ANTONIO SA BARRETO

Evolution of semilinear conormal waves

<http://www.numdam.org/item?id=JEDP_1991____A12_0>

Evolution Of Semilinear Conormal Waves

ANTÓNIO SÁ BARRETO

1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be an open subset and let P be a second order strictly hyperbolic differential operator in Ω with smooth coefficients. Let $t \in C^\infty(\Omega)$ be a time function for P and define

$$\Omega^\pm = \Omega \cap \{ \pm t > 0 \}.$$ \hfill (1.1)

Assume that Ω is a domain of dependence of Ω^-. Let f be a smooth function of its arguments and suppose $u, Du \in L^\infty_{loc}(\Omega)$ satisfies

$$Pu = f(z, u, Du); \quad z \in \Omega.$$ \hfill (1.2)

The general question on propagation of singularities of solutions of (1.1) is how do singularities of u in Ω^- influence singularities of u in Ω. We shall concentrate in the study of some geometric singularities called conormal and the first example is conormality to a smooth hypersurface. Thus let $S \subset \Omega$ be a smooth hypersurface which is characteristic for P, let \mathcal{V}_S be the Lie algebra of smooth vector fields tangent to S and denote

$$I_k L^{2}_{loc}(\Omega, \mathcal{V}_S) = \{ u \in L^{2}_{loc}(\Omega) : \mathcal{V}_S^j u \subset L^{2}_{loc}(\Omega), \ j \leq k \}.$$ \hfill (1.3)

Observe that if $u \in I_\infty L^{2}_{c}(\Omega, \mathcal{V}_S)$, then u is smooth away from S. In fact one can easily show that in this case the wavefront set of u is contained in the conormal bundle to S.

Theorem 1.1 (Bony, [4]) Let $u, Du \in H^s_{loc}(\Omega), \ s > \frac{3}{2}$, satisfy (1.2). If $u, Du \in I_k L^2_{loc}(\Omega^-, \mathcal{V}_S)$, then $u, Du \in I_k L^2_{loc}(\Omega, \mathcal{V}_S)$.

This result shows that as long as S is smooth u remains conormal to it, but in general characteristic hypersurfaces of P can have rather complicated singularities. In this talk we shall describe the results of [16] and [17] concerning the propagation of conormal singularities for solutions of (1.2) along a hypersurface Σ with either a cusp or a swallowtail singularity. These are in some sense, see [2], the only cases where the singularities are stable under small perturbations. These problems have been also studied by M. Beals [3] and R. Melrose [9], in the case of the cusp and G. Lebeau, [6], [7] and J-M. X...
Delort [5] in the case of the swallowtail with the hypotheses that P has real analytic coefficients and the regular part of Σ is real analytic.

Before stating our results we have to introduce some notation. Let \mathcal{W} be a Lie algebra and C^∞ module of smooth vector fields on a manifold with corners X and let μ be a smooth measure on X. The space of iteratively regular distributions with respect to \mathcal{W} is then defined as

$$I_k L^2_{\mu,c}(X, \mathcal{W}) = \{ u \in L^2_{\mu,c}(X); \mathcal{W}^j u \in L^2_{\mu,c}(X), \; j \leq k \}. \quad (1.4)$$

2 The Cusp

Let G be a hypersurface with a cusp singularity at a line L, i.e there are local coordinates near $q \in L$ such that

$$G = \{(x, y, z) \in \Omega : y^3 = x^2\}, \quad L = \{(x, y, z) : x = y = 0\}. \quad (2.1)$$

Assume that the smooth part of G is characteristic for P. Let \mathcal{V}_G be Lie algebra of smooth vector fields tangent to G. It is easy to show that the Lie algebra \mathcal{V}_G is characteristic complete, i.e

$$[P, \mathcal{V}_G] \subset \Psi^0(\Omega) \cdot P + \Psi^1(\Omega) \cdot \mathcal{V}_G + \Psi^1(\Omega). \quad (2.2)$$

Where $\Psi^j(\Omega)$ denotes the space of properly supported pseudodifferential operators of order j in Ω. Then by commutator methods, see [4], one obtains

Theorem 2.1 Let $u, Du \in H^s_{\text{loc}}(\Omega)$, $s > \frac{3}{2}$, satisfy equation (1.2). If $u, Du \in I_k L^2_{\text{loc}}(\Omega, \mathcal{V}_G)$, then $u, Du \in I_k L^2_{\text{loc}}(\Omega, \mathcal{V}_G)$.

