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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

The Hartree equation for infinite quantum systems
Julien Sabin

Abstract
We review some recent results obtained with Mathieu Lewin [21] con-

cerning the nonlinear Hartree equation for density matrices of infinite trace,
describing the time evolution of quantum systems with infinitely many parti-
cles. Our main result is the asymptotic stability of a large class of translation-
invariant density matrices which are stationary solutions to the Hartree equa-
tion. We also mention some related result obtained in collaboration with Ru-
pert Frank [13] about Strichartz estimates for orthonormal systems.

1. Introduction
The Hartree equation is a type of nonlinear Schrödinger equation of the form{

i∂tγ = [−∆x + w ∗ ργ, γ], t ∈ R, x ∈ Rd,
γ|t=0 = γ0,

(1.1)

where γ = γ(t) is a bounded, self-adjoint, operator on L2
x(Rd), w : Rd → R is

a smooth, fast decaying interaction potential, and ργ : Rd → R is the density
associated to γ, formally defined as ργ(x) = γ(x, x) for all x ∈ Rd, where γ(·, ·)
denotes the integral kernel of γ. This equation models the time evolution of a non-
relativistic quantum system with density matrix γ0 at the initial time, in which the
particles are interacting through the potential w. In the case Tr |γ0| < ∞, it can
be derived from many-body quantum mechanics [2, 1, 10, 14, 3] in a mean-field or
semi-classical limit. The global well-posedness theory in the energy space (that is,
for initial data such that γ0 > 0 and Tr(1 − ∆)γ0 < +∞) has been studied in the
works [5, 6, 9, 27].

In [19, 21] we addressed the question of the well-posedness of (1.1) and of the large
time behaviour of its solutions, in the case where Tr |γ0| = +∞, that is for quantum
systems with an infinite number of particles. This context was strongly motivated
from the study of the dynamics of (1.1) around a class of stationary solutions which
are translation-invariant. Indeed, consider any density matrix of the form

γref = g(−i∇),
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with g ∈ (L1∩L∞)(Rd,R), i.e. γref is the Fourier multiplier by the function g. Then,
the density of this operator satisfies

ργref (x) = 1
(2π)d

∫
Rd
g(ξ) dξ, ∀x ∈ Rd,

and hence is uniform in space. In particular, the commutator [−∆ + w ∗ ργref , γref ]
vanishes and γ(t) ≡ γref is a stationary solution to (1.1). Notice that the operator
γref is never compact if g 6= 0 and thus is a first example of an infinite-trace solution
to (1.1). It represents a quantum system invariant by translation, and there are
several physical examples of such states:
• Fermi sea at zero temperature and chemical potential µ > 0:

g(ξ) = 1(0 6 |ξ|2 6 µ) and γref = 1(−∆ 6 µ); (1.2)

• Fermi gas at positive temperature T > 0 and chemical potential µ ∈ R:

g(ξ) = 1
e(|ξ|2−µ)/T + 1 and γref = 1

e(−∆−µ)/T + 1; (1.3)

• Bose gas at positive temperature T > 0 and chemical potential µ < 0:

g(ξ) = 1
e(|ξ|2−µ)/T − 1 and γref = 1

e(−∆−µ)/T − 1; (1.4)

• Boltzmann gas at positive temperature T > 0 and chemical potential µ ∈ R:
g(ξ) = e−(|ξ|2−µ)/T and γref = e(∆+µ)/T . (1.5)

We are interested in the dynamics of (1.1) around these stationary states, that
is for initial data of the form γ0 = γref + Q0, where Q0 is small (for instance finite-
rank). In particular, since γref is not trace-class, the operator γ0 is not trace-class
either and we are naturally lead to study (1.1) for non-trace-class initial data. The
dynamics of infinite quantum systems in interaction has already been studied by
Hainzl, Lewin, and Sparber [16] in a relativistic setting, and by Cancès and Stoltz
[7] for crystals. Both these works show the global well-posedness of their respective
equations in the energy space, and in particular leave open the question of the large
time behaviour of the solutions.

In a first work [19], we showed the global existence of solutions to (1.1) around a
large class of stationary states γref , in the adequate energy space. The operator γref
has not only an infinite trace, it also has an infinite (total) energy, which is defined
as

Etot(γ) = Tr(−∆)γ + 1
2

∫
Rd

∫
Rd
ργ(x)w(x− y)ργ(y) dx dy.

Hence, a perturbation of the form γ0 = γref +Q0 (with Q0 finite-rank for instance)
also has an infinite (total) energy. The total energy Etot, which is formally conserved
along the flow of (1.1), is thus useless regarding the global well-posedness of (1.1).
Instead, the correct object to consider is the relative energy with respect to γref . In
[19], we show the global well-posedness of (1.1) for perturbations of γref with finite
relative energy with respect to γref . At positive temperature, the relative energy uses
the notion of relative entropy, whose definition for general γref has been given in a
companion work [20]. Finally, let us mention that a crucial argument in the proof
of global well-posedness is the use of Lieb–Thirring inequalities at positive density,
developed by Frank, Lewin, Lieb and Seiringer in [11].
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In [21], we studied the long time behaviour of solutions (1.1) with γ0 close enough
to γref . In particular, we show that γ(t)→ γref a t→∞ in some sense, meaning that
the stationary states γref are asymptotically stable under the flow of the nonlinear
Hartree equation. The goal of this review article is to explain the difficulty of such
a result and the strategy of its proof.

The article is organized as follows. In Section 2 we explain how to describe the long
time behaviour of small solutions to (1.1) in the simpler case γref = 0, Tr |γ0| <∞. In
Section 3, we discuss dispersion outside the trace-class (that is, for infinite quantum
systems), using a new family of Strichartz estimates. Finally, in Section 4, we state
our main result (Theorem 4) and give elements of its proof.

2. Dispersion of small solutions in the trace-class without
background

In this section, we explain how to describe the long time behaviour of small solutions
to (1.1) with Tr |γ0| <∞. In particular, the background here is trivial: γref = 0. We
use well-known methods in dispersive PDEs involving Strichartz estimates, and we
explain the difficulty of their generalization to the infinite-trace setting.

