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ABSTRACT

For the analysis of square contingency tables, Caussinus (1965) proposed the quasi-
symmetry model and gave the theorem that the symmetry model holds if and only
if both the quasi-symmetry and the marginal homogeneity models hold. Bishop,
Fienberg and Holland (1975, p.307) pointed out that the similar theorem holds for
three-way tables. Bhapkar and Darroch (1990) gave the similar theorem for general
multi-way tables. The purpose of this paper is (1) to review some topics on various
symmetry models, which include the models, the decompositions of models, and the
measures of departure from models, on various symmetry and asymmetry, and (2) to
show that for multi-way tables, the likelihood ratio statistic for testing goodness-of-
fit of the complete symmetry model is asymptotically equivalent to the sum of those
for testing the quasi-symmetry model with some order and the marginal symmetry
model with the corresponding order.

Keywords: Association model, Decomposition, Independence, Likelihood ratio statis-
tic, Marginal homogeneity, Marginal symmetry, Measure, Model, Orthogonality,
Quasi-symmetry, Separability, Square contingency table, Symmetry.

RÉSUMÉ

Pour l’analyse des tableaux carrés, Caussinus (1965) a proposé le modèle de quasi-
symétrie et montré qu’un tableau est symétrique si et seulement s’il satisfait à
la fois quasi-symétrie et égalité des distributions marginales. Bishop, Fienberg et
Holland (1975, p. 307) ont noté qu’un théorème semblable valait pour les tableaux
à trois dimensions, tandis que Bhapkar et Darroch l’ont donné pour des tableaux de
dimension quelconque. Le but de cet article est (1) de passer en revue les questions
de symétrie, les modèles eux-mêmes, leur décomposition et les mesures d’écart au
modèle pour divers concepts de symétrie et asymétrie, (2) de montrer que, pour
les tableaux multiples, la statistique du rapport de vraisemblance pour tester la
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symétrie est asymptotiquement équivalente à la somme des statistiques analogues
testant respectivement la quasi-symétrie d’un certain ordre et l’égalité des marges
pour l’ordre correspondant.

Mots-clés : Décomposition de modèle, Homogénéité des marges, Indépendance,
Modèles d’association, Orthogonalité, Quasi-symétrie, Rapport de vraisemblance,
Séparabilité, Symétrie, Tables de contingence carrées.

