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VOLATILITY MODEL RISK MEASUREMENT 
AND AGAINST WORST CASE VOLATILITIES 

RISKLAB PROJECT IN MODEL RISK* 

MODEL RISK : OUR APPROACH 

Equilibrium or (absence of ) arbitrage models, but also portfolio management 
applications and risk management procédures developed in financial institu­
tions, are based on a range of hypothèses aimed at describing the market 
setting, the agents risk appetites and the investment opportunity set. When 
it cornes to develop or implement a model, one always has to make a trade-
off between realism and tractability. Thus, practical applications are based 
on mathematical models and generally involve simplifying assumptions which 
may cause the models to diverge from reality. Financial modelling thus in-
evitably carries its own risks that are distinct from traditional risk factors 
such as interest rate, exchange rate, crédit or liquidity risks. 

For instance, suppose that a French trader is interested in hedging a Swiss 
franc denominated interest rate book of dérivâtives. Should he/she rely on an 
arbitrage or an equilibrium asset pricing model to hedge this book? Let us 
assume that he/she chooses to rely on an arbitrage-free model, he/she then 
needs to specify the number of factors that drive the Swiss term structure 
of interest rates, then choose the modelling stochastic process, and finally 
estimate the parameters required to use the model. 

In order to characterize the random évolution of the term structure of interest 
rates, models with one-factor, generally chosen as the short term rate, hâve 
been developped because they are easy to implement (see, e.p., Merton [21] , 
Vasicek [25], Cox, Ingersoll and Ross [10], Hull and White [17], etc.), even if 
most empirical studies using a principal component analysis hâve decomposed 
the motion of the interest rate term structure into three independent and 
non-correlated factors, which respectively capture the level shift in the term 
structure, the twist in opposite direction of short and long term rates, and 
the butterfly factor that captures the fact that the intermediate rate moves 

* The Risklab project gathers : Mireille Bossy, Rajna Gibson, François-Serge Lhabitant, 
Nathalie Pistre, Denis Talay and Ziyu Zheng. It is a joint collaboration between the Risklab 
institute (Zurich), INRIA Sophia Antipolis, and University of Lausanne. Author's current 
addresses : M. Bossy, D. Talay and Z. Zheng : INRIA Sophia Antipolis, 2004 route des 
Lucioles, BP 93, 06902, Sophia Antipolis, Cedex, France. N. Pistre : ENSAE, 3 avenue Pierre 
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in the opposite direction of the short and the long term rates. The multi-
factor models do significantly better than single-factor models in explaining 
the dynamics and the shape of the entire term structure, but the latter 
provide analytical expressions for the prices of simple interest rates contingent 
claims, whereas a multi-factor model generally leads to numerically or quasi 
analytically solve partial differential équations in a higher dimension to obtain 
prices and hedge ratios for the interest rate-contingent claims. 

The factor(s) dynamics spécification is another source of Model Risk. The 
dynamics spécifications cover a large spectrum of distributional assumptions 
such as pure diffusion processes or mixed jump-diffusion processes. The 
stochastic processes can hâve time-varying or constant drift and/or volatility 
parameters and they can rely on a linear or a non-linear spécification of the 
drift (see Ait- Sahalia [3]) 

Once the model is fixed, one has to estimate its parameters. This step does not 
really provide help to verify the adequacy of the model on past data, since the 
theory of parameter estimation generally assumes that the true model belongs 
to a parametrized family of models. Moreover, a mis-specified model does not 
necessarily provide a bad fit to the data. 

A study by Jacquier and Jarrow [18] proposes to incorporate model error and 
parameter uncertainty into a new method of contingent claims models' imple-
mentation. Using Markov Chains, Monte Carlo estimators, their conclusion, 
for a single stock option case study, suggests that the pricing performance 
of the « extended » Black and Scholes model dominâtes the simple Black and 
Scholes model within but not out-of-sample. Usually, the model parameters 
must be estimated by fitting a given set of market data. However, in finance 
it has been proved that natural estimators such as maximum likelihood and 
generalized method of moments estimators applied to time-series of interest 
rates may require a very large observation period to converge towards the true 
parameter values, yet it seems highly unrealistic to assume constant param­
eters over such a long period, see, Fournie & Talay [13]. Another important 
problem arises from the time discretization when we numerically compute the 
statistical estimâtes of the parameters of a stochastic model. 

