FRANÇOIS TRÈVES
Non embeddable CR-structures

<http://www.numdam.org/item?id=JEDP_1981___A8_0>
NON EMBEDDABLE CR-STRUCTURES

by François TREVES

A CR-structure on a smooth manifold Ω is the datum of a closed (see [5], Ch. 1, Def. 1.1) vector subbundle T' of the complex cotangent bundle $\mathbb{C}T^*\Omega$, such that

\[\mathbb{C}T^*\Omega = T' + \overline{T'} . \]

We shall call m the fiber dimension of T'. Note that, by (1), $\dim \Omega \leq 2m$. (If $\dim \Omega = 2m$ the structure is a complex one, a case in which we are not interested here). The structure T' is said to be locally integrable or, equivalently, the CR manifold (Ω, T') is said to be locally embeddable if every point of Ω has an open neighborhood over which T' is generated by m closed (or exact) one-forms. A function, or a distribution, f, such that df is a section of T' is said to be a CR function, or distribution. It ought perhaps to be said that CR stands for Cauchy-Riemann.

H. Lewy [3] (1956) has raised the question as to whether a strongly pseudoconvex CR structure, on a $(2m-1)$-dimensional manifold S^{2m}, is always locally embeddable. Pseudoconvexity is defined by means of the Levi form (see below, (8)). That the answer is no was shown by L. Nirenberg [4] (1972) when $\dim \Omega = 3$, in which case the Levi form is a scalar (and $m = 2$). Here we show that the CR-structures that have non degenerate Levi forms, with one eigenvalue of one sign and all others of the opposite sign, and which are not locally embeddable, are dense (in a sense made precise below: see Theorem and remarks that follow).

Our viewpoint will be strictly local. We shall henceforth suppose that Ω is an open neighborhood of the origin in an Euclidean space, specifically \mathbb{R}^{2n+1}. We shall limit ourselves to the case where

\[n = m - 1 . \]

Thus the fiber dimension of $T' \cap \overline{T'}$ is one. We shall begin by assuming that there are m C^∞ functions z^1, \ldots, z^m in Ω, complex valued, such that dz^1, \ldots, dz^m span T' at

(*) The present work is a generalization of some recent joint work, [2], with H. Jacobowitz (Rutgers University).

(•) For a positive answer to the global embeddability question, when Ω is compact and has dimension ≥ 5, see Boutet de Monvel [1].
each point of \(\Omega \). After a contraction of \(\Omega \) about the origin, possibly a modification of the coordinates in \(\mathbb{R}^{2n+1} \), which we denote by \(x^1, \ldots, x^m, y^1, \ldots, y^n \), and a \(\mathcal{C} \)-linear substitution on the \(z^j \)'s, we may assume that

\[
\begin{align*}
(3) & \quad z^j = x^j + \sqrt{-1} y^j, \quad j = 1, \ldots, m - 1 (= n), \\
(4) & \quad z^m = x^m + \sqrt{-1} \phi(x,y),
\end{align*}
\]

with

\[
(5) \quad \phi \text{ real, } \phi(0,0) = 0, \quad d\phi(0,0) = 0.
\]

(see [5], Ch. I, p.20).

Henceforth we write \(z^j = x^j + iy^j \) \((j = 1, \ldots, n)\). But notice that the mapping

\[
(6) \quad (x,y) \mapsto Z(x,y) = (z^1(x,y), \ldots, z^m(x,y))
\]

defines a \textit{diffeomorphism} on the (real) hypersurface \(Z(\Omega) \) of \(\mathbb{C}^m \) defined by the equation

\[
(7) \quad y^m = \phi(x,y'), \quad y' = (y^1, \ldots, y^{m-1}).
\]

This justifies that we call (6) a (local) embedding.