Next we recall the spaces of marked Lagrangian distributions introduced by R. Melrose in [9]. Let $\Lambda_G = \text{clos}[N^*(G \setminus L)]$, Λ_G is a smooth conic Lagrangian submanifold of $T^*\mathbb{R}^3$. Let $\Lambda_L = N^*L$ and

$$\mathcal{M}_1(G) = \{ A \in \Psi^1(\Omega) : a = \sigma_1(A) = 0 \text{ at } \Lambda_G, \quad \text{H.a is tangent to } \Lambda_G \cap \Lambda_L \}. \quad (2.3)$$

$$\mathcal{M}_1(L) = \{ A \in \Psi^1(\Omega) : a = \sigma_1(A) = 0 \text{ at } \Lambda_L, \quad \text{H.a is tangent to } \Lambda_G \cap \Lambda_L \}. \quad (2.4)$$

Let

$$J^G_{k,m}(\Omega) = I_k L^2_{\text{loc}}(\Omega, \mathcal{M}_1(G)) + I_k L^2_{\text{loc}}(\Omega, \mathcal{M}_1(L)). \quad (2.5)$$

In [9] Melrose proves that

$$J^G_{k,m} \subseteq I_k L^2_{\text{loc}}(\Omega, \mathcal{V}_G) \quad (2.6)$$

and
Theorem 2.2 (Melrose, [9]) Let $u, Du \in H^s_{loc}(\Omega)$, $s > \frac{3}{2}$, satisfy equation (1.2). If $u, Du \in J^G_{k+m}(\Omega^-)$, then $u, Du \in J^G_{k+m}(\Omega)$.

Finally we introduce a third space of distributions associated to the cusp. Observe that in local coordinates where (2.1) holds one finds that G is invariant under the \mathbb{R}^+ action

$$m^{3-2}_{y}(x,y) = (s^3x, s^2y).$$

This leads to the definition quasi-homogeneous polar coordinates, thus consider the non-round circle

$$S^{1}_{3-2} = \{(\omega_1, \omega_2) \in \mathbb{R}^2 : \omega_1^4 + \omega_2^2 = 1\}$$

and the manifold with boundary

$$X_{3-2} = S^{1}_{3-2} \times [0, \infty) \times \mathbb{R}.$$ (2.9)

Then define the blow-down map

$$\beta_{3-2} : X_{3-2} \longrightarrow \mathbb{R}^3, \quad \beta_{3-2}(\omega, r, z) = (r^3 \omega_1, r^2 \omega_2, z).$$ (2.10)

Let \mathcal{W}_G be the Lie algebra of smooth vector fields in X_{3-2} which are tangent to ∂X_{3-2} and to $G^{(1)} = \text{clos}_\beta \beta^{-1}_{3-2}[G \setminus L]$. Let μ be the pull back of the Lebesgue measure by the map β_{3-2}. Then one defines

$$J^G_k(\Omega) = \{u \in L^2_{loc}(\Omega) : \beta_{3-2}^* u \in I_k L^2_c(X_{3-2}, \mathcal{W}_G)\}.$$ (2.11)

One can easily show that the space $J^G_k(\Omega)$ does not depend on the choice of coordinates such that (2.1) holds. Then see [16], one can show that if \mathcal{W}_G^1 is the Lie algebra of smooth vector fields in X_{3-2} that are tangent to $G^{(1)}$ and to the lines $\{\omega_1 = 0, r = 0\}$, $\{\omega_2 = 0, r = 0\}$, then the blow down map β_{3-2} induces an isomorphism

$$\beta_{3-2}^* : J^G_{k+m}(\Omega) \leftrightarrow I_k L^2_c(X_{3-2}, \mathcal{W}_G^1).$$ (2.12)

Similarly if \mathcal{W}_G^0 is the Lie algebra of smooth vector fields that are tangent to $G^{(1)}$ and vanish on ∂X_{3-2}, then

$$\beta_{3-2}^* : I_k L^2_c(\Omega, \mathcal{V}_G) \leftrightarrow I_k L^2_c(X_{3-2}, \mathcal{W}_G^0).$$ (2.13)

In particular one obtains from (2.12) and (2.13) that

$$J^G_k(\Omega) \subset J^G_{k+m} \subset I_k L^2_{loc}(\Omega, \mathcal{V}_G).$$ (2.14)
Figure 1:

The main difficulty in proving a propagation theorem for $J^0_k(\Omega)$ is that this space is not known to have a microlocal characterization. One of the main results of [16] is the following elliptic regularity type of theorem.

Theorem 2.3 If $u, Du \in H^p_{loc}(\Omega) \cap I_k L^2_{loc}(\Omega, G)$ satisfies equation (1.2), then $u, Du \in J^0_k(\Omega)$.

Theorem 2.3 illustrates an important idea that will be used in the proof of Theorem 7.1. One first proves a propagation theorem for a bigger space which has a microlocal characterization and then uses the equation to show that the solution is actually in the smaller space.

3 The Swallowtail

Since the results we wish to prove are local we shall assume that $\Omega \subset \mathbb{R}^3$ is a sufficiently small neighborhood of $O = (0,0,0)$. Let $\Sigma \subset \Omega$ be a hypersurface with a swallowtail singularity at $O \in \Omega$, i.e. there are smooth coordinates (x,y,z) in Ω such that

$$\Sigma = \{(x,y,z) : \delta(\lambda) = \lambda^4 + z\lambda^2 + y\lambda + x = 0, \text{ has a double real root}\}. \quad (3.1)$$

Σ has a cusp singularity at

$$L = \{(x,y,z) : x = -\frac{z^2}{12}, \ y^2 = \left(-\frac{2}{3}z\right)^3\} \quad (3.2)$$

and a self-intersection at

$$H = \{(x,y,z) : y = 0, \ x = -\frac{z^2}{4}, \ z \leq 0\}. \quad (3.3)$$
The continuation of the line H to values of $z > 0$ corresponds to the set of (x, y, z) such that $\delta(\lambda)$ has two double complex roots and therefore is not included in Σ. Let $\Sigma_{\text{reg}} = \Sigma \setminus [L \cup H]$ be the regular part of Σ.