Ail the sources of Model Risk we hâve just listed, hâve strong financial 
repercussions (losses incurred by a bank or a financial institution due to Model 
Risk are fairly common) on the pricing, hedging, risk management and the 
définition of regulatory capital adequacy rules. 

As far as derivatives pricing/hedging is concerned, a large part of the literature 
relies on the assumption of absence of arbitrage opportunities since the séminal 
articles of Black and Scholes [8] and Merton [21]. The principle is simple : given 
a distribution on a primitive asset price (for a stock, a bond, or a commodity), 
if we make the simplified hypothesis that there are no frictions and that the 
risk structure is not too complex, one can show that the derivative cash-flows 
can be replicated by a dynamic trading strategy involving the primitive assets. 
The Absence of Arbitrage hypothesis stipulâtes that the price of the derivative 
should be the same as the price of the replicating portfolio or there would be 
arbitrage profits (free lunches) in the market. 
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However, in this framework the pricing or hedging performance is not indepen-
dent of the model used for the underlying asset price. One important problem 
is that the pricing models are often derived under a perfect and complète 
market paradigm, whereas market s are actually incomplète and imperfect. 
Violations of the perfect market assumption generally preclude us from ob-
serving uniqueness of the asset's theoretical price, and we are often left only 
with bounds to characterize transaction prices. In an interesting study fo-
cusing on equity options, Green and Figlewski [15] thus explain why option 
writers will charge a volatility mark-up to protect their Profit and Loss against 
Model Risk. 

The présence of Model Risk will also affect the performance of model based 
hedging stratégies. 

In a continuous-time and frictionless market, a market maker, for example, 
the seller of an option, can synthetically create an opposite position (called 
delta-hedging strategy) which éliminâtes his/her risk completely. If the hedger 
uses an alternative (wrong) option pricing model, his/her price for the option 
differs from the true (market) price and provide an incorrect hedge ratio. 
In the présence of Model Risk, even though we assume frictionless markets, 
the self-financing delta-hedging strategy does not replicate the final pay-
off of the option position. Bossy and al. [9] study the case of bond option 
hedging, the Model Risk is defined by the Profit and Loss of the seller of 
an option who believes that the true model is one of the univariate Markov 
models nested in the Heath-Jarrow-Morton [16] framework, whereas the true 
model is actually another model belonging to the same class. In a subséquent 
study, Akgun [akgun-00] extends the methodology developed by Bossy et 
al. [9] to include omitted jumps by the trader who uses the wrong pure 
diffusion univariate term structure model to hedge his derivatives exposure. 
In his setting, the jumps are driven by a finite state-space compound Poisson 
process. This in turn allows him to show that omitting jump risk can be fairly 
devastating, as evidenced by simulated forward Model Risk Profil and Loss 
probability distributions, especially when shorting in and at-the-money naked 
or spread option positions. 

Indeed, it is important for regulators to measure the trading and the banking 
books interest-rate risk exposures correctly. The Basle Committee on Banking 
Supervision [1], [2] issued directives to help financial institutions evaluate the 
interest-rate risk exposures of their exchange traded and over-the-counter 
derivative activities, as well as for their on and off-balance sheet items. 
Regulators ask the banks and other financial institutions to set aside equity 
in order to cover market risk driven losses. 