2.1. Rank-one case
We begin with the case where γ0 is a rank-one operator: we may write1 γ0 = |u0〉〈u0|,
with u0 ∈ L2

x(Rd). In this very specific setting, Equation (1.1) is equivalent to{
i∂tu = (−∆x + w ∗ |u|2)u, t ∈ R, x ∈ Rd,
u0 = u0 ∈ L2

x(Rd). (2.1)

This means that the solution γ(t) to (1.1) stays of rank one for all times, with
γ(t) = |u(t)〉〈u(t)|, where u satisfies (2.1). The study of the large-time behaviour of
solutions to (2.1) is a very well-known topic in dispersive PDEs, and we have the
following result.

Proposition 1 (Dispersion of small rank-one solutions without background). Let
d > 2 and w ∈ Ld/2x (Rd) ∩ L∞x (Rd). Then, there exists ε0 > 0 such that for all
u0 ∈ L2

x(Rd) with ||u0||L2
x
6 ε0, there exists a unique u ∈ C0

t (R, L2
x(Rd)) solution to

(2.1) which verifies u ∈ L4
t (R, L2d/(d−1)

x (Rd)). Furthermore, there exist u± ∈ L2
x(Rd)

such that
lim
t→±∞

∣∣∣∣∣∣u(t)− eit∆u±
∣∣∣∣∣∣
L2
x

= 0. (2.2)

In particular, we see that for initial data u0 sufficiently close to 0, the solution
behaves like a free solution for large times and thus converges weakly to 0 as t→∞.
We thus have

γ(t) = |u(t)〉〈u(t)| −−−⇀
t→∞

0 = γref ,

which is the result we anounced, in the special case γref = 0, rank(γ0) = 1.

1Here and everywhere, we use Dirac’s notation |u〉〈v| for the operator f 7→ 〈v, f〉u. Our scalar
product is always anti-linear with respect to the left argument.
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Proof of Proposition 1. The proof uses techniques which are now standard in non-
linear dispersive PDEs, based on the use of Strichartz estimates. First of all, the
fact that w ∈ L∞x (Rd) implies very easily that for any u0 ∈ L2

x(Rd), there exists a
unique u ∈ C0

t (R, L2
x(Rd)) solution to (2.1). Here, the solution is globally defined

in time thanks to the conservation of the L2
x-norm: ||u(t)||L2

x
= ||u0||L2

x
for all t. To

prove dispersion for small solutions, we write the Duhamel formulation of (2.1),

u(t) = eit∆u0 − i
∫ t

0
ei(t−s)∆(w ∗ |u(s)|2)u(s) ds,

and use Strichartz estimates [25, 17] to infer that∣∣∣∣∣∣eit∆u0

∣∣∣∣∣∣
L4
tL

2d/(d−1)
x

. ||u0||L2
x
,∣∣∣∣∣∣∣∣∫ t

0
ei(t−s)∆(w ∗ |u(s)|2)u(s) ds

∣∣∣∣∣∣∣∣
L4
tL

2d/(d−1)
x

.
∣∣∣∣∣∣(w ∗ |u|2)u

∣∣∣∣∣∣
L

4/3
t L

2d/(d+1)
x

, (2.3)

Young’s inequality implies that∣∣∣∣∣∣(w ∗ |u|2)u
∣∣∣∣∣∣
L

4/3
t L

2d/(d+1)
x

. ||w||
L
d/2
x
||u||3

L4
tL

2d/(d−1)
x

,

showing that for all T > 0,
||u||

L4
t ([−T,T ],L2d/(d−1)

x (Rd)) . ||u0||L2
x

+ ||u||3
L4
t ([−T,T ],L2d/(d−1)

x (Rd)) .

A standard continuation argument then shows that, for ε0 > 0 small enough, there
exists C(ε0) > 0 such that for all ||u0||L2

x
6 ε0 and for all T > 0, we have

||u||
L4
t ([−T,T ],L2d/(d−1)

x (Rd)) 6 C(ε0).

As a consequence, we infer that u ∈ L4
t (R, L2d/(d−1)

x (Rd)). This implies that the
solution scatters as t→ ±∞, again by standard arguments. �

2.2. General case
We now see that the previous method extends in a straightforward manner to the
case γref = 0, Tr |γ0| <∞. In this case, we may write the spectral decomposition of
γ0:

γ0 =
∑
j

λj|uj,0〉〈uj,0|,

where (uj,0)j is an orthonormal system in L2
x(Rd) and (λj) ⊂ R is such that Tr |γ0| =∑

j |λj| <∞. Then, Equation (1.1) is equivalent to the following system of coupled
equations: {

i∂tuj = (−∆ + w ∗ (∑k λk|uk|2))uj,
(uj)|t=0 = uj,0,

j ∈ N. (2.4)

This means that for all times t, the solution γ(t) to (1.1) can be written as
γ(t) =

∑
j

λj|uj(t)〉〈uj(t)|,

where (uj)j = (uj(t))j is solution to (2.4) (notice that this system remains orthonor-
mal for all times t). The operator γ(t) has the same eigenvalues as the initial data
γ0, only its eigenvectors change with time. Even though the system (2.4) looks more
complicated that (2.1), we can prove a result analogue to Proposition 1 in this case.
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Proposition 2 (Dispersion of small trace-class solutions without background). Let
d > 2 and w ∈ (Ld/2x ∩ L∞x )(Rd). Then, there exists ε0 > 0 such that for all γ0 with
Tr |γ0| 6 ε0, there exists a unique system (uj)j ⊂ C0

t (R, L2
x(Rd)) solution to (2.4)

which verifies ∑k λk|uk|2 ∈ L2
t (R, Ld/(d−1)

x (Rd)). Furthermore, there exist (uj,±)j ⊂
L2
x(Rd) such that

∀j ∈ N, lim
t→±∞

∣∣∣∣∣∣uj(t)− eit∆uj,±∣∣∣∣∣∣
L2
x

= 0. (2.5)

Again, the fact that each uj(t) behaves like a free solution for t→ ±∞ implies in
particular that

γ(t) =
∑
j

λj|uj(t)〉〈uj(t)| −−−−⇀
t→±∞

0 = γref ,

which is the expected result in the case γref = 0, Tr |γ0| <∞.

