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Interaction of a free wave with a semicrystaL

Yu. E. Karpeshina

June 23, 1995

The Schrodinger operator with a semiperiodic potential describes a motion
of a particle in a solid body and the influence of a surface on this motion.
It is known that there are three branches of the spectrum corresponding to a
semiperiodic potential. They are: the branch coinciding with the spectrum of
the free operator, the branch coinciding with the spectrum of the whole crystal,
and the branch, corresponding to surface states.

We consider a free wave exp(%(k,;r)) which is incident upon the crystal.
Interacting with the semicrystal reflected and refracted waves arouse. We con-
struct asymptotic formulae for them when the momentum k belongs to a rich
set ^(fc,y,<?) on the sphere |k| = fc, k —)- oo. It is proved that there is no
essential reflection inside the crystal and on the surface when k G ^(fc,V,<?).
Hence, the reflected wave is small and the refracted one is close to the inci-
dent wave exp(i(k,.r)). Constructing more precisely the asymptotic formulae
of the reflected wave, we describe the connection of the asymptotic terms with
the potential in explicit form. This description enable us to determine the po-
tential from the asymptotic expansion of the reflection coefficients in a high
energy region when it is known beforehand that the potential is a trigonometric
polynomial.

Thus, we consider the operator

H+=-A+V^ (1)

in ^2(^)5 n = 2, 3, where V+ is the operation of multiplication by the potential:

V ( ^ - S v^ i^i>0; ^^^-[o i f ^ < o ; (2)

V being a periodic potential, a trigonometric polynomial. We suppose its period
Oi lies on the axis x^ and is orthogonal with the others, namely with 02 when
n == 2 and with 02, 03 when n = 3. For the sake of simplicity we assume that
in the three-dimensional case the periods 02? <^3 are orthogonal, however all
the results are valid also for the case of non-orthogonal periods. Let x\\ be the
projection of the vector x on the plane x^ = 0, namely, x\\ = (^2^3) for n = 3,
x^ = ^2 tor n = 2. Let Q\\ be the elementary cell of the periods in the plane
x^ = 0:

Q\\ = [0,02) x [0,03), when n = 3,
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Q\\ = [0,02), when n = 2.

The potential is periodic in the direction(s) x\\. Following I. M. Gelfand [I],
we consider the family of operators H+(t^) described by formula (1) and the
quasiperiodic boundary condition(s) in the strip Q:

Q = Q\\ x (-00,00)

For the case of n = 3 (and orthogonal periods 03, 03) the quasiperiodic condi-
tions have the form:

^{x + 02,^11) = exp(^2Ct2Wa-^||),
^(a- + 03, <||) = exp(^3Ct3)^(a;, t\\). W

and there are similar conditions for the first derivatives with respect to a;i. The
quasimomentum ^[, t\\ = (<2,<3) parametrizing the conditions varies over the
elementary cell of the dual lattice:

K\\=[0,2Tra^)x[0^a^). (4)

In the^case of n = 2 there is only the first relation of (3) and t\\ = t^ A'(| =
[0,27rci2"1). The spectrum of H+ is the union of the spectra of the operators
H+(t\\). The eigenfunctions of H+ are obtained by the quasiperiodic extensions
of the eigenfunctions of H+(ti\).

We look for a solution ^ (E W^(Q) of the equation H+^ = k2^ in the form:

.?(k. x) = { exp^ ̂  + ̂ (k' x^ x^ ^ °- (^
v ' ' \ 9refr(k,x), X^ 0, V3)

where exp(z(k, a;)) is an incident wave; ki > 0, |k|2 = k2; ̂ efl is a reflected wave,
^refr is a refracted wave. The reflected wave we define as follows. Let a function
^-(P+?£, <[[, x) satisfy the equation -Aip_ = (k2+i£)^_ and the quasiperiodic
conditions (3) when a-i <, 0 for all e in a closed upper neighbourhood of zero
(0 <: e <, £o) and let it depend analytically on ie in this region for any fixed
a-i <, 0. Let ^(A^ze, t\\, x} decay exponentially when a-i —r -oo for all e with a
positive real part. Then the function ̂ efl = </'-(?+z0, t\\, x) is called a reflected
wave, i.e., we call a function ^refl a reflected wave if it can be represented as a
lim<4o^-(^2 + ie,t\\,x), where ^_(P + ie.t^x) is as described above.