Proposition 6 of the Basle Committee Proposai [2] states that banks,can cal-
culate their market risk capital requirements as a function of their forecasted 
ten-days-ahead value-at-risk. The value-at-risk (VaR) is defined as the quan­
tité at a 99 % confidence interval of the distribution of the future value of the 
considered activity. The aim is to estimate the potential loss that would not 
be exceeded with a 99 % probability over the next ten trading days. An im­
portant source of Model Risk arises from the approximation techniques that 
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a bank adopts to incorporate non-linear payoff securities in the VaR model. 
Pritzker [22] investigates the trade-off between accuracy and the computar 
tional time for six alternative VaR computation methods. Among them, the 
delta-gamma Monte Carlo method provides the best trade-off but still leads 
to significant errors in the VaR figures, especially for deeply out of the money 
options. Under thèse directives, banks are allowed to apply their own internai 
risk measurement models to calculate the VaR which will in turn détermine 
their regulatory capital charge. No particular type of model is prescribed, as 
long as the internai model captures the relevant market risks run by a financial 
institution. 

Even if internai models are allowed, regulators hâve introduced a back-testing 
procédure to assess the accuracy of a given VaR model and penalties in 
the form of multipliers : the market risk capital charge is computed using 
the bank's own estimate of the value-at-risk, times a multiplier whose value 
dépends on the number of exceptions over the last 250 days detected with the 
help of the back-testing procédure. The regulator has fixed the value of the 
multiplier between 3 and 4 in order "to keep a security margin against possible 
model errors made in the computation of the VaR. Lopez [20] compares three 
commonly used back-testing procédures and shows that they ail hâve very 
low power against alternative VaR models. Thus, even at the final stages of 
model assessment and compliance, the accuracy détection method can induce 
regulatory 'Model Risk and thus lead to over or under-capitalized financial 
institutions'. 

Specifying a proper loss fonction to assess a model's accuracy is thus a first 
step to mitigate Model Risk. This loss function should dépend on the spécifie 
applications associated with the model and be adapted to the time-horizon 
and the contractual features of the positions being valued or hedged, to the 
division and/or the responsibility levels involved (trading desk versus senior 
management), without leading to excessive risk taking behavior especially 
below the critical downside risk thresholds. The methodology of Bossy and 
al. [9] can be used to measure the risk implied by the choice of an erroneous 
univariate term structure model. It measures the distribution of the losses due 
to this error, including (but not reduced to) estimation errors. It also takes 
into account hedging errors in addition to pricing errors (that can be avoided 
by the calibration of a wrong model on true market data). This methodology 
is briefly discussed in Section 2.1 below. Quantile approximation from Talay 
and Zheng [24] is presented at the end of Section 2. 

This methodology is however restricted to the comparison of one (potentially 
incorrect) model against one or several (possible true) models among a class 
of univariate Markov term structure models. This class does not contain ail 
possible term structures models. We présent a more gênerai methodology 
and the results developed by Talay and Zheng [23] which aim at selecting a t 

hedging strategy which minimizes the expected utility of the Loss due his/her 
model risk under the worst possible movements of nature (as characterized 
by forward rates' volatility trajectories). This methodology is discussed in 
Section 3. 
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This article is a synthesis of the following articles : Gibson, Lhabitant, Pistre 
and Talay [14], Bossy, Gibson, Lhabitant, Pistre and Talay [9], Talay and 
Zheng [23], [24]. Of course, our financial and numerical méthodologies can 
easily be extended to a wide family of cases : European options with Black 
and Scholes type models, markets with transaction costs, etc. 

2. MODEL RISK MEASUREMENT 

We briefly recall the expression of the Profit and Loss obtained in Bossy 
et al. [9] for a trader who believes in a term structure model of the univariate 
Markov Heath-Jarrow-Morton family whereas the true term structure follows 
another model model in the same family. In reality the 'true' model is 
unknown. Thus one must consider this Model Risk analysis as being performed 
with respect to 'benchmark' models selected by the investor, the risk controller 
or the regulator. 