Proof of Proposition 2. Again, the global well-posedness in L2
x(Rd) follows from the

fact that w ∈ L∞x (Rd). It is thus enough to show that∑
k

λk|uk|2 ∈ L2
t (R, Ld/(d−1)

x (Rd))

for small enough initial data. We can show this using the triangle inequality,∣∣∣∣∣
∣∣∣∣∣∑
k

λk|uk|2
∣∣∣∣∣
∣∣∣∣∣
L2
tL

d/(d−1)
x

.
∑
k

|λk| ||uk||2L4
tL

2d/(d−1)
x

.
∑
k

|λk|+
(∑

k

|λk| ||uk||2L4
tL

2d/(d−1)
x

)3

,

where in the last line we used the Duhamel formulation for each uk and Strichartz
estimates, as in the proof of Proposition 1. By a continuation argument, we get the
result if ∑k |λk| 6 ε0 with ε0 > 0 small enough. �

The previous proof shows that the rank-one techniques extend to the trace-class
case essentially through the triangle inequality. However, if ∑k |λk| = +∞, the
previous proof does not work at all. Moreover, we implicitly used that∑k |λk| < +∞
to define the density ργ = ∑

k λk|uk|2: it is a well-defined L1
x-function by the triangle

inequality and the fact that the (uk) are normalized:

||ργ||L1
x
6
∑
k

|λk| ||uk||2L2
x

=
∑
k

|λk|.

When ∑k |λk| = +∞, the definition of the density ∑k λk|uk|2 is not clear. The goal
of the next section is to introduce the tools used to overcome these difficulties.

3. Strichartz estimates outside the trace-class

In this section, we discuss Strichartz estimates for initial data outside the trace-class,
which were proved by Frank, Lewin, Lieb, and Seiringer [12], and later extended by
Frank and the author [13].
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3.1. Strichartz estimates for orthonormal systems
As we saw in the previous section, the meaning of (1.1) for γ outside the trace-class
is not clear, already because the density ργ is not a well-defined object. Thus, before
trying to solve (1.1) outside the trace-class, it is natural to study the free equation
in this setting. We look at solutions to{

i∂tγ = [−∆, γ],
γ|t=0 = γ0,

(3.1)

with typically Tr |γ0| = +∞. The solution to (3.1) can be written as

γ(t) = eit∆γ0e
−it∆.

If γ0 is not trace-class but still compact, we may write its spectral decomposition

γ0 =
∑
j

λj|uj,0〉〈uj,0|,

for some orthonormal system (uj,0)j in L2
x(Rd). This implies that

γ(t) =
∑
j

λj|eit∆uj,0〉〈eit∆uj,0| ,

and we are interested in giving a meaning to its density

ργ(t) :=
∑
j

λj
∣∣∣eit∆uj,0∣∣∣2 .

The key result is the following [12, Thm. 1], [13, Thm. 8].

Theorem 1 (Strichartz inequalities for orthonormal systems). Let d > 1, p, q > 1
such that

2
p

+ d

q
= d, 1 6 q < 1 + 2

d− 1 .

Then, for any (possibly infinite) orthonormal system (uj,0)j ⊂ L2
x(Rd) and for any

set of coefficients (λj)j ⊂ C, we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

λj
∣∣∣eit∆uj,0∣∣∣2

∣∣∣∣∣∣
∣∣∣∣∣∣
Lpt (R,Lqx(Rd))

.

∑
j

|λj|
2q
q+1


q+1
2q

. (3.2)

Remark 3. Theorem 1 was proved for the first time in [12], for the range 1 6 q 6
1 + 2/d. It was extended to the range 1 6 q < 1 + 2/(d− 1) in [13].

Remark 4. Theorem 1 shows that the density ργ(t) is a well-defined object in LptLqx,
if ∑j |λj|2q/(q+1) < ∞. When q > 1, we have 2q/(q + 1) > 1 and it is possible that∑
j |λj| = +∞ while ∑j |λj|2q/(q+1) <∞. Notice that for a given t, the density ργ(t)

may not be well-defined; it belongs to Lqx only for almost every t. The key input to
avoid using the triangle inequality is the orthonormality of the (uj,0)j.

Remark 5. Theorem 1 also gives information about the dispersive properties of the
free evolution of infinite quantum systems: for Tr |γ0| = +∞, the density ργ(t) is
“small” for large t in the sense that it belongs to Lpt (R) (with values in Lqx(Rd)).
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Remark 6. For a given p, q in the range given by Theorem 1, the exponent 2q/(q+1)
on the right side of (3.2) is optimal: the inequality is wrong if we replace 2q/(q+ 1)
by some α > 2q/(q + 1). This was proved in [12]. They also showed that if (3.2)
holds, then one must have q < 1 + 2/(d− 1). In this sense, Theorem 1 is optimal.

Remark 7. When d > 3 for instance, Strichartz estimates for a single function are
valid on a larger set of exponents, namely for 1 6 q 6 1 + 2/(d− 2), as was proved
by Keel and Tao [17]. When 1 + 2/(d − 1) 6 q 6 1 + 2/(d − 2), an inequality of
the type (3.2) is still true, up to replacing the exponent 2q/(q+ 1) on the right side
by some α ∈ [1, 2q/(q + 1)). The case α = 1 corresponds to applying the triangle
inequality to the left side of (3.2) and using the Strichartz estimates for a single
function. The question of the optimal α in this range remains open, however one
can show that at the endpoint q = 1 + 2/(d − 2), α = 1 is optimal: the triangle
inequality is the best we can do at the endpoint.

Remark 8. One can formulate Theorem 1 only in terms of the operator γ(t). To do
so, we define the Schatten space of order α > 1 as

Sα := {A ∈ K(L2(Rd)), Tr |A|α <∞},
where K(L2(Rd)) denotes the space of all compact operators on L2(Rd). The space
Sα is endowed with the norm

||A||Sα := (Tr |A|α)1/α .