1. Introduction

Consider the square contingency tables with the same row and column
classifications, which have the non-ordered, i.e., nominal categories or the
ordered categories. For example, consider the data in Tables 1 and 2. The
classifications in Table 1 have the nominal categories and those in Table 2
have the ordered categories.
The data in Table 1 are taken directly from Upton (1978, p.119). These
data refer to the voting transitions in British elections between 1966 and
1970 of a subset of the numbers of a panel study. The particular subset to
which the data refer are those panel members who remained, throughout
the period 1964 to 1970, in a constituency contested by the Conservative,
Labour, and Liberal parties alone. The table has symmetric classifications,
these being the reported votes for the three parties, together with a reported
abstention. The data in Table 2, taken from Stuart (1953), are constructed
from unaided distance vision of 7477 women aged 30-39 employed in Royal
Ordnance factories in Britain from 1943 to 1946. In Tables 1 and 2, many
observations concentrate on the main diagonal cells. Therefore for these data,
the model of independence does not hold. Namely, (a) for the data in Table
1 the voting in 1970 is strongly associated with that in 1966, and (b) for the
data in Table 2 a woman’s right eye grade is strongly associated with her left
eye grade. Instead, we are interested in (a) for the data in Table 1 whether
or not the voting transitions is symmetric, and (b) for the data in Table 2
whether or not a woman’s right eye grade is symmetric to her left eye grade
and in how both eyes are symmetry or asymmetry.
Generally for the analysis of square table data with the same row and column
classifications, various symmetry models are usually utilized. Bowker (1948)
considered the symmetry model, and Caussinus (1965) considered the quasi-
symmetry model. Stuart (1955) described the marginal homogeneity model.
These models describe the structures of various symmetry. Other models
which describe the structures of various asymmetry instead of symmetry are
given; for example, the conditional symmetry model (McCullagh, 1978), the
diagonals-parameter symmetry model (Goodman, 1979a), the ordinal quasi-
symmetry model (Agresti, 2002a, p.429), the extended quasi-symmetry model
(Tomizawa, 1984), and the cumulative diagonals-parameter symmetry model
(Tomizawa, 1993a), etc.
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Caussinus (1965) gave the decomposition of the symmetry model such that
the symmetry model holds if and only if both the quasi-symmetry and
the marginal homogeneity models hold. In the similar way to Caussinus’
decomposition, Tomizawa (1984) gave the decomposition of the conditional
symmetry model into the extended quasi-symmetry, the extended marginal
homogeneity, and the other models. Tomizawa also gave the decompositions
of some symmetry (asymmetry) models (see Section 3).
When a model (e.g., the symmetry model) does not hold, we are also interested
in a measure which represents the degree of departure from the model. For
example, Tomizawa (1994), and Tomizawa, Seo and Yamamoto (1998) con-
sidered the measures to represent the degree of departure from the symmetry
model (see Section 5). Also, Tahata, Miyamoto and Tomizawa (2004) consid-
ered the measure of departure from the Caussinus’ quasi-symmetry model.
For multi-way contingency tables, the symmetry, the quasi-symmetry and
the marginal symmetry models are also considered; see, for example, Bishop,
Fienberg and Holland (1975, pp.299-309), Bhapkar and Darroch (1990),
and Agresti (2002a, p.440). Also, Bhapkar and Darroch (1990) extended
Caussinus’ (1965) decomposition of the symmetry model into the multi-way
tables.
Another question concerning multi-way contingency tables is the comparison
between several square tables; for example, Caussinus and Thélot (1976)
considered models where the tables differ only by the asymmetric aspects
while the symmetric part is common for all of them; they give an example
concerning migration between French regions according to the age of migrants.
We may also be interested in the studies for the r × r × r, or more generally,
the rT tables which appear as soon as a qualitative variable (with r values)
is observed T (> 2) times (qualitative longitudinal data), e.g., such as in
the study of socio-professional status through age or across generations, or in
the study of health-related data for which the response is observed for each
subject at T occasions for different times. The rT tables may also appear such
as the response is measured at T occasions (not necessarily for different time)
on each subject; e.g., for biomedical data, each subject may be classified as
having the response (with r values) by each of T drugs. For such rT table
data, we are also interested in applying, e.g., generalizations of symmetry,
quasi-symmetry, and marginal homogeneity. For example, see Bishop et al.
(1975, pp.299-309), Agresti (2002a, chap.11), Tomizawa (1995a), Tomizawa
and Makii (2001), Tahata, Katakura and Tomizawa (2007), and Yamamoto
(2004).
The purpose of this paper is (1) to review some topics on various symmetry
models (Sections 2-6), and (2) to show the orthogonality of decomposition
for goodness-of-fit test of the symmetry model for multi-way tables (Section
7). Section 2 describes various symmetry models, Section 3 describes the de-
compositions of some symmetry models, Section 4 gives the examples, Section
5 describes the measures of some symmetry models, Section 6 describes the
symmetry, the quasi-symmetry and the marginal symmetry models, and the
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relationship among the models, for multi-way tables, and Section 7 shows the
orthogonality of test statistic of the symmetry model for multi-way tables.

2. Models

2.1. Symmetry and marginal homogeneity models

Consider an r × r square contingency table with the same row and column
classifications. Let pij denote the probability that an observation will fall in
the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r).
Bowker (1948) considered the symmetry model defined by

pij = ψij (i �= j),

where ψij = ψji. This indicates that the probability that an observation will
fall in row category i and column category j is equal to the probability that
the observation falls in row category j and column category i. Namely this
describes a structure of symmetry of the probabilities {pij} with respect
to the main diagonal of the table. The symmetry model is described by
many statisticians; see, for example, Bishop et al. (1975, p.282), Caussinus
(1965), Bhapkar (1979), Goodman (1985), McCullagh (1977), van der Heijden,
Falguerolles and Leeuw (1989), van der Heijden and Mooijaart (1995), Agresti
and Natarajan (2001), Agresti (2002a, p.424), Andersen (1994, p.320), Everitt
(1992, p.142), and Tomizawa (1993a), etc. For the log-linear form of the
symmetry model, see Section 6 and, e.g., Bishop et al. (1975, p.282).
The marginal homogeneity model is defined by

