LINDA P. ROTHSCCHILD

Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups

<http://www.numdam.org/item?id=JEDP_1983____A12_0>
Existence of solutions for transversally elliptic left invariant differential operators on nilpotent Lie groups.

Linda Preiss Rothschild
University of Wisconsin - Madison

1. Introduction and notation. We describe here some recent results, obtained jointly with Lawrence Corwin [3] on solvability of left invariant differential operators on nilpotent Lie groups. For related results see [2], [8], [9], [10], [11], [14], [15], [16], [17].

We consider first operators on a 2-step nilpotent Lie group G, i.e., we assume that the Lie algebra \mathfrak{g} is a vector space direct sum $\mathfrak{g} = \mathfrak{g}_1 + \mathfrak{g}_2$ with $[\mathfrak{g}_1, \mathfrak{g}_1] = \mathfrak{g}_2$ and $[\mathfrak{g}_2, \mathfrak{g}] = (0)$. For $\eta \in \mathfrak{g}_2^*$ let B_η be the bilinear form $B_\eta(X_1, X_2) = \eta([X_1, X_2])$ for $X_1, X_2 \in \mathfrak{g}_1$. B_η assumes its maximal rank on a Zariski open subset in \mathfrak{g}_2^*.

Recall that to every $\iota \in \mathfrak{g}^*$ we may associate, by the Kirillov theory, an irreducible unitary representation π_ι of G, realized on a Hilbert space of the form $L^2(\mathbb{R}^k)$ for some k.

By a transversally elliptic operator on G we shall mean a left invariant differential operator L on G which is an elliptic polynomial on \mathfrak{g}_1, i.e.,

$$L = L_m + L_{m-1} + \cdots + L_0,$$

with L_j homogeneous of degree j, and L_m an elliptic polynomial on \mathfrak{g}_1.

2. Necessary conditions for local solvability. We give the following criterion, which generalizes known results [2] for homogeneous operators i.e. those for which $L_j \equiv 0, \ j < m$.
Theorem 1. Let L be a left invariant operator on G which is transversally elliptic. Assume that there is a non-empty open set $V \subset \mathcal{O}$ such that

$$(2.1) \quad \ker \pi_I(L^T) \neq 0 \quad \text{for all } l \in V,$$

or, equivalently,

$$(2.2) \quad \ker L^T \cap L^2(G) \neq 0.$$

Then L is not locally solvable.

The idea of the proof is as follows. First, if B_η is degenerate for all η, then [1] may be applied to show that the hypothesis is vacuous. So assume B_η nondegenerate for η in a Zariski open set. We show, using microlocal constructions as in [6] that there is a pseudo-differential operator Π not of order $-\infty$ such that $L^T \Pi$ is of order $-\infty$. Now for any distribution σ for which $Lv - \sigma = 0$ in an open set U for some distribution v, $\Pi^T(Lv - \sigma)$ is smooth, and hence $\Pi^T \sigma$ is smooth. Hence σ cannot be arbitrary.

3. Sufficient conditions for solvability on H-groups. G is called an H-group if B_η is nondegenerate for $\eta \neq 0$. We prove the following converse to Theorem 2 for H-groups. A globally defined differential operator P is uniformly semi-globally solvable if there is an integer r such that for every bounded open neighborhood U of 0 there exists a distribution σ_U of order at most r such that $L \sigma_U = \delta$ in U.

Theorem 2. If G is an H-group and L a left invariant transversally elliptic operator on G then L is uniformly semi-globally solvable if
(2.1) and (2.2) do not hold.

The proof of Theorem 2 is somewhat similar to that of the corresponding result [17] in the case where \(L \) is homogeneous. Both rely on the theorem of Lojasiewicz which says that one can divide a distribution by a non-zero analytic function.

Corollary. If \(L_m \) is locally solvable, then \(L \) is locally solvable.

4. **Existence of global fundamental solutions.** Here we allow \(G \) to be any connected Lie group, not necessarily nilpotent.

Theorem 3. Let \(L \) be a left invariant differential operator on \(G \) which is uniformly semi-globally solvable. Suppose that \(G \) is \(L \)-convex. Then \(L \) has a global fundamental solution; i.e. there is a distribution \(\sigma \) on \(G \) for which \(L\sigma = \delta \).

The proof of Theorem 3 involves a construction similar to that used in proving that \(L \)-convexity implies global solvability. The theorem gives a new result even for homogeneous operators.

Corollary 1. Let \(L \) be a homogeneous left invariant differential operator on a nilpotent Lie group \(G \) with dilations. If \(L \) is locally solvable at \(0 \) then \(L \) has a global fundamental solution.

Corollary 2. If \(L \) is a transversally elliptic operator on an \(H \)-group which satisfies the hypothesis of Theorem 2 then \(L \) has a global fundamental solution.
5. **Global criteria for hypoellipticity.** The various global criteria for local solvability for homogeneous differential operators on nilpotent groups, e.g., \(\ker L^r \cap L^2(G) = (0) \), suggest that the representation-theoretic criterion of Helffer-Nourrigat [5] may be reformulated. Indeed, using a recent Liouville-type theorem of Geller [4] one may obtain the following.

Theorem 4. (Geller, Helffer-Nourrigat). Let \(G \) be a stratified nilpotent Lie group and \(L \) a homogeneous left invariant differential operator on \(G \). Then \(L \) is hypoelliptic if and only if there is no non-constant bounded function \(f \) on \(G \) such that \(Lf = 0 \).
References