Using these notations, Theorem 1 is equivalent to the fact that for all γ0 ∈ Sα, we
have the inequality ∣∣∣∣∣∣ρeit∆γ0e−it∆

∣∣∣∣∣∣
Lpt (R,Lqx(Rd))

. ||γ0||Sα . (3.3)

In the context of the free equation, the picture is now clear: Strichartz estimates
allow us to give a meaning to the density of solutions which are not trace-class,
and these operators disperse in the sense that their density belongs to some Lpt (R).
In Section 3.4, we will use the Strichartz estimates to extend these results to the
nonlinear case of Equation (1.1), still in the context without background. Before
doing so, we explain some elements of the proof of Theorem 1 in [13] (Section 3.2),
and we also make a link between Theorem 1 and the Strichartz estimates for the
kinetic transport equation (Section 3.3).

3.2. Elements of proof
The proof of Theorem 1 given in [13] relies on the proof used in the original paper
of Strichartz [25]. By the TT ∗ method, the fact that eit∆ is bounded from L2

x to
LptL

q
x is equivalent to the fact that the operator ei(t−s)∆ (seen as an operator in both

space and time variables) is bounded from Lp
′

t L
q′
x to LptLqx. To prove it, Strichartz

uses a complex interpolation method: he introduces an analytic family of operators
(Gz) depending on a complex parameter z belonging to a strip in the complex plane
−1− d/2 6 Re z 6 0. This family satisfies three properties:

• The operator ei(t−s)∆ is an element of this family: G−1 = ei(t−s)∆;

• For all η ∈ R, ||Giη||L2
t,x→L2

t,x
. C(η);
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• For all η ∈ R,
∣∣∣∣∣∣G−1−d/2+iη

∣∣∣∣∣∣
L1
t,x→L∞t,x

. C(η).

Here, the function η 7→ C(η) has at most an exponential growth at infinity. The
family (Gz) is built such that for all z, Gz is a (space-time) Fourier multiplier by a
function (ω, ξ) 7→ Gz(ω, ξ). Hence, the last two properties follow from the estimates

∀η ∈ R, ||Giη||L∞
ω,ξ
. C(η),

∣∣∣∣∣∣Ǧ−1−d/2+iη

∣∣∣∣∣∣
L∞t,x
. C(η),

where Ǧ denotes the inverse Fourier transform of G. Using Stein’s interpolation
theorem [23], Strichartz infers from these three properties that G−1 = ei(t−s)∆ is a
bounded operator from L

2(d+4)/(d+4)
t,x to L2+4/d

t,x , which is equivalent to the bounded-
ness of eit∆ from L2

x to L2+4/d
t,x . The starting point of the strategy of [13] is to notice

that (3.2) is equivalent to the estimate∣∣∣∣∣∣W (t)ei(t−s)∆W (s)
∣∣∣∣∣∣
S

2q
q−1 (L2

t,x)
. ||W ||2

L

2p
p−2
t L

2q
q−2
x

, (3.4)

for all W ∈ L
2p
p−2
t L

2q
q−2
x . This last estimate is shown by complex interpolation, using

again three properties:

• W (t)G−1W (s) = W (t)ei(t−s)∆W (s);

• For all η ∈ R,
∣∣∣∣∣∣W (t)GiηW (s)

∣∣∣∣∣∣
L2
t,x→L2

t,x

. C(η) ||W ||2L∞t,x ;

• For all η ∈ R,
∣∣∣∣∣∣W (t)G−1−d/2+iηW (s)

∣∣∣∣∣∣
S2(L2

t,x)
. C(η) ||W ||2L2

t,x
.

Each of these properties follow from their corresponding one proved by Strichartz.
For the first two, this is obvious. To prove the last one, we estimate the Hilbert–
Schmidt norm in the following fashion∣∣∣∣∣∣W (t)G−1−d/2+iηW (s)

∣∣∣∣∣∣2
S2(L2

t,x)

=
∫
R

∫
R

∫
Rd

∫
Rd
|W (t, x)|2

∣∣∣Ǧ−1−d/2+iη(t− s, x− y)
∣∣∣2 |W (s, y)|2 dx dy ds dt

6 C(η) ||W ||2L2
t,x
.

Using a variant of Stein’s interpolation theorem in Schatten spaces, we deduce (3.4)
for q = 2 + 4/d. The proof for general q’s is done by modifying a little bit the proof
of Strichartz: instead of using the estimate

∀η ∈ R, ∀(t, x) ∈ R× Rd,
∣∣∣Ǧ−1−d/2+iη(t, x)

∣∣∣ . C(η),

we use a more general estimate which is implicitly present in the article of Strichartz:

∀η ∈ R, ∀(t, x) ∈ R× Rd,
∣∣∣Ǧ−λ0+iη(t, x)

∣∣∣ . C(η)|t|λ0−1−d/2,

valid for all λ0 > 1. We conclude in the same fashion, except that we estimate
the Hilbert–Schmidt norm using the Hardy–Littlewood–Sobolev inequality. Notice
that this method can be used to show that the original article of Strichartz actually
contains the full range of Strichartz estimates (and not only the one for p = q as it
is stated in his paper), except for the Keel–Tao endpoint.
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In [13], we emphasize the generality of our method: if some functional inequality
is proved by interpolating a L2 → L2-bound with a L1 → L∞-bound, then it au-
tomatically implies a more general inequality for systems of orthonormal functions.
We applied it to several contexts including the restriction estimates to hypersurfaces
of Stein [24] and Strichartz [25] and the uniform Sobolev inequalities of Kenig, Ruiz,
and Sogge [18].