pi· = p·i (i = 1, . . . , r),

where pi· =
∑r

t=1 pit and p·i =
∑r

s=1 psi (Stuart, 1955). This model indicates
that the row marginal distribution is identical to the column marginal
distribution. For testing goodness-of-fit of this model, e.g., Stuart (1955) and
Bhapkar (1966) gave the Wald type test statistics, Ireland, Ku and Kullback
(1969) gave the minimum discrimination information statistics, Bishop et al.
(1975, p.294) gave the statistic based on the maximum likelihood estimates of
expected frequencies, and Agresti (1983b) gave the Mann-Whitney type test
statistic.
Miyamoto, Tahata, Ebie and Tomizawa (2006) considered a marginal inho-
mogeneity model for nominal data, defined by

pi· = e∆ip·i (i = 1, . . . , r),

where |∆i| = ∆ and ∆ > 0. This indicates that the odds, pi·/p·i (i = 1, . . . , r),
are equal to e∆ for some i and e−∆ for the other i. Note that this model is
used when the marginal homogeneity model does not hold. [See Sections 3.2
and 3.3 for some models of marginal inhomogeneity for ordinal data].
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2.2. Quasi-symmetry model

Caussinus (1965) considered the quasi-symmetry model defined by

pij = αiβjψij (i �= j),

where ψij = ψji. A special case of this model with {αi = βi} is the symmetry
model. Caussinus’ (1965) paper is quoted in many literatures; for example,
Agresti (1983a, 1995), Agresti and Lang (1993), Bishop et al. (1975, p.286),
Goodman (1979b), Bhapkar (1979), Bhapkar and Darroch (1990), Becker
(1990), McCullagh (1982), van der Heijden et al. (1989), Bartolucci, Forcina
and Dardanoni (2001), Haberman (1979, p.490), Plackett (1981, p.78), Clogg
and Shihadeh (1994, p.66), Tomizawa (1987, 1989, 1992a, 1992b), and Tahata
et al. (2004), etc. The related topics to Caussinus’ paper (i.e., the quasi-
symmetry model) are also on the Web site in France,

http : //www.lsp.ups− tlse.fr/Projet QS/index.html.

This Web site establishes a list of many papers which have quoted Caussinus’
paper. Also, in the special issue of the ‘Annales de la Faculté des Sciences
de Toulouse (2002)’, the 11 papers related to the quasi-symmetry model
are collected; they include, for example, Agresti (2002b), Dossou-Gbété and
Grorud (2002), Erosheva, Fienberg and Junker (2002), Falguerolles and van
der Heijden (2002), Goodman (2002), McCullagh (2002), and Caussinus
(2002), etc.
Denote the odds ratio for rows i and j (> i), and columns s and t (> s) by
θij;st. Thus θij;st = (pispjt)/(pjspit). Using odds ratios, the quasi-symmetry
model is further expressed as

θij;st = θst;ij (i < j; s < t).

Therefore this model has characterization in terms of symmetry of odds ratios
(though the symmetry model has characterization in terms of symmetry of
cell probabilities). Goodman (1979b) referred to this model as the symmetric
association model. We note that the symmetry of odds ratios also holds under
the symmetry model, and that the independence model indicates θij;st = 1
(i < j; s < t).
Let X1 and X2 denote the row and column variables, respectively. Also let pc

ij

(i �= j) denote the conditional probability of (X1, X2) = (i, j) on condition
that (X1, X2) = (i, j) or (j, i). Namely pc

ij = pij/(pij + pji), i �= j. Then the
quasi-symmetry model may be expressed as

pc
ij =

γi

γi + γj

(i �= j).