Next we introduce the \textit{Levi form} of the structure, at the origin (without attempting to give here an invariant definition):

\[
(8) \quad Q(\zeta) = \sum_{j,k=1}^{n} \frac{\partial^2 \phi}{\partial z^j \partial \bar{z}^k}(0,0) \zeta^j \zeta^{\bar{k}} \quad (\zeta \in \mathbb{C}^n).
\]

Note that

\[
(9) \quad \phi(x',0,y') = \text{Re} \left(\sum_{j,k=1}^{n} b_{jk} z^j z^k \right) + Q(z) + O(|z|^3).
\]

It is convenient to introduce the function

\[
W = z^m - \sqrt{-1} \sum_{j,k=1}^{n} b_{jk} z^j z^k,
\]
and to use the new coordinate \(s = \text{Re}W \) in the place of \(x^n \). Instead of \(z^n \) (see (4)) we shall reason with

\[
W = s + i\varphi(z,s),
\]

noting that

\[
\varphi(z,s) = \varphi(z) + O(|z|^3 + |s||z| + |s|^2).
\]

Our basic hypothesis will be:

\[
\text{(12) The Levi form } Q \text{ is non degenerate and it has exactly } n - 1 \text{ eigenvalues of a given sign, and one of the opposite sign (i.e. it has signature } n-2).\]

We shall assume that one eigenvalue of \(Q \) is \(> 0 \) and \(n - 1 \) are \(< 0 \). After a linear substitution on the \(Z \)'s we may assume that

\[
\text{(13) } Q(z) = |z|^2 - |z''|^2,
\]

where \(z'' = (z^2, \ldots, z^n) \). By (11) we see that, in a suitable neighborhood of the origin, \(U \subset \Omega \),

\[
\varphi(z,s) \leq 2|z|^2 - \frac{1}{2} |z''|^2 + C|s| (|z| + |s|),
\]

The orthogonal \(T'^{\perp} \) of \(T' \), for the natural duality between vectors and covectors, is generated over \(\Omega \) by the following \(n \) vector fields:

\[
L_j = \frac{\partial}{\partial z^j} - i\lambda_j(z,s) \frac{\partial}{\partial s} , \ j = 1, \ldots, n,
\]

where the coefficients \(\lambda_j \) are computed by writing that \(L_j W = 0 \):

\[
\lambda_j = (1 + i \varphi \frac{\partial}{\partial s})^{-1} \frac{\partial \varphi}{\partial z^j}, \ j = 1, \ldots, n.
\]

(Incidentally the fact that \(T' \) is closed is equivalent to the property that the commutation bracket of any two smooth sections of \(T'^{\perp} \) is a section of \(T'^{\perp} \)).

We may now state our result:

Theorem: Suppose (13) holds. Then there is a function \(g \in C^\infty(\Omega) \), vanishing to infinite order at the origin, such that the following is true:

(17) There is an open neighborhood \(U \) of the origin in \(\Omega \) such that, for every \(j = 1, \ldots, n \),
\[
\lambda_j^\# = \lambda_j (1 + g/z^1)
\]
is a \(C^\infty \) function in \(U \);

(18) the vector fields \(L_j^\# = \frac{\partial}{\partial z^j} - i\lambda_j^\# \frac{\partial}{\partial s} \) in \(U \) \((j = 1, \ldots, n)\) commute pairwise;

(19) given any open neighborhood \(V \subset U \) of the origin, any solution \(h \in C^1(V) \) of the equations
\[
L_j^\# h = 0, \ j = 1, \ldots, n,
\]
has the property that \(dh|_0 \) is a linear combination of \(dz^1, \ldots, dz^n \).

The meaning of this theorem is, roughly, the following:

Let \(T' \) be a CR structure on a manifold \(\Omega \) of dimension \(2n+1 \). Suppose that \(T' \cap \overline{T'} \) is a line bundle (i.e., the structure has "codimension one"). Suppose that, in the neighborhood of a point \(\omega_0 \) of \(\Omega \), the CR structure \(T' \) is embeddable, and has a non degenerate Levi form whose signature is equal to \(n - 2 \). Then there is another CR structure \(T'^\# \) in the neighborhood of \(\omega_0 \), tangent at \(\omega_0 \) to \(T' \) to infinite order, which is not locally embeddable (at \(\omega_0 \)).