The discriminant of the polynomial $\delta(\lambda)$ is given by

$$\Psi(x, y, z) = 16xz^4 - 4y^2z^3 - 128x^2z^2 + 144xyz^2 + 256x^3 - 27y^4. \quad (3.4)$$

Hence one deduces from (3.2) and (3.3) that

$$\Sigma_{\text{reg}} = \{(x, y, z) : (x, y, z) = 0, y \neq 0, x \neq \frac{z^2}{12}\}. \quad (3.5)$$

Assume that Σ_{reg} is characteristic for P, i.e. if $p = \sigma^2(P)$ is its principal symbol,

$$p(d\Psi) = 0 \text{ at } \Sigma_{\text{reg}}. \quad (3.6)$$

Assume that $t(0) = 0$ and that

$$\Sigma^- = \Sigma \cap \Omega^- \quad (3.7)$$

is a smooth hypersurface of Ω^-.

Let Q be the light cone for P over O, then, see Proposition 3.3, $Q \cap \Sigma = E \cup B$, where away from O, Σ and Q intersect transversally at E and are tangent to third order along B. Let $\mathcal{V}(\Sigma)$ and $\mathcal{V}(\Sigma, Q)$ be the Lie algebras of smooth vector fields tangent to Σ and to Σ and Q respectively.

The following is then a simple consequence of the results of [17].

Theorem 3.1 Let $u, Du \in H^s_{\text{loc}}(\Omega), s > \frac{3}{2}$, satisfy (1.2). If $u, Du \in I_kL^2_{\text{loc}}(\Omega^-, \mathcal{V}(\Sigma, Q))$, then $u, Du \in I_kL^2_{\text{loc}}(\Omega^-, \mathcal{V}(\Sigma, Q))$.

One deduces from Theorem 3.1

Theorem 3.2 Let $u, Du \in H^s_{\text{loc}}(\Omega), s > \frac{3}{2}$, satisfy (1.2). If $u, Du \in I_kL^2_{\text{loc}}(\Omega^-, \mathcal{V}(\Sigma))$, then $u, Du \in I_kL^2_{\text{loc}}(\Omega, \mathcal{V}(\Sigma, Q))$.

XII- 5
In fact the results of [17] are stronger, we show that under the hypotheses of Theorem 3.1 the solution is strongly conormal in the sense of Melrose and Ritter, [12], along B and in the sense of [16] along the cusp line L of Σ.

In this note we shall restrict ourselves to the case where u satisfies the weakly semilinear equation

$$Pu = f(z, u), \quad z \in \Omega. \tag{3.8}$$

Since it contains all new ideas involved in the proof of Theorem 3.1

I would like to acknowledge that the main new ideas in [17], originated in joint works (in progress) with R.B. Melrose, [13], and with R.B. Melrose and M. Zworski, [14]. I would like to thank them for sharing their ideas with me, for their interest and encouragement. Possible errors in this manuscript are of course my own fault.

4 Outline Of The Proof

To prove Theorem 3.1 in the case of the weakly semilinear equation (3.6) we shall introduce a family of spaces $J_k(\Omega) \subset I_k L^2_{loc}(\Omega, \mathcal{V}(\Sigma)), \; k \in \mathbb{N}_0,$ satisfying the following properties:

1) $J_{k+1}(\Omega) \subset J_k(\Omega) \subset L^2_{loc}(\Omega), \; J_0(\Omega) = I^2_{loc}(\Omega)$.

2) $J_k(\Omega)$ is a $C^\infty(\Omega)$-module.

3) $J_k(\Omega) \cap L^\infty_{loc}(\Omega)$ is a C^∞ algebra.

4) $u, Du \in J_k(\Omega) \implies u \in J_{k+1}(\Omega)$.

5) $Pu = f \in J_k(\Omega), \; u = f = 0$ in $\Omega_T = \Omega \cap \{t < T\}$, then $u, Du \in J_k(\Omega)$.

6) If $u, Du \in I_k L^2_{loc}(\Omega^-, \mathcal{V}(\Sigma))$ in Ω^- satisfy (3.8), then $u, Du \in J_k(\Omega^-)$.