So, this also relates to the Bradley-Terry model (Bradley and Terry, 1952;
Agresti, 2002a, p.438); though the details are omitted. Caussinus (1965)
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also briefly indicates the relationship between quasi-symmetry and paired-
comparison models. We note that the symmetry model indicates pc

ij = 1/2
(i �= j) with γ1 = . . . = γr.
Each of the symmetry, the marginal homogeneity models, the marginal
inhomogeneity model described in Section 2.1, and the quasi-symmetry model
is invariant under the arbitrary same permutations of row and column
categories. Thus it is suitable to apply these models for analyzing square tables
with nominal categories (such as the data in Table 1), and also one may use
these models for analyzing square tables with ordered categories (such as the
data in Table 2) when one may not use the information about the category
ordering.
Goodman (1979b) and Agresti (1983a) also considered various association
models; for example, the null association, the uniform association, the linear-
by-linear association, the row (column) effects, and the row and column effects
association models, etc. Also see, for example, Goodman (1981a, 1981b, 1985,
1986), Chuang, Gheva and Odoroff (1985), Gilula and Haberman (1988),
Clogg and Shihadeh (1994), and Agresti (2002a, p.369), etc.
For analyzing square contingency tables with the same row and column
classifications, it may be useful to use the quasi association models which
are defined only off the main diagonal cells. The quasi-uniform association
model (Goodman, 1979b) is defined by

pij = αiβjθ
ij (i �= j).

A special case of this model with θ = 1 is the quasi-independence (quasi
null association) model. Obviously the quasi-independence and the quasi-
uniform association models are special cases of Caussinus’ quasi-symmetry
model. When the known scores {ui} can be assigned to both of rows and
columns, where u1 < . . . < ur, the quasi linear-by-linear association model is
defined by

pij = αiβjθ
uiuj (i �= j).

This model is also a special case of the quasi-symmetry model (e.g., Agresti,
2002a, p.431). These models are used for analyzing square tables with ordered
categories.

2.3. Asymmetry models

The symmetry, quasi-symmetry and marginal homogeneity models describe
the structures of symmetry in various senses. In this section we shall introduce
the models which describe the structures of asymmetry.
McCullagh (1978) considered the conditional symmetry model defined by

pij =
{
δψij (i < j),
ψij (i � j),

where ψij = ψji (also see Agresti, 2002a, p.431). A special case of this model
obtained by putting δ = 1 is the symmetry model. Note that the conditional

8



THE ANALYSIS OF SYMMETRY AND ASYMMETRY

symmetry model is equivalent to Read’s (1977) proportional symmetry model
and also to a log-linear model by Bishop et al. (1975, pp.285-286). This model
indicates the symmetry of conditional probabilities such that

P(X1 = i,X2 = j|X1 < X2) = P(X1 = j,X2 = i|X1 > X2) (i < j).

We note that McCullagh (1978) also considered other two multiplicative mod-
els which were referred to as the palindromic symmetry and the generalized
palindromic symmetry models, including the symmetry and the conditional
symmetry models as special cases.
Although the conditional symmetry model should be applied to the ordinal
data (because this model is not invariant under the any same permutations
of row and column categories), Tomizawa, Miyamoto and Funato (2004)
considered the extended symmetry model which is applied to the nominal
data as follows:

pij =
{
e∆ijψij (i < j),
ψij (i � j),

where |∆ij | = ∆ and ψij = ψji. This indicates that the odds, pij/pji (i < j),
are equal to e∆ for some i < j and e−∆ for the other i < j. Note that this
model is different from the conditional symmetry model.
Goodman (1979a) considered the diagonals-parameter symmetry model de-
fined by

pij =
{
δj−iψij (i < j),
ψij (i � j),

where ψij = ψji. A special case of this model obtained by putting δ1 =
. . . = δr−1 (= δ) is the conditional symmetry model. Note that the diagonals-
parameter symmetry model is applied to the ordinal data.
Agresti (1983c) considered the linear diagonals-parameter symmetry model
defined by

pij =
{
δj−iψij (i < j),
ψij (i � j),

where ψij = ψji. This model is a special case of the diagonals-parameter
symmetry model obtained by putting {δj−i = δj−i}, and also a special case of
Caussinus’ quasi-symmetry model. Using the known scores u1 < . . . < ur,
Agresti (2002a, p.429) also considered the ordinal quasi-symmetry model
defined by

pij =
{
δuj−uiψij (i < j),

ψij (i � j),

where ψij = ψji. Obviously this model is a special case of the quasi-symmetry
model. We note that the linear diagonals-parameter symmetry model and the
ordinal quasi-symmetry model indicate the asymmetry of the cell probabilities
but the symmetry of the odds ratios, and these models should be applied to
the ordinal data because each of these models is not invariant under the any
same permutations of row and column categories.
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Let

Gij =
i∑

s=1

r∑
t=j

pst = P(X1 � i,X2 � j) (i < j)

and

Gij =
r∑

s=i

j∑
t=1

pst = P(X1 � i,X2 � j) (i > j).