2.1. Expression of the Profit and Loss in the Heath-Jarrow-Morton 
model 

We are given a probability space (fi,^7, P) equipped with the augmented 
filtration (Ft), t G [0, T] generated by a real valued Brownian Motion (Wt, t G 
[0,T]). We suppose that the yield curve of the financial market follows the 
Heath-Jarrow-Morton model and, as hère our analysis is focused on volatility 
Model Risk, we also suppose that the premium risk process (Xt) is null, thus 
we hâve : for ail time T*, the instantaneous forward rate f(t,T*) solves the 
stochastic differential équation 

with 

/ (* , r*) = / ( 0 , r * ) + / ( j ( s ,T>*(s ,T*)ds + / a(s,T*)dWs, 

<r*(s,T*) := / cr(s,u)du. 

(1) 

In Bossy et al. [9], the Model Risk analysis is based on Monte Carlo simulations 
of the Profit and Losses of the self-financing stratégies of a trader who aims 
at hedging a European option written on a bond of maturity T°. In this 
subsection we give an outline of the method for the case where the function 
a is deterministic. 

Suppose that the trader does not know the map cr(s,T). Instead, he or 
she chooses a deterministic model structure â(s,T) and tries to hedge the 
contingent claim according to this model. 

Let Vf be the value of the trader's portfolio at time t and Vt be the value of 
the perfectly hedging portfolio. The option seller's Profit and Loss is defined 
by : 

P&L t := Vt - Vt. 
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Given a price P t , define the forward price Pf by 

PF . _ pt 
1 ' B{t,T°y 

where B(t,T°) is the price of the bond of maturity T° in the model driven by 
°(t,T°). 
It can be shown that the self financing constraint implies that 

dVF = ^(t,BF(t,T))dBF(t,T), (2) 

where BF(t, T) is the forward price of the discount bond, and that the forward 
Profit and Loss P&Lf satisfies 

PkLF = VF-irw(0,BF(0,T)) 

+ irw(t,BF(t,T))-irlT(t,BF(t,T)) 

{ ( r ^ ^ - r ^ T ) ) 2 - ^ * ^ ^ ) - ^ ^ ^ ) 2 } ^ , (3) 

where 7r̂  is the solution to the following parabolic PDE parametered by the 
function a : 

2 ¾ ^ ) + \x^*{t,T) -jr^l*))**^ = 0, (4) 

7TW(T,X)=${X). 

Thus the gamma of the position is shown to be essentially in the quantity of 
Model Risk induced by the position of the trader. This means that limiting 
the Model Risk of a trader implies limiting the gamma of the position, and 
that the Model Risk exposure of an option position is not similar to its interest 
rate exposure and thus has to be managed seperately. 

As justified by Artzner and al. [5], quantiles of the négative part of P&LTo, 
E[U(PSzLTo)] where U is a utility function, are good candidates of Model 
Risk measurements. Bossy and al. [9] discuss numerical results obtained 
by Monte Carlo methods for simple and agregate stratégies. In our next 
subsection we analyse the accuracy of such Monte Carlo methods. As the 
process (J5F(t,T), PhLf) is the solution of a stochastic differential équation 
(see Equation (7) below), we focus our attention to the accuracy of the Monte 
Carlo method to compute the quantiles of diffusion processes. 
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2.2. Quantile approximation of a diffusion process by Monte Carlo 
methods 

Given a random variable X and 0 < S < 1, the quantile of level 6 is the 
smallest p(6) such that 

F[X < p(S)] = 6. 

The case where X = X r , X. solution to a stochastic differential équation, is 
of spécial interest for us. 

Let (Xt) be a real valued process, solution to 

(dXt = b(Xt)dt + <j(Xt)dWt, 
\X0 = x, 

where (Wt) is a r-dimensional Brownian motion and b, a are smooth functions 
with bounded derivatives. The Euler scheme for (5) is 

T 

X(p+l)T/n = XpT/n + °(XpT/n) — + a(XpT/n)(Wip+l)T/n ~ WpT/n). 
n 

Define pn(6) by 
P[X? ^ pn(6)\ = 6. 