Proof of Theorem: Inspired by Nirenberg [4] we select a sequence of compact subsets \(K_\nu \ (\nu = 1, 2, \ldots) \) in the upper half-plane \(\text{Im } w > 0 \) \((w = s + it \) will denote the variable in \(\mathbb{C}^1)\) having various properties:

(21) as \(\nu \to +\infty \), \(K_\nu \) converges to \(\{0\} \);

(22) the projections of the \(K_\nu \) into the real axis are pairwise disjoint;

(23) there is a number \(\epsilon > 0 \) such that
\[
K \subset \cap_{\nu} r^\epsilon = \{s + it ; |s| < \epsilon t\}.
\]

We shall furthermore assume that the interior \(K^\circ_\nu \) of \(K_\nu \) is not empty, whatever \(\nu \).
We note that, if \(s + i\varphi(z,s) \in \Gamma^\varepsilon \), we derive from (14):

\[
(e^{-1} - c(|z| + |s|))|s| + \frac{1}{2} |z''|^2 \leq 2|z'|^2,
\]

and therefore, by choosing \(\varepsilon > 0 \) small enough,

\[
(24) \quad e^{-1}|s| + |z'|^2 \leq 4|z'|^2, \quad (s,z) \in U, W \in \Gamma^\varepsilon.
\]

According to (11) we have

\[
(25) \quad \frac{\partial \varphi}{\partial z^j} = \pm z^j + O(|z|^2 + |s|).
\]

We note that, by (16), we have:

\[
(26) \quad \frac{\lambda_j}{z^1} = \left[\pm z^j + O(|z|^2 + |s|) \right]/z^1.
\]

We select, for each \(v \), a function \(f_v \in C^\infty(\mathbb{R}^2) \) having the following properties:

\[
(27) \quad f_v \geq 0 \text{ everywhere, } \text{supp } f_v \subset K_v, f_v(W_v) > 0 \text{ for some } W_v \in K_v;
\]

\[
(28) \quad f = \sum_{v=1}^{\infty} f_v \in C^\infty(\mathbb{R}^2);
\]

\[
(29) \quad \lambda_j g/z^1 \in C^\infty(U),
\]

where

\[
g(f \circ W)/[1 + (f \circ W) (\log W_s)/z^1].
\]

Let us show that (29) can be achieved (in particular by taking \(U \) small enough).

Recalling that \(W = s + i\varphi(z,s) \), we see that \(\log(1 + i\varphi_s) \) is well defined provided \(U \) is small; furthermore \(\log(1 + i\varphi_s) = O(|z| + |s|) \), hence is \(O(|z'|) \) on \(\text{supp } (f \circ W) \), by (23) and (24). Since \(f \) is flat at the origin, both \((f \circ W)(\log W_s)/z^1\) and \(\lambda_j(f \circ W)/z^1 \) (cf. (26)) are \(C^\infty \) in \(U \), and flat at the origin, whence easily (29).

By differentiating \(L_j W = 0 \) with respect to \(s \) and dividing by \(W_s \) we get

\[
(30) \quad L_j (\log W_s) = i\lambda_j, \quad j = 1, \ldots, n.
\]
A straightforward computation yields

$$L_j g + i\lambda_j g^2/z^1 = \lambda_j h, \ j = 1, \ldots, n,$$

where h is a certain function of (z,s). We have used the fact that $L (f \cdot W) = L (\bar{W} g) \frac{\partial f}{\partial W}$, and $L_j \bar{W} = L_j (W + \bar{W}) = 2L_j z = -2i\lambda_j$.

$$\lambda_j = \frac{i}{2} L_j \bar{W}, \ j = 1, \ldots, n.$$

Note that $L_k \lambda_j = L_j \lambda_k$ (hence $[L_j, L_k] = 0$). We have

$$[L_j^#, L_k^#] = [L_j - i\lambda_j z \frac{\partial}{\partial s}, L_k - i\lambda_k z \frac{\partial}{\partial s}] = -i\delta \frac{\partial}{\partial s},$$

where

$$z^1 q = L_j (\lambda_k g) - L_k (\lambda_j g) - i\lambda_j z \frac{\partial}{\partial s} (\lambda_k g)$$

$$+ i \lambda_k z \frac{\partial}{\partial s} (\lambda_j g)$$

$$= \lambda_k (L_j g + i \frac{q^2}{z} \lambda_j s) - \lambda_j (L_k g + i \frac{q^2}{z} \lambda_k s)$$

$$= 0 \quad \text{according to (31)}.$$

This proves (18).

Finally suppose that $h \in C^1 (V)$ is a solution of (20). In particular it is a solution of $L^# h = 0$ on the plane $z^2 = \ldots = z^n = 0$. We shall prove below that this implies $h \in C^1 (0,0) = 0$. Because of the special form of the equations (20) (see (18)) this implies $\frac{\partial h}{\partial z}(0,0) = 0$, whence (19).