Since the difference between the marginal cumulative probabilities P(X1 � i)
and P(X2 � i) is equal to the difference between Gi,i+1 and Gi+1,i for
i = 1, . . . , r− 1, the asymmetry model for the cumulative probabilities {Gij},
i �= j (instead of the cell probabilities), may be useful for making inferences
such as that X1 is stochastically less than X2 or vice versa.
Tomizawa (1993a) pointed out that the multiplicative forms of the symmetry
and the conditional symmetry models for {pij} can also be expressed similarly
as multiplicative forms for {Gij}, i �= j, namely as

Gij = Ψij (i �= j), pii = Ψii,

where Ψij = Ψji, and as

Gij =
{
δΨij (i < j),
Ψij (i > j), pii = Ψii,

where Ψij = Ψji, respectively; however, the diagonals-parameter symmetry
model cannot be expressed as a (similar) multiplicative form for {Gij},
i �= j. So, Tomizawa (1993a) considered the cumulative diagonals-parameter
symmetry model defined by

Gij =
{

∆j−iΨij (i < j),
Ψij (i > j), pii = Ψii,

where Ψij = Ψji. This model states that the cumulative probability that
an observation will fall in row category i or below and column category j
(> i) or above, is ∆j−i times higher than the cumulative probability that
the observation falls in column category i or below and row category j or
above. Especially, ∆1 � 1 is equivalent to P(X1 � i) � P(X2 � i) for every
i = 1, . . . , r−1. Therefore the parameter ∆1 in this model would be useful for
making inferences such as that X1 is stochastically less than X2 or vice versa.
Note that the cumulative diagonals-parameter symmetry model is different
from the Goodman’s diagonals-parameter symmetry model.
Miyamoto, Ohtsuka and Tomizawa (2004) considered the cumulative linear
diagonals-parameter symmetry and the cumulative quasi-symmetry models.
For example, the cumulative quasi-symmetry model is defined by

Gij = αiβjΨij (i �= j), pii = Ψii,

where Ψij = Ψji. This model is different from the Caussinus’ quasi-symmetry
model though both models have similar multiplicative forms.
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For the r × r table, define the global odds ratios as the odds ratio for the
2×2 tables corresponding to the (r−1)(r−1) ways of collapsing the row and
column classifications into dichotomies (e.g., Agresti, 1984, p.20). Bartolucci
et al. (2001) considered the quasi-global symmetry model, which indicates
the symmetry of global odds ratios, and which is the analog of the Caussinus’
quasi-symmetry model.
Goodman (1985) described various generalized independence models and
generalized symmetry plus independence models; for example, the triangle
non-symmetry plus independence model is defined by

pij =
{
αiαjτ1 (i < j),
αiαjτ2 (i > j),

which is a special case of the conditional symmetry model (also see Goodman,
1972, and Bishop et al., 1975, pp.320-324).
Each of the models described in Section 2.3 (except the extended symmetry
model in Tomizawa et al., 2004) is not invariant under the arbitrary same
permutations of row and column categories. Thus it is suitable to apply these
models for analyzing square tables with ordered categories (such as the data
in Table 2), however it is not suitable to apply these models for analyzing
square tables with nominal categories (such as the data in Table 1).

3. Decompositions of models

Consider the r × r square contingency table with the same row and column
classifications.

3.1. Decompositions of the symmetry model

Caussinus (1965) gave the decomposition of the symmetry model as follows:

THEOREM 1. — The symmetry model holds if and only if both the quasi-
symmetry and the marginal homogeneity models hold.