3.3. Link with Strichartz estimates for the transport equa-
tion

In this section we explain briefly the link between Theorem 1 and the Strichartz
estimates for the kinetic transport equation{

i∂tf + 2v · ∇xf = 0, t ∈ R, x ∈ Rd, v ∈ Rd,
ft=0 = f0,

(3.5)

where f = f(t, x, v) > 0 is a phase-space distribution. Equation (3.5) also enjoys
Strichartz estimates, which are expressed in terms of the density of the solution f ,

ρf(t)(x) =
∫
Rd
f(t, x, v) dv, ∀x ∈ Rd,

by the estimate ∣∣∣∣∣∣ργ(t)

∣∣∣∣∣∣
LptL

q
x

. ||f0||
L

2q
q+1
x,v

, (3.6)

for all d, p, q > 1 satisfying 2/p+d/q = d and q < 1+2/(d−1). These estimates were
proved by Castella and Perthame [8] and Keel and Tao [17]. The similarity with (3.2)
is striking: it is valid for the same range of exponents, and the inequalities themselves
are very similar, up to identifying ργ(t) with ρf(t) and the Schatten space S2q/(q+1)

with L2q/(q+1)
x,v . Later on, Bennett, Bez, Gutierrez, and Lee [4] translated the method

of [12] in the commutative setting of the transport equation to provide a new proof
of Strichartz estimates for (3.5) and to prove that the endpoint q = 1 + 2/(d − 1)
also fails for the transport equation, a fact which was left open in [17]. However,
the precise relation between these two types of Strichartz estimates has never been
worked out. The following result sheds some light on this relation.

Lemma 9. The Strichartz estimates given by Theorem 1 imply the Strichartz esti-
mates for the kinetic transport equation.

Proof. Let us prove the Strichartz estimate for the transport equation for any f0
belonging to the Schwartz class. To such f0 we may associate its semi-classical
(standard) quantization, which is an operator γ0 on L2

x(Rd) defined by

γ0ϕ(x) := 1
(2π)d/2

∫
Rd
f0(x, hξ)ϕ̂(ξ)eix·ξ dξ, ∀x ∈ Rd,

for all ϕ ∈ L2
x(Rd) and for all h > 0. It is a well-known fact in the theory of

pseudo-differential operators that

||γ0||rSr ∼
1

(2πh)d
∫
Rd

∫
Rd
|f0(x, ξ)|r dx dξ (h→ 0).
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Furthermore, an explicit computation yields

ργ(t)(x) = h−d

(2π)3d/2

(
ρf(t/h) ∗ F

[
e−it|·|

2]) (x),

for all (t, x) ∈ R×Rd, where γ(t) = eit∆γ0e
−it∆ and F denotes the Fourier transform.

A change of variables leads to

(2π)dhd−
1
p

∣∣∣∣∣∣ργ(t)

∣∣∣∣∣∣
LptL

q
x

= (2π)−d/2
∣∣∣∣∣∣ρf(t) ∗ F

[
e−ith|·|

2]∣∣∣∣∣∣
LptL

q
x

,

and hence by Fatou’s lemma together with Theorem 1∣∣∣∣∣∣ρf(t)

∣∣∣∣∣∣
LptL

q
x

. lim inf
h→0

hd−
1
p

∣∣∣∣∣∣ργ(t)

∣∣∣∣∣∣
LptL

q
x

. lim inf
h→0

hd−
1
p ||γ0||

S
2q
q+1
' ||f0||

L

2q
q+1
x,v

,

which is the desired Strichartz estimate. �

We thus see that Strichartz estimates for systems of orthonormal functions may
be seen as the missing link between Strichartz estimates for the Schrödinger and
the transport equations.

3.4. Application: dispersion outside the trace-class
As a natural consequence of a new family of Strichartz estimates, we now prove a
well-posedness result for (1.1) for initial data outside of the trace-class.

Theorem 2 (Global existence of infinite-trace solutions). Let d > 1, p, q > 1
such that 2/p + d/q = d and q < 1 + 2/(d − 1). Let w ∈ Lq

′
x (Rd). Then, for any

γ0 ∈ S2q/(q+1), there exists a unique γ ∈ C0
t (R,S2q/(q+1)) solution to (1.1) such that

ργ ∈ Lpt,loc(R, Lqx(Rd)).

Proof. Let T,R > 0. We apply a fixed-point theorem to the function

F : (γ, ρ) 7→
(
t 7→ eit∆γ0e

−it∆ − i
∫ t

0
ei(t−s)∆[w ∗ ρ(s), γ(s)]ei(s−t)∆ ds,

(t, x) 7→ ρ
[
eit∆γ0e

−it∆ − i
∫ t

0
ei(t−s)∆[w ∗ ρ(s), γ(s)]ei(s−t)∆ ds

]
(x)
)
,

on the ball

BR =
{

(γ, ρ) ∈ C0
t ([0, T ],S

2q
q+1 )× Lpt ([0, T ], Lqx(Rd)),

||γ||
C0
tS

2q
q+1

+ ||ρ||LptLqx 6 R

}
.

Here, we used the notation ρ[A](x) := ρA(x). We have to separate the unknown γ
and ρ because the density of γ ∈ S2q/(q+1) is a not a well-defined object. It will be
well-defined for solutions to (1.1) however, as in Theorem 1. To estimate F , we use
Theorem 1 together with the inhomogeneous Strichartz estimates [12, Cor. 1]. The
latter read∣∣∣∣∣∣∣∣ρ [∫ t

0
ei(t−s)∆R(s)ei(s−t)∆ ds

]∣∣∣∣∣∣∣∣
LptL

q
x

.
∣∣∣∣∣∣∣∣∫

R
eis∆|R(s)|e−is∆ ds

∣∣∣∣∣∣∣∣
S

2q
q+1

, (3.7)

for p, q in the same range as in the statement of Theorem 1. This leads to
||F (γ, ρ)||

C0
tS

2q
q+1×LptL

q
x

. ||γ0||
S

2q
q+1

+ T 1/p′R2, ∀(γ, ρ) ∈ BR.
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Hence, if ||γ0||
S

2q
q+1
. R and T = T (R) > 0 is small enough, the function F stabilizes

BR. Under similar conditions, one can easily show that this is a contraction on BR.
The Banach–Picard fixed point theorem then ensures the existence of a solution
to (1.1) in the announced space. Uniqueness can be proved with similar estimates.
To get global solutions, we first notice that local well-posedness shows that we can
extend the solution as long as its Schatten norm S2q/(q+1) remains bounded. Fur-
thermore, using the results of [26], we infer that there exists a unitary operator U(t)
such that for all times of existence t, we have γ(t) = U(t)γ0U(t)∗. As a consequence,
any Schatten norm is preserved along the flow and solutions are globally defined in
time. �

This result does not give any information on the long time behaviour of small
solutions. This is the content of the following theorem.