Proof of Theorem 3.1 : Suppose that such a family of spaces $J_k(\Omega)$ has been constructed. We then proceed by an induction argument. Let $\chi \in C^\infty(\mathbb{R}), \; \chi(s) = 0, \; s < -\frac{1}{2}, \; \chi(s) = 1, \; s > 0$. We obtain from (1.8)

$$P \chi u = \chi f(z, u) + [P, \chi] u. \tag{4.1}$$

If $u, Du \in J_0(\Omega) \cap J_1(\Omega^-)$, it follows from properties 2, 3 and 4 that the right hand side of (4.1) is in $J_1(\Omega)$. Thus one deduces from property 5 that $u, Du \in J_1(\Omega)$. By the same argument it follows that if $u, Du \in J_k(\Omega) \cap J_{k+1}(\Omega^-), \; \ell < k$, then $u, Du \in J_{k+1}(\Omega)$.

To define the spaces $J_k(\Omega)$ we shall introduce a blow-down map

$$\beta : X \to \mathbb{R}^3 \tag{4.2}$$
from a manifold with corners X to \mathbb{R}^3 such that the lifts of Σ and Q by β intersect each other and the boundary of X transversally. We then define

$$J_k(\Omega) = \{ u \in L^2_{loc}(\Omega) : W^j \beta^* u \in L^2_{\mu}(X), \ j \leq k \}.$$ \hspace{1cm} (4.3)

Where \mathcal{W} is a Lie algebra and $C^\infty(X)$ module of smooth vector fields in X and μ is the lift of the Lebesgue measure of \mathbb{R}^3 under β. It will be a clear consequence of the definition of X and \mathcal{W} that $J_k(\Omega)$, defined by (4.3), satisfies properties 1, 2 and 4. It is a simple consequence of the Gagliardo-Nirenberg type of estimates of [11] that the spaces defined by (4.3) also satisfy property 3. Property 6 follows from Theorem 2.3 and from the results of [15]. The proof of property 5 is of course the most difficult one. The manifold with corners X and the algebra \mathcal{W} will be constructed in Section 6.

5 Model Case

An easy computation shows that, in coordinates where (3.3) holds, Σ is invariant under the \mathbb{R}^4 action

$$m^{4-3-2}_s(x, y, z, t) = (s^4 x, s^3 y, s^2 z, t), \ s \in \mathbb{R}^+.$$ \hspace{1cm} (5.1)

Let $\mathcal{M}^{4-3-2}(\Omega) = \{ u \in C^\infty(\Omega) : \partial_x^a \partial_y^b \partial_z^c u(0, 0, 0, t) = 0, \ \forall a, b, c \in \mathbb{N}, \ 4a + 3b + 2c \leq r \}$

be the ideal of smooth functions having Taylor series at

$$O = \{(x, y, z, t) \in \Omega; \ x = y = z = 0 \}$$

consisting of terms of homogeneity r or greater with respect to (5.1). A differential operator P is said to have only terms of homogeneity r' or greater, with respect to (5.1), if

$$P : \mathcal{M}^{4-3-2}_r(\Omega) \rightarrow \mathcal{M}^{4-3-2}_{r+r'}(\Omega), \ r \in \mathbb{N}_0, \ r + r' \geq 0.$$ \hspace{1cm} (5.3)

Simple computations show that if $P_0 = D_y^2 - D_z D_x$, then Σ_{reg} is characteristic for P_0, in general one can prove, see [17] that

Proposition 5.1 If P and Σ are as above and (x, y, z, t) are smooth coordinates in which (3.3) holds, then

$$P = a(D_y^2 - D_z D_x) + P_{-5}, \ a \in C^\infty(\Omega), \ |a| > 0.$$ \hspace{1cm} (5.4)

where P_{-5} has only terms of homogeneity -5 or greater with respect to (5.1).
Let Q_0 be the light cone for P_0 over O, then one easily finds that

$$Q_0 = \{(x,y,z) \in \Omega : y^2 - 4xz = 0\}. \quad (5.5)$$

In this model we find that away from O, Q_0 and Σ are tangent to third order along B_0 and intersect transversally along E_0, where

$$B_0 = \{(x,y,z) \in \Omega : x = y = 0\}, \quad (5.6)$$
$$E_0 = \{(x,y,z) \in \Omega : x = \frac{3}{16} z^2, \ y^2 = -\frac{27}{32} z^3\}. \quad (5.7)$$

Fig 3:

As an immediate consequence of Proposition 5.1 one obtains

Proposition 5.2 In the local coordinates of Proposition 5.1 one finds that

$$Q = \{(x,y,z,t) \in \Omega; \ q(x,y,z,t) = 0\}, \quad (5.8)$$

where

$$q = q_0 + q', \ q_0 = y^2 - 4xz, \ q' \in M^4 - 3 - 2(\Omega). \quad (5.9)$$

See [17] for a proof. Now we deduce from it more information about the interaction of Q and Σ.

Proposition 5.3 With P and Σ as in Proposition 5.1, in a small neighborhood of O, there are smooth functions $F_i(z,t), \ 1 \leq i \leq 3$, such that

$$Q \cap \Sigma = B \cup E$$

where

$$B = \{x = x^3 F_1(z,t), \ y = x^2 F_2(z,t)\}, \quad (5.10)$$
$$E = \{x = \frac{3}{16} z^2 + x^3 F_3(z,t), y^2 = -\frac{27}{32} z^3 + z^4 F_4(z,t)\}. \quad (5.11)$$

Away from O, Q and G meet transversally at E and are tangent of third order at B.