The proof is reduced to the case where $n = 1$. We content ourselves with sketching the argument, which is essentially the same as that given, with full details, in [2]. Let us write $x, y, z = x + iy$, rather than x^1, y^1, z^1, and $L = \frac{\partial}{\partial z} - i\lambda (z,s) \frac{\partial}{\partial s}$ rather than L_1. We have

$$\varphi(z,s) = |z|^2 + O(|z|^3 + |s||z| + |s|^2).$$

By the implicit function theorem there is a C^∞ function, in a neighborhood of zero, $s \rightarrow z(s)$, with $z(0) = 0$, such that, if we set $\varphi_0 (s) = \varphi(z(s),s)$, we have
Furthermore \(\varphi_0(0) = 0 \). We may therefore assume that the intersection of the cone \(\Pi^* \) (see (23)) with a small open disk centered at the origin, in the \(w = s + it \) plane, is entirely contained in the region

\[t > \varphi_0(s). \]

We may and shall assume that all the compact sets \(K \) are contained in the open set (34), and we shall denote by \(\mathcal{R}_0 \) the complement of \(\bigcup_{\nu} K \) in (34), by \(\mathcal{R} \) the set of points \((z,s) \in \Omega \) such that \(\nu = s + i\varphi(z,s) \in \mathcal{R}_0 \). Notice that we have, in \(\mathcal{R} \):

\[\text{Lh} = 0. \]

Because of (33), when \(w = s + it \in \mathcal{R}_0 \), the equation \(\varphi(z,s) = t \) defines a smooth closed curve in the \(z \)-plane, \(\gamma(w) \), winding around \(z(s) \). We can use the parameter \(\theta = \text{Arg}(z - z(s)) \) on \(\gamma(w) \). This defines a smooth map

\[S^1 \times \mathcal{R}_0 \ni (\theta,w) \longmapsto (z,s) \in \mathcal{R}. \]

By virtue of (35) we have \(dh = A\, dw + B\, dz \) in \(\mathcal{R} \), hence

\[\frac{\partial}{\partial w}(h \frac{\partial z}{\partial \theta}) = \frac{\partial}{\partial \theta}(h \frac{\partial z}{\partial w}) \quad \text{since} \quad \frac{\partial w}{\partial \theta} = \frac{\partial w}{\partial \theta} = 0. \]

This implies that the integral \(I(w) = \int_{\gamma(w)} h \, dz \) is a holomorphic function of \(w \) in \(\mathcal{R}_0 \). Since \(\gamma(w) \) contracts to the point \(z(s) \) when \(t = \varphi_0(s) \), we have \(I(w) = 0 \) on this curve, therefore everywhere in \(\mathcal{R}_0 \) (note that there is "enough room" for the zeros to propagate around the sets \(K_\nu \), thanks to (22)). We select then a smooth closed curve \(c_\nu \) in \(\mathcal{R}_0 \) winding around \(K_\nu \), such that no point of any set \(K_\nu, \forall \nu' \neq \nu \), lies inside or on \(c_\nu \). We derive

\[\int_{c_\nu} \int_{\gamma} h(z,s) dz \wedge dw = 0. \]

The 2-chain \(\Sigma_\nu = \{(z,s);(W,z) \in c_\nu \times \gamma\} \) is a kind of torus whose inside we call \(\Omega_\nu \). Stokes theorem implies

\[\iiint_{\Omega_\nu} dh \wedge dz \wedge dw = 0. \]
But $dh = A dW + B dZ + Lh d\bar{Z}$, hence (38) reads

\[(39) \quad \int \int \int_{\mathcal{V}} (\lambda/|z|^1) g h_s d\bar{Z} \wedge dz \wedge dw = 0 \]

since $Lh = i \lambda g h_s /|z|^1$. Near the origin, on supp g (cf. (24))

\[\lambda/|z|^1 \sim 1, \quad g \sim f \circ W. \]

If $h_s(0,0)$ were $\neq 0$, in (39) the argument of the integrand would have a well-defined limit as $\nu \to +\infty$; (39) could not hold true for ν large enough. \qed

REFERENCES

** **