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The Boltzmarm-Enskog equation with large data;

wellposedness and regularity.

Leif Arkeryd (Goteborg, Sweden)

In 1921 the Swedish mathematician David Enskog suggested an ad hoc equation

to describe moderately dense gases. That model has ever since been known as the Enskog

equation, and is quite successful in physical applications. It is an equation for the

one-particle distribution function of the following type; (9. + v<^) f = Qf, where the

right hand side describes the evolution due to collisions, and the density f is a function

of space x, velocity v, and time t.

The molecules are colliding as billiard balls. In a collision the velocities v, v^ of

two colliding molecules are transformed into the velocities v*, v^, which besides v,v^

also depend on a collision parameter u, conveniently taken on the unit sphere S. The

difference from the Boltzmann equation lies in the collision term Qf, equal to the

difference between a gain term and a loss term, in the Enskog case

Qf==<7 2 / (ff^ - ff.^JBdv.du.
R3x<? " + +

Here a is a radius, ^ are high density factors, and the weight B is

B(v,v^,u) = (v-v^, u)^ = max((v-v^,u),0).

The coordinates in the various densities are as follows;

f == f(x,v), f^ = f(x|+ mi, V^), f == f(xy), f = f(x - <7U, V^).
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As a comparison the Boltzmann equation has the factor a K = constant and the radius

a = 0 in the density variables.

The talk is based on two papers "On the convergence of solutions of the Enskog

equation to solutions of the Boltzmann equation" by C. Cercignani and L. Arkeryd, to

appear in Comm. in PDE, and "On the Enskog equation with large initial data" by L.

Arkeryd, which is to appear in SIAM Journ. Math. Anal. For clarity the discussion is

limited to the special case of a constant high density factor, the so called

Boltzmann-Enskog equation.

We start by constructing approximate solutions when the collision operator Q is

substituted by a truncated one Q^, where the high velocities are removed by inserting

an extra cut-off factor \ = 1 for v + v^ < 2\ \ = 0 otherwise. Set f^x.v.t) =

f(x+vt,v,t) and F(x,v) = sup f^x^t). The density product in the loss term can be
0<t<T

estimated by

(fy^v.t) < F(x,v)F(x+t(v-v^) + (TU, v^).

Also
c\

a (v-v , u) dudt == dy

where y = x + t(v-v ) + an. This gives the loss term estimate

t g
JJA^ (v-v.,u),dudsdvdv.dx < sup J F(y,v )dydv fF(x,v)dxdv.
O r 'I- i T l f T 'Px.vM^

Here vol(M ) is proportional to T, and that makes the sup-factor small for small T.
•X.V

A similar estimates holds for the gain term. Together they imply a contraction mapping

argument for local existence, when the initial value is in L^. Assuming initially finite

entropy this can be carried into a global result.
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The solution of the truncated equation also satisfies the equation in iterated

integral form, i.e. / f^WOQdxdv^ / ^(OWtndxdv +
AxR3 AxR3

+ ̂ ^ W^)^ + / dxdv Jds^sKQy^s) for all ^ e C\R , L°°(AxR3)
AxK" 0 AxR3 Q + • /

with bounded support, and with <f> in C^R^) for a.e. (x,v). This form is under slight

restrictions equivalent to the mild, renormalized, and exponential forms of the diPerna,

Lions proof of existence for the Boltzmann eqation via the averaging technique. The talk

next discusses a quick way to such averaging results via the iterated integral form, here

illustrated through the convergence of the above approximate solutions f^ to a solution

of the Boltzmann-Enskog equation in iterated integral form when j ^ oo, in periodic
0 Q

physical space A = R /Z , and with symmetrized weight function B = | (v-v ,u) |.

That case is simplified by its having the same entropy properties as the Boltzmann
equation.

Theorem. Assume that the junction L satisfies

sup / f^x.v.t^l + v2 + | logf(x,v,t) | )dxdv
t,j AxR3

;,v,t^ I ̂ dxdv < oo.

Then there exists a junction f in (^(R^L^AxR3)) satisfying the Boltzmann-Enskog

equation in iterated integral (mild, renormalized, exponential) form and with initial value

^

This result can be substantially generalized without a great change in the

framework. Such generalizations are not yet known for the final questions addressed in

the talk, namely those of wellposedness and regularity. Here the setting so far

understood is for the original unsymmetrized Boltzmann-Enskog equation with constant

high density factor in full physical space. The following result holds.

Theorem. Suppose that i^v)1' belongs to L^ for all r > 0, and that x2^, yogf.

belong to L . Then the Enskog equation with K==constant has a unique solution f on

R^ with F integrable, mass and v- moments conserved, and energy, x - moment and
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f\l
entropy locally bounded in time. If, moreover^ D L has all ̂ -moments finite in

L -norm for all \a\ < k, then the same holds for f(t).

The proof starts from fairly involved estimates in the L -norm for | v | ̂  first

proving that for large r's and small T's the above sequence f^ is Cauchy in such a norm,

and then proceeding to the global result using the control of mass, energy and entropy.

Since the equation for a derivative formally is linear in that derivative, the same

procedure can then be employed to prove differentiability using the already obtained

estimates of the solution.
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