Theorem 3 (Dispersion of small, infinite-trace solutions without background). Let
d > 2 and w ∈ (Ld/2x ∩ Ldx)(Rd). Then, there exists ε0 > 0 such that for any
γ0 ∈ S2d/(2d−1) with ||γ0||S2d/(2d−1) 6 ε0, there exists a unique γ ∈ C0

t (R,S2d/(2d−1))
solution to (1.1) satisfying ργ ∈ L2

t (R, Ld/(d−1)
x (Rd)). In particular, we have γ(t) ⇀ 0

as t→ ±∞.

This shows the asymptotic stability of γref = 0 under perturbations in S2d/(2d−1)

which may not be trace-class, and thus can contain an infinite number of particles.

Proof of Theorem 3. By Theorem 2 applied to q = d/(d− 1), we only have to show
that ργ ∈ L2

t (R, Ld/(d−1)
x (Rd)) when ||γ0||S2d/(2d−1) is small enough. To do so, we write

the Duhamel formulation of (1.1) and take its density:

ργ(t) = ρeit∆γ0e−it∆ + ρ
[
−i
∫ t

0
ei(t−s)∆[w ∗ ργ(s), γ(s)]ei(s−t)∆ ds

]
.

The first term can be estimated by Theorem 1, while one may be tempted to use
the inhomogeneous Strichartz estimate (3.7) on the second term. If we do so, we
obtain∣∣∣∣∣∣∣∣ρ [−i ∫ t

0
ei(t−s)∆[w ∗ ργ(s), γ(s)]ei(s−t)∆ ds

]∣∣∣∣∣∣∣∣
L2
tL

d
d−1
x

.
∣∣∣∣∣∣∣∣∫

R
eis∆|[w ∗ ργ(s), γ(s)]|e−is∆ ds

∣∣∣∣∣∣∣∣
S

2d
2d−1

. (3.8)

The operator |[w ∗ργ(s), γ(s)]| does not seem to belong to L1
tS

2d/(2d−1) since we only
have w ∗ ργ ∈ L2

tL
∞
x and γ ∈ L∞t S2d/(2d−1). Hence, the finiteness of the right side of

(3.8) is not clear at all. It is interesting to compare this estimate with the estimate
(2.3) that we used in the proof of the same result in the rank one case. In (2.3), we
use that u ∈ L4

t to infer that (w ∗ |u|2)u ∈ L4/3
t . In another words, the time decay

of u is equivalent to the time decay of |u|2. In our more general setting, ργ ∈ L2
t

but it is wrong to say that γ ∈ L2
t . This is the reason why the inhomogeneous

Strichartz estimates (3.7) are weaker than their “single function” equivalent (2.3),
and we cannot show dispersion of small solutions directly from them. To go around
the lack of decay of γ(s), we use the best information that we know about it, namely
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that it is a solution to (1.1). Iterating the Duhamel formulation leads to the formula

γ(t) = eit∆γ0e
−it∆ − i

∫ t

0
ei(t−t1)∆[w ∗ ργ(t1), e

it1∆γ0e
−it1∆]ei(t1−t)∆ dt1

+ (−i)2
∫ t

0
dt1

∫ t1

0
dt2×

× ei(t−t1)∆
[
w ∗ ργ(t1), e

i(t1−t2)∆[w ∗ ργ(t2), γ(t2)]ei(t2−t1)∆
]
ei(t1−t)∆.

The second term can be shown to decay, as we will see shortly. The third term,
however, still has a γ(t2) term which does not decay. We get rid of it by again
injecting the value of γ(t2) given by Duhamel’s formula, and so on. Iterating this
procedure an infinite number of times in order to eliminate all the terms involving
a γ(tn) leads to the following expansion of ργ(t) into a Dyson series:

ργ(t) =
∑
n,m>0

ρ
[
eit∆W(n)

V (t)γ0W(m)
V (t)∗e−it∆

]
, (3.9)

where the wave operators W(n)
V (t) are defined as

W(n)(t) = (−i)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn×

× e−it1∆V (t1)eit1∆ · · · e−itn∆V (tn)eitn∆.

Here, we used the notation V = w∗ργ for the potential generated by ργ. The equation
(3.9) is a closed equation on ργ where the solution γ(t) only appears through its
initial data γ0. The key dispersive estimates that we need are

Proposition 10. Let d > 2 and p, q > 1 such that 2/p+ d/q = d and q 6 1 + 2/d.
Then, for all V ∈ Lp

′

t (R, Lq′x (Rd)), for all n,m > 0, and for all γ0 ∈ S2q/(q+1), we
have

∣∣∣∣∣∣ρ [eit∆W(n)
V (t)γ0W(m)

V (t)∗e−it∆
]∣∣∣∣∣∣
LptL

q
x

6
Cn+m ||V ||n+m

Lp
′
t L

q′
x

(n!)
1

2q′ (m!)
1

2q′
||γ0||

S
2q
q+1

, (3.10)

for some constant C independent of V, n,m, γ0.