XII-8
6 Geometric Resolution

The hypersurfaces Σ and Q will be resolved to normal crossing by iterated quasi-homogeneous blow ups. As a first step we define the 4-3-2 blow up of \mathbb{R}^n along $O = (0,0,0)$.

In \mathbb{R}^3 consider the non-round sphere

$$S_{4-3-2}^2 = \{(\omega_1, \omega_2, \omega_3); \omega_1^4 + \omega_2^6 + \omega_3^{12} = 1\}$$

and the map

$$\beta_1 : X_1 = [0, \infty) \times S_{4-3-2}^2 \longrightarrow \mathbb{R}^3, \quad \beta_1(s, \omega) = (s^4 \omega_1, s^3 \omega_2, s^2 \omega_3).$$

This is surjective and restricts to a diffeomorphism of $X_1 \setminus \partial X_1$ onto $\mathbb{R}^n \setminus K$. Moreover the \mathbb{R}^+ action (5.1) lifts to the standard multiplicative action on the factor $[0, \infty)$.

From these observations above it follows that the lifts of the hypersurfaces and the bicharacteristic B in the model case are:

$$\Sigma^{(1)} = \text{clos}[\beta_1^{-1}(\Sigma \setminus O)] = \{16\omega_1 \omega_3^4 - 4\omega_2^2 \omega_3^3 - 128\omega_1^2 \omega_3^2 + 144\omega_1 \omega_3 \omega_2^2 + 256\omega_3^3 - 27\omega_2^2 = 0\},$$

$$Q_0^{(1)} = \text{clos}[\beta_1^{-1}(Q_0 \setminus O)] = \{\omega_2^2 - 4\omega_1 \omega_3 = 0\}, \quad (6.2)$$

$$B_0^{(1)} = \text{clos}[\beta_1^{-1}(B \setminus O)] = \{\omega_1 = 0, \omega_2 = 0\}. \quad (6.3)$$

Fig 4:
\(\Sigma^{(1)} \) has a cusp singularity at

\[L^{(1)} = \text{clos}[\beta_{1}^{-1}(L \setminus O)] = \{ \omega_1 = -\frac{1}{12} \omega_3^2, \omega_2 = (-\frac{2}{3} \omega_3)^3 \} \]

(6.4)

and a self-intersection at

\[H^{(1)} = \text{clos}[\beta_{1}^{-1}(L \setminus O)] = \{ \omega_1 = -\frac{1}{4} \omega_3^2, \omega_2 = 0 \}. \]

(6.5)

For reasons that will become clear later on, there are two "great circles" on \(S_{3-2-1}^2 \) that will have to be taken into consideration. We define

\[C_1 = \{ \omega_1 = 0, r = 0 \}, \]

(6.6)

\[C_2 = \{ \omega_3 = 0, r = 0 \}. \]

(6.7)

More generally we find, see [17]

Proposition 6.1 In local coordinates in which (3.1) and (5.8) hold the lifts \(\Sigma^{(1)}, Q^{(1)} \) and \(B^{(1)} \) of the hypersurfaces and the bicharacteristic to \(X_1 \) are diffeomorphic, on \(X_1 \), to the model \(\Sigma_0^{(1)}, Q_0^{(1)} \) and \(B^{(1)} \) under a diffeomorphism fixing \(\partial X_1 \) pointwise. Conversely any diffeomorphism preserving (3.1), (5.8) and \(O \), lifts to a diffeomorphism of \(X_1 \) near \(\partial X_1 \) preserving \(\Sigma^{(1)} \) and \(Q^{(1)} \).

The full resolution of the geometry is obtained by blow ups of the three (really six) submanifolds \(L^{(1)}, D_0^{(1)} = Q^{(1)} \cap C_2 \) and \(B^{(1)} \). There are local coordinates \((s, X, Y, T) \) near \(L^{(1)} \) with

\[\Sigma^{(1)} = \{ Y^3 = X^2 \}, \]

(6.8)

near \(D_0^{(1)} \) with

\[Q^{(1)} = \{ X = Y^2 \}, C_2 = \{ X = 0, r = 0 \}. \]

(6.9)

near \(B^{(1)} \) with

\[Q^{(2)} = \{ X = 0 \}, \quad \Sigma^{(1)} = \{ X = Y^4 \}, \quad C_1 = \{ X = Y^2, r = 0 \}. \]

(6.10)

Thus \(\Sigma^{(1)} \) can be resolved to normal crossing by a \(3 - 2 \) blow-up of \(L^{(1)} \), thus set

\[S_{3-2}^1 = \{ (\theta_1, \theta_2) \in \mathbb{R}^2; \theta_1^4 + \theta_2^5 = 1 \} \]

(6.11)
and in local coordinates (6.8) we construct the map

\[\beta_{3-2} : [0, \infty), x [0, \infty), x^2 \to \mathbb{R}^{n-3} \]

\[\beta_{3-2}(s, r, \theta) = (r, s^2 \theta_1, s^2 \theta_2). \]

(6.12)

(6.13)