For this decomposition, also see Bishop et al. (1975, p.287) and Agresti
(2002a, p.429). From this theorem we see that assuming that the quasi-
symmetry model holds true, the hypothesis that the symmetry model holds
is equivalent to the hypothesis that the marginal homogeneity model holds.
In addition, as shown in Section 7, the goodness-of-fit test statistic for
the hypothesis that the symmetry model holds assuming that the quasi-
symmetry model holds (i.e., the marginal homogeneity model holds under the
assumption) is asymptotically equivalent to the goodness-of-fit test statistic
for the hypothesis that the marginal homogeneity model holds. So, in a
sense of orthogonality (or separability), two components of symmetry (i.e.,
quasi-symmetry and marginal homogeneity) are not related (see Section 7).
For analyzing the data, this theorem also would be useful for seeing which
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structure of the quasi-symmetry and the marginal homogeneity is more lacking
when the symmetry model fits the data poorly (see Section 4).
Using the ordinal quasi-symmetry model described in Section 2.3, Agresti
(2002a, p.430) considered the decomposition of the symmetry model for the
ordinal data as follows:

THEOREM 2. — The symmetry model holds if and only if both the ordinal
quasi-symmetry and the marginal homogeneity models hold.

3.2. Decompositions of the conditional symmetry model

In the similar way to Caussinus’ decomposition, Tomizawa (1984, 1985a, 1989,
1992a) considered some decompositions of the conditional symmetry model.
In order to show one of these decompositions, we shall define three models
below.
Tomizawa (1984, 1985a) considered the extended quasi-symmetry model
defined by

pij = αiβjψij (i �= j),

where ψij = γψji (i < j). A special case of this model obtained by putting
γ = 1 is Caussinus’ quasi-symmetry model. Using the odds ratios, this model
may be expressed as

θij;jk = γθjk;ij (i < j < k),

namely as
pijpjkpki = γpjipkjpik (i < j < k).

[We note that Tomizawa, Miyamoto, Yamamoto and Sugiyama (2007) con-
sidered the cumulative extended quasi-symmetry model which has the similar
form for {Gij} instead of {pij}, i �= j].
Tomizawa (1984, 1985a) also considered the extended marginal homogeneity
model defined by

p
(δ)
i· = p

(δ)
·i (i = 1, . . . , r),

where δ is unspecified and

p
(δ)
i· = δp−i· + pii + p+

i· , p
(δ)
·i = p+

·i + pii + δp−·i ,

p−i· =
i−1∑
k=1

pik, p+
i· =

r∑
k=i+1

pik, p+
·i =

i−1∑
k=1

pki, p−·i =
r∑

k=i+1

pki.

This model indicates that the row marginal totals summed by multiplying the
probabilities for cells in the lower-left (upper-right) triangle of the table by
a common weight δ (1/δ) are equal to the column marginal totals summed
in the same way. A special case of this model obtained by putting δ = 1
is the marginal homogeneity model. Under this model, δ � 1 is equivalent
to P(X1 � i) � P(X2 � i) for every i = 1, . . . , r − 1. Therefore the
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parameter δ in this model would be useful for making inferences such as that
X1 is stochastically less than X2 or vice versa. We note that the extended
marginal homogeneity model may be expressed as Gi,i+1 = δGi+1,i for
i = 1, . . . , r−1; and also Tomizawa (1995b) considered the further generalized
marginal homogeneity model as Gi,i+1 = δφi−1Gi+1,i for i = 1, . . . , r − 1.
In order to consider the decomposition of the conditional symmetry model,
we consider the balance model which indicates that the parameter γ in the
extended quasi-symmetry model is equal to the parameter δ in the extended
marginal homogeneity model when both models hold, e.g., as follows;

r−1∑
i=1

Gi,i+1

r−1∑
i=1

Gi+1,i

=

∑
i<j<k

pijpjkpki

∑
i<j<k

pjipkjpik

.

It may be not meaningful to apply only this model for the data, but this model
would be useful to consider the decomposition of the conditional symmetry
model. We obtain the following theorem:

THEOREM 3. — The conditional symmetry model holds if and only if all the
extended quasi-symmetry, the extended marginal homogeneity, and the balance
models hold.

