac{\partial}{\partial z_k} + (L_j \bar{z}_k) \frac{\partial}{\partial \bar{z}_k} = -2i \sum_{k=1}^{n} \frac{\partial \phi_k}{\partial t_j} \frac{\partial}{\partial \bar{z}_k} \cdot$$

Therefore if $\phi(U)$ is an immersed submanifold of \mathbb{R}^n, a function u is a C.R. function according to Definition 2 if and only if it satisfies the usual induced Cauchy-Riemann equations on $z(\Omega)$.

If \(f \) is a holomorphic function in an open neighborhood of \(z(\Omega) \) in \(\mathbb{C}^n \), clearly its restriction to \(z(\Omega) \) is a C.R. function. We are interested here in the following local extendability question: Let \((t^0, x^0) \in \Omega \) and \(u \) a C.R. function on \(z(\Omega) \) when does \(u \) extend holomorphically to a neighborhood of \(z(t^0, x^0) \)?

We have the following:

Proposition 1: Let \(u \) be a C.R. function defined on \(z(\Omega) \) and \((t^0, x^0) \in \Omega \). The function \(u \) extends holomorphically to a neighborhood of \(z(t^0, x^0) \) if and only if the function

\[
x \mapsto \tilde{u}(t^0, x) = u(z(t^0, x))
\]

is analytic at \(x^0 \).

When \(\phi \) is analytic the analytic hypoellipticity of the system \(L \) defined by (1) and the local holomorphic extendability are therefore equivalent (Prop. 1 and Remark 3).

Theorem 1: Assume \(\phi \) to be analytic. The following conditions are equivalent:

(i) The system \(L = (L_1, \ldots, L_m) \) defined by (1) is analytic hypoelliptic at \((t^0, x^0) \).

(ii) Any C.R. function defined on a neighborhood of \(z(t^0, x^0) \) in \(z(\Omega) \) extends holomorphically to a full neighborhood of \(z(t^0, x^0) \) in \(\mathbb{C}^n \).

(iii) For every \(\xi \in \mathbb{R}^n \setminus 0 \), \(t^0 \) is not a local extremum of the function \(t \mapsto \phi(t) \cdot \xi \).

Theorem 1 follows essentially from the following microlocal result.

Theorem 2: Assume \(\phi \) to be analytic and let \(\xi^0 \in \mathbb{R}^n \setminus 0 \). The following conditions are equivalent:

(a) For every distribution \(h \) defined in some neighborhood of \((t^0, x^0) \) and satisfying (3) \((x^0, \xi^0) \) is not in the analytic wave-front set of \(h_0 \) (defined by (4)).

(b) \(t^0 \) is not a local minimum of the function \(t \mapsto \phi(t) \cdot \xi^0 \).

We can assume that \((t^0, x^0) \) is the origin of \(\mathbb{R}^m \times \mathbb{R}^n \) and that \(\phi(0) = 0 \). In order to prove that (a) implies (b) it suffices to observe that if \(\phi(t) \cdot \xi^0 > 0 \) for all \(t \in U \), the function

\[
h(t, x) = (x \cdot \xi^0 + i \cdot \phi(t) \cdot \xi^0)^{3/2},
\]

with the principal determination of \(^{3/2} \) for \(\zeta \in \mathbb{C} \) \(\text{Im } \zeta > 0 \), satisfies (3) and
(0, \xi^0) is in the analytic wave-front set of \(h_0(x) = (x.\xi^0)^{3/2} \).

The proof of (b) \(\Rightarrow \) (a) is an easy corollary of the following more general result:

Theorem 3: Assume \(\phi \) to be Lipschitz continuous in \(U(0 \in U) \) and let \(V \) be the open ball of \(\mathbb{R}^n \) centered at the origin of radius \(r > 0 \). Let \(\xi^0 \in \mathbb{R}^n \setminus 0 \) and assume there are \(t \in U \setminus 0 \) and a Lipschitz curve \(\gamma \) in \(U \) with \(0 \) and \(t^* \) as its end-points satisfying:

\[
\begin{align*}
5) & \ - \phi(t^*).\xi^0 > 0, \\
6) & \ \sup_{t \in \gamma} |\phi(t)| < r, \\
7) & \ \left| \phi(t^*) \right|^2 \sup_{t \in \gamma} \phi(t).\xi^0 < \left[r^2 - \sup_{t \in \gamma} \phi(t) \right]^2 \left[- \phi(t^*).\xi^0 \right].
\end{align*}
\]

Then if \(h \) is any Lipschitz continuous solution of (3) in \(\Omega = U \times V \), \((0,\xi^0) \) is not in the analytic wave-front set of \(h_0(x) = h(0,x) \).

Idea of the proof of Theorem 3

Let \(\epsilon > 0 \) and \(K > 0 \) be determined later. Let \(g \in C^\infty_0(V) \), \(g(x) = 1 \) for \(|x| \leq (1 - \epsilon)r \). Consider the integral

\[
I(x,\xi) = \int_{\mathbb{R}^n} \int_{\gamma} e^{i(x-y-\phi(t^*).\xi)} K(x-y-\phi(t)) \xi^0 L[g(y)h(t,y)] dt dy.
\]

We have used the notation \(z^2 = \sum_{j=1}^n z_j^2 \), and

\[
Lf(t,y) dt = \sum_{j=1}^m L_j f(t,y) dt_j
\]

which is a one form on \(U \) depending on \(y \).

Integrating (8) by parts with respect to \(t \) and \(y \) and using (2) we obtain

\[
I(x,\xi) = I_*(x,\xi) - I_0(x,\xi)
\]

with

\[

I_*(x,\xi) = \int_{\mathbb{R}^n} e^{i(x-y-\phi(t^*).\xi)} K(x-y-\phi(t^*)) \xi^0 L[g(y)h(t^*,y)] dy
\]

\[
I_0(x,\xi) = \int_{\mathbb{R}^n} e^{i(x-y).\xi} K(x-y)^2 \xi^0 L[g(y)h_0(y)] dy.
\]
In order to show that \((0,\xi^0)\) is not in the analytic wave front set of \(h_0\), it suffices to show that the estimate

\[
|I_0(x,\xi)| \leq C e^{-|\xi|/C}
\]

with \(C > 0\), holds for \((x,\xi)\) in a conic neighborhood of \((0,\xi^0)\) (see Sjöstrand [3]). Assumptions (5), (6), (7) and (3) allow us to find \(\varepsilon > 0\) and \(K > 0\) so that estimates of the form (10) hold for \(I(x,\xi)\) and \(I_\ast(x,\xi)\); thus the desired estimate (10) follows from (9).

Other remarks

4. The microlocal results of this paper can yield holomorphic extendability of C.R. functions not only to full neighborhood of a point in \(z(\Omega)\) in \(\mathbb{C}^n\), but also to open sets of \(\mathbb{C}^n\) whose boundary contains part of \(z(\Omega)\).

5. It should be mentioned that other extendability results generalizing Bochner's tube theorem appeared in the literature: H. Lewy, Hörmander, Komatsu, Hill, Kazlow (see [1] for references).

REFERENCES