Fig 5:

It will also be necessary to blow-up \(D^{(1)} \) with homogeneity 2-1-1, thus let

\[S^2_{2-1-1} = \{ (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^2 ; \theta_1^2 + \theta_2^2 + \theta_3^2 = 1 \} \]

(6.14)

and in local coordinates (6.9) construct the map

\[\beta_{2-1-1} : [0, \infty)_R \times S^1_{2-1} \times \mathbb{R}^{n-3} \to X_1 \]

\[\beta_{2-1-1}(s, R, \omega, t) = (R, s^2 \theta_1, s \theta_2, s \theta_3, t). \]

(6.15)

(6.16)

Fig 6:

To resolve \(Q^{(1)}, \Sigma^{(1)} \) and \(C_1 \) to normal crossing it will be more convenient to use four normal blow-ups as in [12]. Since \(Q^{(1)} \) and \(\Sigma^{(1)} \) are tangent to third order at \(B^{(1)} \), if \(C_1 \) did not have to be taken into consideration, one could use a 4-1 nonhomogeneous blow-up to resolve \(Q^{(1)} \) and \(\Sigma^{(1)} \) to normal.

XII - 11
crossing, but C_1 destroys the 4-1 homogeneity.

Fig 7:

Since D^1, L^1 and B^1 are disjoint we can use these maps to replace small neighborhoods of $D_0^{(1)}$, $L^{(1)}$, $B^{(1)}$ by their respective blow ups and so define the manifold with corners X and a blow down map $\beta : X \to X_1$. Let

$$\beta = \beta_2 \circ \beta_1 : X \to \mathbb{R}^n$$

(6.17)

Denote

$$Q^{(2)} = \text{clos}[\beta_2^{-1}(Q^{(1)} \setminus (B^{(1)} \cup D_0^{(1)}))]$$
$$\Sigma^{(2)} = \text{clos}[\beta_2^{-1}(\Sigma^{(1)} \setminus (L^{(1)} \cup B^{(1)}))]$$
$$L^{(2)} = \text{clos}[\beta_2^{-1}(L^{(1)})]$$
$$B^{(2)} = \text{clos}[\beta_2^{-1}(B^{(1)})]$$
$$C_1^{(2)} = \text{clos}[\beta_2^{-1}(C_1 \setminus B^{(1)})]$$
$$C_2^{(2)} = \text{clos}[C_2 \setminus D_0^{(1)}].$$

The circle $C_2^{(2)}$ does not continue into the boundary face introduced by the 2-1-1 blow-up.

The manifold with corners X has twelve boundary hypersurfaces which meet transversally pairs or triples. Let $\rho_L, \rho_B^j, 1 \leq j \leq 8, \rho_D$ and ρ_K be respectively the defining functions of $\beta^{-1}(L)$, each of the eight hypersurfaces of $\beta^{-1}(B), \beta^{-1}(D)$ and $\beta^{-1}(K)$ (These functions are assumed to be extended smoothly past the surfaces they define).
Proposition 6.2 Under the \(C^\infty \) map \(\beta : X \to \mathbb{R}^n \) the lifts
\[
\beta^*(M) = \text{clos}[^{-1}(M \setminus [K \cup L \cup B])], \quad (6.18)
\]
for \(M = Q, \Sigma \) are smooth hypersurfaces that intersect the boundaries of \(X \) transversally. Any \(C^\infty \) diffeomorphism of \(X \) preserving \(\Sigma, Q(1), D_0^{(1)} \) and \(\partial X \) lifts to a \(C^\infty \) diffeomorphism of \(X \) preserving all boundaries and \(\partial X \).

Let \(L^2_c(X) \) be the space of compactly supported square integrable functions in \(X \) with respect to the measure \(\mu = \beta^*(dx dy dz) \). Then the blow down map \(\beta \) gives an isomorphism
\[
\beta^* : L_c(\mathbb{R}^n) \leftrightarrow L^2_c(X). \quad (6.19)
\]
Let \(\mathcal{W} \) be the Lie algebra and smooth vector fields \(W \) on \(X \) satisfying the following properties:
1) \(W \) is tangent to all boundary hypersurfaces.
2) \(W \) is tangent to \(\beta^*(\Sigma) \) and to \(\beta^*(Q) \).
3) \(W \) is tangent to \(C_2^{(2)} \).
4) In local coordinates \((r, s, X)\) in which \(\rho_K = r \) and \(C_1^{(2)} = \{r = X = 0\} \),
\(\mathcal{W} \) is spanned by \(r \partial_r, s \partial_s, X \partial_X, r^2 \partial_X \).