Theorem 3 is an extension of Caussinus’ decomposition (i.e., Theorem 1).

3.3. Decompositions of other models

As extensions of marginal homogeneity model, Tomizawa (1987) considered
two kinds of diagonal weighted marginal homogeneity models (say I and II).
The model I is defined by

p−i· (φ) + pii + p+
i· = p+

·i + pii + p−·i (φ) (i = 1, . . . , r),

where

p−i· (φ) =
i−1∑
k=1

φi−kpik, p−·i (φ) =
r∑

k=i+1

φk−ipki.

The model II is defined by

p−i· + pii + p+
i· (ψ) = p+

·i (ψ) + pii + p−·i (i = 1, . . . , r),

where

p+
i· (ψ) =

r∑
k=i+1

ψk−ipik, p+
·i (ψ) =

i−1∑
k=1

ψi−kpki.

Special cases of these models obtained by putting φ = 1 (ψ = 1) are
the marginal homogeneity model. Under these models, φ � 1 (ψ � 1) are
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equivalent to P(X1 � i) � P(X2 � i) for every i = 1, . . . , r − 1. Therefore
the parameter φ (ψ) in these models would be useful for making inferences
such as that X1 is stochastically less than X2 or vice versa. Tomizawa (1987)
gave the decomposition of the linear diagonals-parameter symmetry model for
ordinal data as follows:

THEOREM 4. — The linear diagonals-parameter symmetry model holds if and
only if both the quasi-symmetry model and the diagonal weighted marginal
homogeneity model I (or II) hold.

Also Tomizawa (1998) gave the decomposition of the marginal homogeneity
model for ordinal data as follows (though the details are omitted):

THEOREM 5. — The marginal homogeneity model holds if and only if all the
generalized marginal homogeneity, the marginal equi-means and the marginal
equi-variances models hold.

Note that the generalized marginal homogeneity model is defined in Section
3.2 and the marginal equi-means (equi-variances) models indicate the equality
of means (variances) of X1 and X2.
Agresti (1984, p.205; 2002a, p.420) considered the marginal cumulative logistic
model for ordinal data, which is an extension of the marginal homogeneity
model, defined by

LX1
i = LX2

i + ∆ (i = 1, . . . , r − 1),

where for t = 1, 2,

LXt
i = logit[P(Xt � i)] = log

[
P(Xt � i)

1 − P(Xt � i)

]
.

A special case of this model obtained by putting ∆ = 0 is the marginal
homogeneity model. Miyamoto, Niibe and Tomizawa (2005) considered the
conditional marginal cumulative logistic model which is defined only off the
main diagonal, and using these logistic models and the marginal equi-means
model, gave another decomposition of the marginal homogeneity model for
square tables with ordered categories (though the details are omitted). Tahata
et al. (2007) gave the similar decomposition of the marginal homogeneity
model for multi-way tables with ordered categories.

3.4. Decompositions of the point-symmetry model

Wall and Lienert (1976) considered the point-symmetry model defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ and l∗ = r+ 1− l (l = i, j). This model states that the cell
probabilities are point-symmetric with respect to the center point (when r is

14
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even) or the center cell (when r is odd); though the symmetry model states
that they are line-symmetric with respect to the main diagonal of the table.
In the similar way to Caussinus’ quasi-symmetry model, Tomizawa (1985b)
considered the quasi-point-symmetry model defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ . This model is an extension of the point-symmetry model.
Tomizawa (1985b) also considered the marginal point-symmetry model de-
fined by

pi· = pi∗· (i = 1, . . . , r)

and
p·j = p·j∗ (j = 1, . . . , r).

In the similar way to Caussinus’ decomposition, Tomizawa (1985b) gave the
following theorem:

THEOREM 6. — The point-symmetry model holds if and only if both the quasi-
point-symmetry and the marginal point-symmetry models hold.

Also see Tomizawa (1993b), and Tahata and Tomizawa (2006) for the decom-
positions of related point-symmetry models.