The refracted wave we describe as follows. Let a function ^+(k2 + ie,t\\,x)
satisfy the equation (-A+V)^+ = (P+ze)^ and the quasiperiodic conditions
(3) when a-i ^ 0 for all e in a closed upper neighbourhood of zero (0 ^ %£ ^ £o)
and let it depend analytically on ie in this region for any fixed a-i ^ 0. Let
^+(k2 + ie,t^x) decay exponentially when a-i —> oo for all e with a positive
real part. Then the function ^refr = ^+(k2 + i0,t\\,x) is called a refracted
wave, i.e., we call a function ^e/r a refracted wave if it can be represented as a
lim^o^P+ie.^.a;), where ^^.(k2+ie,t\\,x) is as described above. These defi-
nitions mean that the reflected and refracted waves decay simultaneously under
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a dissipation/ while the incident wave does not. The incident wave exp(z(k, x))
satisfies the quasiperiodic conditions (3) with t\\:

t,=k,-27ra^[k,a,/27r], (6)

where i =2,3 when n = 3 and i = 2 when n = 2. Naturally, we look for reflected
and refracted waves satisfying the quasiperiodic conditions with the same t\\.
Suppose k is such that t = k belongs to the nonsingular set for the periodic
potential V [2],[3]. Then, a wave close to exp(z(k,a;)) can propagate inside the
crystal. Therefore, the continuity conditions on the surface can be satisfied by
these waves with an accuracy to o(l) {k —> oo), the reflected wave being equal
to zero. The question arises: is this approximate solution close to the accurate
one (5), satisfying the continuity conditions. To answer this question, first of
all we clear out whether reflected and refracted waves are defined uniquely. In
fact, suppose the equation H^ = k2^ has a smooth solution ^surf which is
a reflected wave for x^ < 0 and a refracted wave for x^ ^ 0. This solution is
called a surface state. Obviously, in this case the reflected and refracted waves
in (5) are not uniquely determined. However, the nondecaying component of the
reflected and refracted waves are uniquely determined, because surface states
exponentially decay as x^ —>' ±00. Note, that the operator (H^(k\\) — z)~1 has
a pole at the point z = k2 in the case of a surface state. In the two and three-
dimensional situations surface states can exist in a high energy region, while in
the one-dimensional situation they can exist only for sufficiently low energies.

It looks that the surface of the crystal can essentially influence the nonde-
caying part of the reflected wave even when there is no surface state. This takes
place when there exists a solution of the equation H^ == P'0, which can be
approximated with a good accuracy by a reflected and refracted wave in the
sense that the error in the continuity conditions on the surface is small. We call
such a solution a quasisurface state. A quasisurface state can influence strongly
the asymptotics of the reflected and refracted waves. Unlike the surface state it
can also influence the nondecaying component of the reflected wave. It is easy
to see that all the points close to surface states are quasisurface states. In the
one-dimensional situation there are only these trivial cases: there are no qua-
sisurface states not being in a vicinity of surface states. The similar situation is
in the case of separable variables in the two and three-dimensional spaces. How-
ever, it seems that quasisurface states can exist separately from surface states
in the case of nonseparated variables. We suppose that there corresponds a pole
of the resolvent on the non-physical sheet in a vicinity of the point z = k2 to
such states.

We are not going to describe surface and quasisurface states here. Our aim
is to describe a nonsingular set \{k^ V, 6) of k on the sphere Sk == { |k| == k} for
which the influence of the surface and quasisurface states is weak, i.e., the re-
flected and refracted waves have regular asymptotics determined by a segment
of the perturbation series for the resolvent. We can show that it takes place