We suppose that (5) satisfies the technical assumption (M) explicited in Talay 
& Zheng [24], or the same uniform hypoellipticity condition as in Bally & 
Talay [7]. We do not rewrite hère thèse technical conditions because they 
require too much material to be stated. We only emphasize that it can be 
shown that the so called Condition (M) is generally satisfied by Equation (7). 
THÉORÈME 2.1. — Under one of the above conditions, there exist strictly 
positive constants C(T) and qr{à) such that 

qT{à)n 

See Talay & Zheng [24] for the proof of Theorem 2.1., and the extension of 
the results to one dimensional marginal distributions of diffusion processes. 
The proof shows that 

qT^ : = .< m ini f
 ,*^PXTW> 

2/G(p(<5)-l,p(<5)+l) 
where pxT is the density of the distribution of XT-
As classical estimâtes show that the standard déviation of the statistical error 
of the Monte Carlo method, that is, the error due to the approximation 
of the expectation by the average over the simulations, is governed by 
C(T)/(pxT(p(à))y/N), N being the number of simulations. To get estimâtes 
on the discretization step and the number of simulations which are n'ecessary 
to obtain a desired accuracy with a given confidence interval one needs 
an accurate lower bound of the density of XT- For the strictly uniform 
elliptic generators, see, e.g., Azencott [6]. In the degenerate case, under 
restrictive assumption on 6, see Kusuoka & Stroock [kusuoka-stroock-87]. Such 
assumptions are not satisfied in our Model Risk study, and therefore we need 
the supplementary results of our next subsection. 
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2.3. Application to Model Risk 

Define 7rCT as the solution of the same parabolic problem as (4) with a instead 
of <J. Set 

(u i ( t ) :=*•(«,T°), 
u 2 ( t ) : = ( a * ( f , T ° ) - a * ( t , T ) ) , ( 6 ) 

Thus the forward price of the bond and the forward Profit and Loss PSzLf 
satisfy 

(dBF(t,T) = BF(t,T)u1(t)u2{t)dt + BF(t,T)u2{t)dWu m 

\dP&LF = tp(t,BF(t,T))dBF(t,T). Kn 

We are interested in the quantile of PkLTo = PfoLF
0, that is 

¥[PkLTo ^ p(S)] = 6. 

In Talay & Zheng [24] one proves that the conclusion of Theorem 2.1 applies 
in* this situation. In particular, one gets that the law of P&L^o has a density 
pTo under the following assumptions : |^2(^)| ^ a > 0 for ail t in [0,T°], 
the fonctions m{t), u2{t) are bounded and BF(0,T)ip(0,BF(Q,T)) ^ 0. In 
addition, pTo is strictly positive on its support. 

In view of our comments for Theorem 2.1, it would be useful to obtain an 
accurate pointwise lower bound estimate for pTo - This is also done in [24]. 

3. MODEL RISK MANAGEMENT AGAINST WORST 
CASE VOLATILITY 

The previous methodology is restricted to the comparison of the potentially 
incorrect models against the potentially true (but unknown) or benchmark 
models among a class of univariate Markov term structure models. The 
following methodology is far more gênerai, since it allows to optimize the 
choice of the trader's strategy against 'ail' possible actual volatility processes. 

3 .1 . Motivation 

The objective is to propose a new strategy for the trader which, in a sensé, 
guarantees good performances whatever is the unknown process 0-(-,-). The 
construction corresponds to a 'worst case' worry and, in this sensé, can be 
viewed as a continuous time and rigorous extension of discrète time stratégies 
based upon prescriptions issued from VaR analyses at the beginning of each 
period. Roughly speaking, the idea can be expressed by the following graph : 
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Trader = MinimizerofRisk. 

Market = MaximizerofRisk. 

TradervsMarket. 

Thus the Model Risk control problem is set up as a two players (Trader 
versus Market) zero-sum stochastic differential game problem. We notice that 
our approach is related to, but différent from, Cvitanic and Karatzas dynamic 
measure of risk(see [cvitanic-karatzas-99]). Moreover, the solution at time 0 
of our stochastic game problem can be viewed as a 'reserve position' for a 
financial institution. 