We then define for any integer \(k \)
\[
J_k(\Omega) = \{u \in L^2_c(\Omega) : \beta^* u \in I_k L^2_c(X, \mathcal{W})\} \quad (6.20)
\]
As a consequence of Propositions 6.1 and 6.2 it follows that the spaces \(J_k(\Omega) \) are independent on the choices of coordinates. Moreover from the Gagliardo-Nirenberg type inequalities of [15] one obtains

Proposition 6.3 For any \(k \in \mathbb{N} \), \(J_k(\Omega) \cap L^\infty_\text{loc}(\Omega) \) is a \(C^\infty \) algebra, i.e for any \(f \in C^\infty(\mathbb{R}^n) \) and \(u_i \in J_k(\Omega) \cap L^\infty(\Omega), 1 \leq i \leq m, \)
\[
f(u_1, ..., u_m) \in J_k(\Omega) \cap L^\infty_\text{loc}(\Omega). \quad (6.21)
\]

By writing the generators of \(\mathcal{V}(\Sigma, Q) \) and their lift under the map \(\beta \) it is not hard to see that
\[
J_k(\Omega) \subseteq I_k L^2_\text{loc}(\Omega, \mathcal{V}(\Sigma, Q)) \quad (6.22)
\]
7 The Linear Propagation Theorem

In this section we sketch the proof that the spaces \(J_k(\Omega) \) satisfy

Theorem 7.1 Let \(f \in J_k(\Omega) \), \(f = 0 \) in \(\Omega^- \). Let \(u \in H^1_{loc}(\Omega) \), \(u = 0 \) in \(\Omega^- \), satisfy

\[
Pu = f.
\]

Then \(u, Du \in J_k(\Omega) \).

Lemma 7.1 Let \(\phi \in C_0^\infty(X_1) \), \(\phi = 1 \) in sufficiently small neighborhoods of \(L^{(1)}, E^{(1)} \) and \(H^{(1)} \), \(\phi = 0 \) outside slightly bigger neighborhoods. There exist \(v_1, Dv_1 \in J_k(\Omega) \) such that

\[
\beta_1^*(Pv_1) - \phi \beta_1^* f \in I_kL^2_{loc}(X_1, \partial X_1)
\]

The proof of Lemma 7.1 is based on the fact that the lift of the operator \(P \) by the map \(\beta_1 \) is of real principal type in the totally characteristic sense, see [10], in some directions near \(L^{(1)}, E^{(1)} \) and \(H^{(1)} \). One can then use the calculus of totally characteristic Fourier Integral Operators of [10] to transform the operator, the characteristic surfaces and their intersections into model cases. Lemma 7.1 is then a consequence of the mapping properties of these operators.

Lemma 7.2 Let \(g \in L^2_{loc}(\Omega) \) be such that

\[
\beta^* g \in I_kL^2_{loc}(X, \partial X_1).
\]

Then there exists \(v_2, Dv_2 \in J_k(\Omega) \) such that \(Pv_2 = g \).

The proof of Lemma 7.2 is considerably simpler than the one of Lemma 7.1, it is based on a commutator argument.

7.1 Marked Lagrangian Distributions

Let \(\Lambda \subset T^*\Omega \) be a smooth conic closed Lagrangian and let \(S_2 \subset S_1 \subset \Lambda \) be conic smooth hypersurfaces. Denote

\[
\mathcal{M}(\Lambda)_1 = \{ A \in \Psi^1(\Omega) : a = \sigma^1(A) = 0 \text{ at } \Lambda, \ H_a \text{ tangent to } S_1 \text{ and to } S_2 \}
\]

and define

\[
I_kL^2_c(\Omega, \mathcal{M}(\Lambda)_1) = \{ u \in L^2_c(\Omega) : \mathcal{M}(\Lambda)^j u \subset L^2_{loc}(\Omega), \ j \leq k \}.
\]
A detailed study of these distributions can be found in [8]. As mentioned in Section 2, the marked Lagrangian Distributions were first introduced by Melrose in [9] to study the cusp case.

Let $\Lambda \Sigma = \text{clos} N^* (\Sigma_{reg})$, $\Lambda Q = \text{clos} N^* (Q \setminus O)$. It is well known that $\Lambda \Sigma$ and ΛQ are smooth conic Lagrangian submanifolds of $T^* \mathbb{R}^3$. Let $\Lambda _B = N^* B$ and let $\Lambda _O = T^*_O \mathbb{R}^3$, denote $S_1 = \Lambda \Sigma \cap \Lambda _B = \Lambda Q \cap \Lambda _B = \Lambda \Sigma \cap \Lambda _O$ and $S_2 = \Lambda \Sigma \cap \Lambda _O$. Let $S_3 = \Lambda \Sigma \cap \Lambda Q$ and let $I_k L^2_{ \text{loc}} (\Omega, \mathcal{M}(\Lambda _O)_3)$ be the space of marked Lagrangian distributions to $\Lambda _O$ marked by S_3 and S_2.