10f course, the relations fci > 0, e > 0 are not fundamental. It is important only that k\, e
have the same sign. The case A * i < 0 , s : < 0 i s complexly conjugate for the case k^ > 0, e > 0.
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when there are no surface and quasisurface states with quasimomentum k\\ in
a vicinity of the point k2. ^From the geometrical point of view the situation in
the two-dimensional case is relatively simple. In order to exclude all the surface
and quasisurface states it suffices to delete from Sk only the nonsingular set
for the periodic part of the potential V+ [2]. The situation becomes more com-
plicated in the three-dimensional case. To exclude the surface and quasisurface
states in the three-dimensional situation one has to delete not only the singular
set of the periodic part of V+ [3] 5 but also some additional set corresponding
namely to surface and quasisurface states. We prove that the reflected wave is
asymptotically small and the refracted wave is close to the incident wave when
k belongs to the nonsingular set for the semicrystal ^(fc, y,<5). However, this
weak asymptotic is not able to give an information about the potential. To ob-
tain the information about the potential we describe the reflected and refracted
waves more precisely. First we consider the functions satisfying the Helmholtz
equation —A^ = k2^ and the quasiperiodic conditions in [[-directions with the
quasimomentum h\. It is clear that this set contains the functions

^{k\ k\\ + p^ (0), x) = exp(z(A:|| + p^ (0), x^) ± z^/fc2 - \k^ + p,,,(0)|2^),

911 e ̂ \ (7)
where Im^T > 0, p^(0) G 7?71-1,

27Tg2 271-93
Pgn(0)=(——,——)

" ^2 ^3

in the three-dimensional situation and

27rg2
P,,(0)=-^-

in the two-dimensional case. Obviously, the function ^(P,^] + pq^(0)^x) de-
pends analytically on k2 in the complex plane with the cut along the semiaxis
k2 < \k\\ +pgn (0)|2. We assume fci to be positive for the incident wave. Note that

exp(z(k^))=^(^fc||^). (8)

Considering that ^^/k2 + ie — \k\\\2 > 0, when e > 0, we see that the functions
^°{k2 + z'£,fc|| + pq.{0)^x) increase exponentially when x^ —> —oo and decays
exponentially when x\ —> +00. Therefore, they are not reflected waves. Con-
versely, the functions ^°_{k2 + ie^k\\ + pgJO),^) increase when x-i —^ +00 and
decays when x\ —^ —oo. Therefore they are reflected waves. Thus, we look for
the reflected wave as a linear combination of the ^o"(k2, k\\ + pg,i(0), x):

(̂̂ ||̂ ) = E ^o~(^||+^ii(0)^). (9)
qCZ71-1

where Oq,, are the reflection coefficients. One has to choose the reflection and
refraction waves in such a way that the continuity conditions at the plane x^ = 0
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for the corresponding eigenfunctions and its derivative with respect to x^ are
fulfilled.

Let t belong to the nonsingular set for the periodic potential V. Then the
wave close to exp{i(k,x)) can propagate in the crystal [2, 3]. Therefore, the
continuity conditions can be satisfied with an accuracy to 0{k). Suppose there
exists not only a wave close to exp(z(k, x)) = ̂ {k2, k\\,x), but also there exist
waves close to ̂ (k2, k\\ +pq^{0), x) when \q\\\ < k96. In this case we can satisfy
the continuity conditions with an accuracy to O^'^^o"1). Then we must take
care of the small error in the continuity conditions not to cause a considerable
errow in the reflection coefficients. That is, one has to eliminate the situation
when the incident wave interacts with the surface and quasisurface states. We
construct the nonsingular set ^(^V,^), which satisfies all these conditions.

First, in the two-dimensional case we show that the wave ^(k.a:), which
propagates inside the crystal and close to the free wave exp(z(k, x)}^ admits the
following asymptotic expansion on the surface of the crystal:

___ 00

^(k^)|,^o=exp(z(k^))((2z^)- l+ ^ exp(z(p,||(0)^)) ^(A,),,,,o, (10)
j'nez"-1 r=i

(A.L,,,o = ̂  f. ^ E [(WT) - z^VYWr) - z^od^ (11)
Z7TZ J C ( k ^ ) ̂ ^

where C(k\\) is the circle of radius k'2'26 around the point 7-1 = Jk2 — fc2 The
derivative of the eigenfunction can be determined analogously:

9^(k,x)9xz \x,=o=

00

exp(z(k^))(l/2+ ^ exp(z(p,||(0)^))^(B,),,,^,,^,,, (12)
j^ez"--1 r=i

l^h'll+m^mij =: (13)

{——— i. , E (T! + 27TJ1 + 27rmi)[((^o(r) - z^VYWr) - z^^dr,.
^7Via\ JC(m^) ̂ ^

In the case of n = 3 a similar expansion is valid (we have to replace V by W
and Ho by H in the formulae for Ar and Br [3]).