3.2. The stochastic differential game and the Hamilton Jacobi 
Bellman Isaacs équation 

Let (7Tt) be the delta process chosen by the trader. The self financing constraint 
implies that one has 

f dBF{t, T) = BF{t, T)ui(t)ti2(t)dt + BF{t, T)u2{t)dWu 

\dVF{t)=^{t)BF{t,T)ul{t)u2{^ [ } 

where ui(t) and u2(t) are defined as in (6). 

We adopt the définition of admissible controls and stratégies of Fleming & 
Souganidis [12]. The set of ail admissible controls for the market on [t,T] is 
denoted by Adu(t) and the set of ail admissible stratégies for the investor 
on [t,T] is denoted by Adn(t). Thèse admissible controls and stratégies take 
value in compact sets Ku and Kn respectively. 

For given n G Adu{r) and u. G Adu(r), we define the objective function as 

J(r,z,y,II,u.) :=Er^y[F(f(BF(T°,T))-VTo)} 

where F is a utility function and / is the profile of the payoff functionx. The 
function F should be chosen according to the définition of measures of risk 
introduced in Artzner et al. [5]. 

DÉFINITION 3.1. — The value function of the Model Risk control problem vjith 
initial data (r,x,y) is defined by 

V(r,x,y):= inf sup J(r , a;, y, II, u. ). (9) 
UeAdn(r)u eAdu{r) 

We hâve the following resuit : 

1. For the sake of simplicity our notation does not emphasize that the process (B (£, T) , Vt ) 

is parametered by (u (t),u (t),7Tt). 
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THÉORÈME 3.2. — Suppose that 

\F(f(x) -y)- F(f(x) - »)| ^ P(|x|, M, |âf|, \y\)(\x - x\ + \y - j?|), 

where P(\x\, |y|, |x|, \y\) is a polynomial function. 
Then the semi-value function V(r, x, y) defined in (9) is the unique viscosity 
solution in the space, 

S := {ip(t,x,y) is continuous, 3A > 0, 

2 lim <p(t,x,y)(-Â\ïog(x2 + y2)\2) = 0, Vt e [0,T°]} 

to the Hamilton-Jacobi-Bellman-Isaacs Equation, 

-£(t,x,y) + H'(D2v{t,x,y),Dv(t,x,y), t,x) = 0 in [0,T°) x R2, ( 1 Q ) 

v(T°,x,y) = F(f(x)-y), 

where 

H-(A,p,t,x) 

-u2x
2An + u2x

2irAi2 H- -u2x
2/ir2A22 + p\U\u2x + p2u\u2i{ 

(11) 

:= max min 

for ail 2 x 2 symmetric matrix A and ail vector p in M2. 

Moreover, F (r, x, y) satisfies the Dynamic Programming Principle, that is, 

V{r,x,y)= inf sup E ^ ^ V ^ t , ^ , ^ ) ] . (12) 
n G A d n ( r ) w eAdu(r) 

For the proof, see Talay & Zheng [23]. 

The value function V(r,x,y) and the optimal strategy can be solved numer­
ically by the finite différence method. In our numerical tests we consider the 
Profit and Loss of the seller of a European call option. The utility function is 

F(x):=(f(x)-y)+. 

The maturity T° of the option is 6 monthes and the option is written on a 
discount bond of maturity T equal to 5 years. The trader uses two bonds to 
hedge this option : the bond of maturity 6 monthes and the bond of maturity 
5 years. The strike of the option is K = 0.509156. 

We set Kn := [—ci, C\] — [—1,1]. The constant c\ has been chosen after havir^g 
computed perfectlly replicating stratégies in the cases of Ho-Lee and Vasicek 
models. In addition, we fix u2 G [0,c2] and U\ G [—¢3,03] with c2 = 0.6 and 
c3 = 0.07. 

We comment Fig. 2. The graph of optimal strategy #*(£, x, y) consists in three 
parts : 
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