For n = 0 = m, Proposition 10 reduces to Theorem 1 in the restricted range
q 6 1 + 2/d (by convention, W(0) = 1). Hence, Proposition 10 may be seen as
a family of generalized Strichartz estimates, which play the role of inhomogeneous
Strichartz estimates. The proof of Proposition 10 uses duality arguments and mimics
the proof of [12, Thm. 3]. A huge drawback of (3.10) compared to usual inhomo-
geneous Strichartz estimates is that the space Lp

′

t L
q′
x in which V lives on the right

side of (3.10) has to be the dual of the space LptLqx where ρ lives of the left side of
(3.10). In particular, in our nonlinear context of (3.9) where V = w ∗ργ, we see that
V has the same time decay as ργ and our method imposes p = p′, which is why we
have to take p = 2. Hence, using Proposition 10 in the case p = 2, q = d/(d− 1), to
estimate (3.9), we get

||ργ||L2
tL

d/(d−1)
x

. ||γ0||S2d/(2d−1) +O
(
||ργ||2L2

tL
d/(d−1)
x

)
,

which by a continuation argument shows the desired result. �
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4. Dispersion of small solutions outside the trace-class with
background

We have seen that the trivial background γref = 0 is asymptotically stable under
small perturbations that are not necessarily trace-class. The purpose of this section
is to present our main result in [21], which treats the case γref 6= 0.

Theorem 4 (Dispersion around a non-trivial background in d = 2). Let d = 2, w
and g be smooth, decaying enough functions, and let γref = g(−i∇). We assume that
w and g are such that γref is linearly stable under the flow (1.1). Then, there exists
ε0 > 0 such that for any γ0 ∈ γref + S4/3 with ||γ0 − γref ||S4/3 6 ε0, there exists a
unique γ ∈ C0

t (R, γref +S4/3) solution to (1.1) such that ργ ∈ ργref +L2
t (R, L2

x(Rd)).
Furthermore, there exist profiles Q± ∈ S4 such that

lim
t→±∞

∣∣∣∣∣∣γ(t)− γref − eit∆Q±e−it∆
∣∣∣∣∣∣
S4

= 0. (4.1)

In particular, we see that (4.1) implies that γ(t) ⇀ γref as t→ ±∞. Furthermore,
γ(t) behaves asymptotically as t→ ±∞ as a free solution around γref .

Remark 11. The assumption of linear stability will be explained in the next section.

Remark 12. The fact that we only dealt with d = 2 will be explained when discussing
the proof of Theorem 4.

Remark 13. We allow perturbations of γref that belong to S4/3 and in particular
that may not be trace-class. This means that we may perturb an infinite number of
particles of the Fermi gas and still return to the same Fermi gas for large times.

Remark 14. Our theorem applies to the Fermi gases (1.3), (1.4) and (1.5). However,
we will see in the next section that it does not apply to the Fermi sea at zero tem-
perature (1.2). The question whether this last translation invariant state is unstable
remains open.

4.1. Linear stability
When studying the nonlinear stability of some non-trivial stationary solution, it is
useful to first understand the linearization of the equation around the stationary
state. More explicitly, writing γ(t) = γref +Q(t), the Hartree equation (1.1) on γ is
equivalent to the following equation on Q:{

i∂tQ = [−∆, Q] + [w ∗ ρQ, Q] + [w ∗ ρQ, γref ],
Q|t=0 = Q0 ∈ S4/3.

(4.2)

This equation differs from (1.1) only by the term [w ∗ ρQ, γref ]. In particular, if this
term were not present, we already saw in Section 3.4 that solutions go to zero for
large times. This was a consequence of the dispersion induced by the term [−∆, Q]
and the nonlinear term [w ∗ ρQ, Q] which is quadratic in Q and hence of lower
order (since we deal with small solutions) was treated as a perturbation. Here, the
problem is radically different since the term [w ∗ ρQ, γref ] is of the same order in Q
as the dispersive term [−∆, Q]. Hence, we have to check that it does not destroy
the dispersion induced by −∆, and to do so we investigate the large time behaviour
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of solutions to the following linear equation{
i∂tQ = [−∆, Q] + [w ∗ ρQ, γref ],
Q|t=0 = Q0 ∈ S4/3,

(4.3)

which is nothing but the linearization of (1.1) around γref . The Duhamel formulation
of (4.3) is

Q(t) = eit∆Q0e
−it∆ − i

∫ t

0
ei(t−s)∆[w ∗ ρQ(s), γref ]ei(s−t)∆ ds.

Defining the linear operator

L(ρ) := ρ
[
i
∫ t

0
ei(t−s)∆[w ∗ ρQ(s), γref ]ei(s−t)∆ ds

]
leads to the following equation satisfied by ρQ,

ρQ = ρeit∆Q0e−it∆ − L(ρQ)
and hence

ρQ = (1 + L)−1ρeit∆Q0e−it∆ .

The Strichartz estimates show that ρeit∆Q0e−it∆ ∈ L2
t,x if Q0 ∈ S4/3. To prove that

ρQ ∈ L2
t,x, it is thus sufficient that the operator 1 + L is invertible on L2

t,x. The fact
that 1 + L is invertible on L2

t,x is what we call linear stability in the statement of
Theorem 4.

The operator L is a space-time Fourier multiplier by the function
(ω, ξ) ∈ R× Rd 7→ ŵ(ξ)mg(ω, ξ)

where we used the notation

mg(ω, ξ) =
√

2
π

∫ ∞
0

sin(t|ξ|2)ǧ(2tξ)e−itω dt.

Here, ω denotes the Fourier variable dual to t and ξ the Fourier variable dual to x.
The function mg is well-known in the condensed matter physics litterature, where it
is called the Lindhard function [15, Sec. 4.4]. As a Fourier multiplier, the operator
1 + L is invertible on L2

t,x if and only if
inf

(ω,ξ)∈R×Rd
|1 + ŵ(ξ)mg(ω, ξ)| > 0.

This condition is a quantum analogue of the condition that appears in the study of
Landau damping (see Eq. (2.3) and the following condition (L) in [22]). In [21, Cor.
1], we give two explicit conditions under which 1 + L is invertible.