If t belongs to the nonsingular set \(k, 6, V\ the expansions (11) and (13)
are valid not only for ^>(k,x) but also for ^(kq ,x},q\\ G Z71"1, | q\\ \< k96,

^-^ll+^W.^-lfcii+^^O)!2)1/2). (14)

Therefore one can introduce the matrices Ajr and Bjr-, where | j' \<^ k6 ̂ \ r \< k6.
Let us consider these matrices as infinite ones, assuming Ajm and Bjm to be
zero for | j | or [ r \ being more than k6.

Let us introduce the diagonal matrix K:

KW= ( ^ - I ^ I I + ^ ^ O ) |2)1/2. (15)
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This matrix is invertable when t e \{k, 8, V). Let

N(k) N(k)

A = ̂  A, B = ̂  B^ N(k) = [A;9^-1], (i6)
r=l r=:l

A^)
C' = KA + B = ̂  Cr.

r=l

Now we formulate the asymptotic expansion theorem for the reflected wave
coefficients.

Theorem 1 . If t is in the (A--"+1-25)-neighbourhood of x^k,6,V) for a suf-
ficiently large k,k > W6), then the following asymptotic expansion for
^mii+j'K.mii+gn ?S Valid:

l̂l+^mii+gii == <|]+,)(,m|(+g]| + O^"^""1), (17)

îi+.ii,mii+g|i = m-\C - 2KA){I + C•)-l(2/<). (18)

The asymptotic expansion ( 1 7 ) is valid for A, C, since the following estimates
for A and C are fulfilled:

||J<A,||i < k-^,

\\Cr\\ <K-^\ C=<(n,^)>0. (19)

We can also obtain the refraction coefficients. The asymptotic formulae for both
the reflection and refraction coefficients are infinitely differentiable with respect
to k.

The main aim of Theorem 1 is just to justify the asymptotic expansion.
Using this theorem, we obtain a simpler asymptotic formula for the reflection
coefficients. To describe it let us introduce some new notations. Let Vq (a;i) be
the Fourier coefficients of V with respect to x\\:

^11 = wfv(x}exP{i{P<l\\W.x\\))dx\\,

w == a~^ when n == 2,

w = a^c^1 when n = 3.

Let ^(^(O) be the vector whose elements are the derivatives of the functions
Vy^xi) of r order with respect to a-i at the point a-i = 0:

V^O),,, = (9^/9x^(0).

Theorem 2 . If t is in the (A-"+1-25) -neighbourhood of x{k,8,V} for suf-
ficiently large k,k > ko(V,6), then the following asymptotic expansion for
^mn+j^mii+gii, | <?|| [< k6 is valid:

Q'm|]+^,m||+,,] = o'̂ ||+J|l,m|]+,„ + O^-^o"1 ), (20)
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00

^ll+J'll^ll+gjl ={.ZK3\\3\\) Z^(^^)^||+J||,m||+g||(Aj||J|| + I^q^q n ) 7 ~\ (21)
r=0

wAere A^^, anc? A^^,, are the elements of the matrix K (see ( 1 5 ) ) , Kq^ w k,
^r are given by the formula:

(^r)m||+j||,mn+g|| = (22)

^^(O),,-.,, + (^(^O)...̂ ^^)).,,̂ ,̂,̂ ,

z^ere (̂  i5 a polynomial matrix-function of V(0),..., Y^'"1^), ^o = O^y. =
(9(1)^ wAen fc —> oo.

It is easy to see that

^ =^(^o,...^r-l).

Furthermore, one can obtain the vectors V^^O) by the recursive procedure:

^ l̂l = ̂ (^ll+^^ll2^^ (^11^11 + ̂ ii). (23)

^^(O).,, = (24)

-^^(^^^^^(^^(^ii.ii + ̂ ii^ii)2 - m,i(̂ ,p,, + A-,,,,,,) - <M^(O)),
and so on. We use these relations for the solution of the inverse problem.
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