In coordinates where (3.1) holds one obtains that $\mathcal{M}(\Sigma)_1$ is the $\Psi^0(\Omega)$ span of

$$V_1 = 4x \partial_x + 3y \partial_y + 2z \partial_z, \quad V_2 = (2xz - \frac{3}{4} y^2) \partial_x - \frac{1}{2} yz \partial_y + 4xz \partial_z, \quad (7.7)$$

$$P_1 = z(\partial_y^2 - \partial_x \partial_z), \quad P_2 = y(\partial_y^2 - \partial_x \partial_z), \quad (7.8)$$

$$P_3 = 4\partial_x^2 + 2z \partial_y^2 + y \partial_y \partial_z, \quad P_4 = (\partial_y^2 - \partial_x \partial_z) \partial_z, \quad (7.9)$$

$$P_5 = (\partial_y^2 - \partial_x \partial_z) \partial_y. \quad (7.10)$$

Times elliptic factors of the appropriate orders. The space of marked Lagrangian distributions to the swallowtail marked by S and S_1 is however too small for our purposes, we shall need a slightly bigger one. Let $P'_S = (3\partial_y^2 - 8\partial_x \partial_z - 12z \partial_x^2) \partial_y^2$ and define the space of “supermarked” Lagrangian distributions to $\Lambda \Sigma \ S$ and S_1 as

$$I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda \Sigma)_1)s = \{ u \in L^2_\mathcal{L}(\Omega) : V_1^{\ell_1} V_2^{\ell_2} P_1^{\ell_3} P_2^{\ell_4} P_3^{\ell_5} u \in H^{-\ell}(\Omega), \quad \ell = \ell_1 + \ell_2 + \ell_3 + \ell_4 + 6\ell_5 \leq 3k \}. \quad (7.11)$$

Where the superscript s is for “supermarked”. The spaces of supermarked Lagrangians was introduced by M. Zworski in [18] where a more detailed description of those spaces is given. One defines the space $I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Sigma)_1)s$ for all integers k by complex interpolation. One can easily show that

$$I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda \Sigma)_1)s \subset I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda \Sigma)_1)s. \quad (7.12)$$

Let

$$M_k(\Omega) = I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda \Sigma)_1)s + I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda Q)_1)s + I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda B)_1)s + I_k L^2_\mathcal{L}(\Omega, \mathcal{M}(\Lambda O)_3)s \quad (7.13)$$

be the space of marked Lagrangian distributions to Σ, Q and B.

XII-15
Lemma 7.3 Let \(g \in J_k(\Omega) \) be such that \(\beta^* g \) is supported away from \(E^{(1)} \), \(H^{(1)} \) and \(L^{(2)} \), then \(g \in M_k(\Omega) \).

The proof of Lemma 7.3 is quite long and consists basically of lifting the generators of each of the components of \(M_k \) under the map \(\beta \). Now we are going to use the same idea as in the case of the cusp, first we prove a propagation theorem for \(M_k(\Omega) \) and then use again the equation to show that the solution is in fact in the smaller space \(J_k(\Omega) \). By commutator methods one can prove

Lemma 7.4 Let \(f \in M_k(\Omega) \), there exist \(v_3, Dv_3 \in M_k(\Omega) \) such that
\[
P v_3 = f.
\]

Then one proves an elliptic regularity type of Theorem which states that

Lemma 7.5 Let \(v, Dv \in M_k(\Omega) \) be such that \(P v \in J_k(\Omega) \). Then
\[
v, Dv \in J_k(\Omega).
\]

When one lifts \(v \in M_k(\Omega) \) under the map \(\beta \) one finds that it may be singular at some circles at the boundary of \(X \), but it turns out that the lift of operator \(P \) under the map \(\beta \) is elliptic in some directions of \(bT^*X \) over those circles and therefore one concludes that if \(v \) satisfies the inclusion \(P v \in J_k(\Omega) \), then \(v \in J_k(\Omega) \). This is the reason why one has to include the great circles in the definition of the spaces, since the hypersurfaces \(\{ z = 0 \} \) and \(\{ z = 0 \} \) are characteristic for \(P_0 \) the lift of the operator \(P \) could not be elliptic on circles \(C_1^{(2)} \) and \(C_2^{(2)} \).

Conclusion of the proof of Theorem 7.1:

Let \(v_1, v_2 \) and \(v_3 \) be as in Lemmas 7.1, 7.2 and 7.3 and \(w = u - v_1 - v_2 - v_3 \).

Then
\[
P w = 0, \ w \in J_k(\Omega) \ \text{in} \ t < 0. \quad (7.14)
\]

Let
\[
\mathcal{M}(\Lambda Q \cup \Lambda \Sigma) = \{ A \in \Psi^1(\Omega) : a = \sigma^1(A) = 0 \ \text{on} \ \Lambda Q \cup \Lambda \Sigma \} \quad (7.15)
\]

Equation (7.14) implies that
\[
w, Dw \in L^2_{loc}(\Omega^-, \mathcal{M}(\Lambda Q \cup \Lambda \Sigma)). \quad (7.16)
\]

By commutator methods one can easily show that
\[
w, Dw \in L^2_{loc}(\Omega, \mathcal{M}(\Lambda Q \cup \Lambda \Sigma)). \quad (7.17)
\]
By the arguments used in the proof of Lemma 7.3 one can show that

\[I_k L^2_{loc}(\Omega, \mathcal{M}(\Lambda Q \cup \Lambda \Sigma)) \subset J_k(\Omega). \quad (7.18) \]

This concludes the proof of Theorem 7.1.

References

DEPARTMENT OF MATHEMATICS
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907.