Proposition 15. The operator 1 +L is invertible on L2
t,x(R×Rd) if one of the two

following conditions is satisfied:

1. ||ǧ||L1(R2) ||ŵ||L∞(R2) < 4π;

2. g is a radial function, g(ξ) = f(|ξ|2) for all ξ, with f ′ < 0 a.e. and

max
(
εgŵ(0)+, ||ǧ||L1(R2) ||(ŵ)−||L∞(R2)

)
< 4π,

where 0 6 εg 6 ||ǧ||L1(R2) is defined as

εg := − 1
8π inf

a∈R

∫ ∞
0

rǧ(r) cos(ar) dr.
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Remark 16. The first condition is a perturbative condition since we have the uniform
bound for all (ω, k) ∈ R× Rd,

|ŵ(k)mg(ω, k)| 6 (4π)−1 ||ǧ||L1(R2) ||ŵ||L∞(R2) .

The second condition is weaker than the first one, except that we have to assume
that g is radially decreasing. In the defocusing case, that is when ŵ > 0 (see [19]),
this condition amounts to

εgŵ(0)+ < 4π.

Remark 17. The Fermi sea at zero temperature (1.2) does not satisfy any of these
two conditions. We can furthermore show that in this case, the operator 1 + L is
not invertible on L2

t,x(R×R2). Whether this shows that there are solutions to (4.3)
for which ρQ /∈ L2

t,x remains an open problem.

Under the conditions listed in Proposition 15, we see that solutions to (4.3) dis-
perse like solutions to the free equation, in the sense that their density belongs to
L2
t,x(R × Rd). In the next section, we close the argument to prove Theorem 4 by

explaining how to go from linear stability to the full nonlinear stability.

4.2. Elements of proof
The strategy to prove Theorem 4 is the same as the one to prove Theorem 3, that is
in the case without background. We start by expanding the density of the solution
to the Hartree equation as a Dyson series,

ργ(t) =
∑
n,m>0

ρ
[
eit∆W(n)

V (t)γ0W(m)
V (t)∗e−it∆

]
,

with V := w ∗ ρQ. In the proof of Theorem 3 without background, we had that γ0
belonged to the Schatten space S4/3. Here, we rather have that γ0 = γref +Q0 with
Q0 ∈ S4/3. Hence, a consequence of the proof of Theorem 3 is the estimate∣∣∣∣∣∣

∣∣∣∣∣∣
∑
n,m>0

ρ
[
eit∆W(n)

V (t)Q0W(m)
V (t)∗e−it∆

]∣∣∣∣∣∣
∣∣∣∣∣∣
L2
t,x

. ||Q0||S4/3 +O
(
||ρQ||2L2

t,x

)
.

We thus only have to estimate the terms involving γref , where the initial data Q0
does not appear. First of all, we notice that∑

n+m=0
ρ
[
eit∆W(n)

V (t)γrefW(m)
V (t)∗e−it∆

]
= γref ,

∑
n+m=1

ρ
[
eit∆W(n)

V (t)γrefW(m)
V (t)∗e−it∆

]
= −L(ρQ),

and hence

ρQ = (1 + L)−1

 ∑
n,m>0

ρ
[
eit∆W(n)

V (t)Q0W(m)
V (t)∗e−it∆

]

+
∑

n+m>2
ρ
[
eit∆W(n)

V (t)γrefW(m)
V (t)∗e−it∆

] .
It thus only remains to treat the terms involving γref , with n + m > 2. The key
result in this direction is [21, Lemma 3].
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Lemma 18. Let d > 1, g : Rd → R such that ǧ ∈ L1(Rd), 1 < q 6 1 + 2/d and p
such that 2/p+ d/q = d. Let V ∈ Lp

′

t L
q′
x (R× Rd). Then, for all n,m ∈ N such that

n+m+ 1 > 2q′,

we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n,m>0

ρ
[
eit∆W(n)

V (t)γrefW(m)
V (t)∗e−it∆

]∣∣∣∣∣∣
∣∣∣∣∣∣
LptL

q
x

6 C ||ǧ||L1

Cn+m ||V ||n+m
Lp
′
t L

q′
x

(n!)
1

2q′ (m!)
1

2q′
,

for some constant C independent of V, n,m, g.

The previous lemma gives an information similar to Proposition 10, except that
it only holds for large values of n+m. This is where the restriction on the dimension
comes from. We already saw in Theorem 3 that we could not treat the dimension
d = 1 since we need p = 2 as explained after Proposition 10, and thus q =∞ which
is forbidden by the restriction q 6 1 + 2/d = 3. In dimension d > 2, p = 2 implies
q = d/(d− 1), and hence the restriction n+m+ 1 > 2q′ becomes n+m > 2d− 1.
In d = 2, this is n + m > 3 and hence only the terms with n + m = 2 remain. In
d = 3, we have to treat the terms with n+m = 2, 3, 4. As the dimension increases,
the number of terms remaining gets bigger and this is why the higher dimensions
are harder to treat. The estimate on the term with n + m = 2 in d = 2 was given
by [21, Prop. 4].

Proposition 19. For w and g smooth and decaying enough, we have the estimate∣∣∣∣∣
∣∣∣∣∣ ∑
n+m=2

ρ
[
eit∆W(n)

V (t)γrefW(m)
V (t)∗e−it∆

]∣∣∣∣∣
∣∣∣∣∣
L2
t,x

6 C(g, w) ||ρQ||2L2
t,x
.

This last result together with our previous remarks lead to the global estimate

||ρQ||L2
t,x
. ||Q0||S4/3 +O

(
||ρQ||2L2

t,x

)
which again by a continuation argument closes the proof of Theorem 4.

Conclusions and perspectives

We explained the results contained in [21] which prove the asymptotic stability of
translation-invariant quantum density matrices under the nonlinear Hartree flow
(Theorem 4). A key element of the proof is a generalization of Strichartz estimates
to density matrices (Theorem 1), which was discovered in [12] and extended later
in [13]. In the nonlinear context of the Hartree equation, these estimates have to be
completed by another set of estimates (Proposition 10 and Lemma 18), which proof
mimics ideas contained in [12]. This new set of estimates play a role analogue to
inhomogeneous Strichartz estimates.

To go further into the study of the stability/instability of these translation-
invariant states, one needs to understand better the properties of the linearized
equation. In particular, the existence of small, non-decaying solutions to this equa-
tion remains a challenging problem.
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