4. Examples

4.1. Example 1

Consider the voting transitions data in Table 1 with nominal categories. The
row variable X1 is the voting in 1966 and the column variable X2 is the voting
in 1970. Table 3 gives the values of the likelihood ratio chi-squared statistic
for some models. We shall show simply the analysis based on the Caussinus’
decomposition (i.e., Theorem 1). [See Miyamoto et al. (2006) for more detailed
analysis].
We see from Table 3 that the symmetry model fits these data poorly. The
Caussinus’ quasi-symmetry model fits these data well, however, the marginal
homogeneity model fits poorly. From Caussinus’ decomposition, we can see
that the poor fit of the symmetry model is caused by the influence of the lack
of structure of the marginal homogeneity rather than the quasi-symmetry.
Since the symmetry model does not fit these data well, however, the quasi-
symmetry model fits well, it is seen that in these data there is not a structure
of symmetry of cell probabilities {pij} but there is a structure of symmetry
of odds ratios {θij;st}.
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4.2. Example 2

Consider the vision data in Table 2 with ordered categories. The row variable
X1 is the right eye grade and the column variable X2 is the left eye grade.
These data have been analyzed by many statisticians, e.g., including Stuart
(1953, 1955), Caussinus (1965), Bishop et al. (1975, p.284), Bhapkar (1966),
McCullagh (1978), Goodman (1979a), Agresti (1983b, 1983c), White, Landis
and Cooper (1982), Read (1977), Grizzle, Starmer and Koch (1969), Ireland
et al. (1969), Miyamoto et al. (2004), Tomizawa (1985a, 1987, 1993a), and
Tomizawa, Miyamoto and Yamamoto (2006), etc. Table 4 gives the values of
the likelihood ratio chi-squared statistic for various models. We shall show
simply the analysis based on the Caussinus’ decomposition (i.e., Theorem 1)
and Theorem 3.
First, consider the models which indicate the structures of symmetry. We see
from Table 4 that the symmetry model fits these data poorly. The Caussinus’
quasi-symmetry model fits these data well, however, the marginal homogeneity
model fits poorly. From Caussinus’ decomposition, we can see that the poor
fit of the symmetry model is caused by the influence of the lack of structure
of the marginal homogeneity rather than the quasi-symmetry.
Next consider the models which indicate the structures of asymmetry. From
Table 4 we see that the conditional symmetry and the linear diagonals-
parameter symmetry models fit these data well. Also the diagonals-parameter
symmetry model fits these data very well. According to the test (at the 0.05
level) based on the difference between the likelihood ratio chi-square values,
the diagonals-parameter symmetry model may be preferable to the conditional
symmetry model. From Theorem 3 we see that the reason why the conditional
symmetry model is not necessarily so adequate for these data, is caused by
the influence of the lack of structure of the extended quasi-symmetry rather
than the extended marginal homogeneity and the balance models.
Moreover, the cumulative diagonals-parameter symmetry model fits these data
very well. Under this model, the value of maximum likelihood estimate of
parameter ∆1 is 1.175 (Tomizawa, 1993a). Since this value is greater than 1,
under this model the probability that the grade of the right eye is less than i
(i = 2, 3, 4) is estimated to be greater than the probability that the grade of
the left eye is less than i; namely, the left eye is estimated to be worse than
the right eye. We omit here the analysis based on the other models and the
other decompositions.

5. Measures

For the analysis of data, when the model does not hold, we are interested in
applying the extend models, analyzing the residual, and also measuring the
degree of departure from the model, etc. This section describes some measures
for various symmetry and asymmetry.
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5.1. Measure of departure from symmetry

For the r×r square contingency table with the nominal categories, Tomizawa
(1994) and Tomizawa et al. (1998) considered the measures to represent the
degree of departure from the symmetry model. Also, Tomizawa, Miyamoto
and Hatanaka (2001) considered them for ordinal data. We shall describe the
measure for nominal data below.
Assume that {pij + pji > 0, i �= j}. Let

δ =
∑ ∑

s �=t

pst, p∗ij =
pij

δ
, ps

ij =
1

2
(p∗ij + p∗ji), i �= j.

Tomizawa et al. (1998) defined the measure by, for λ > −1,

Φ(λ) =
λ(λ+ 1)

2λ − 1
I(λ),

where

I(λ) =
1

λ(λ+ 1)

r∑
i=1

r∑
j=1
j �=i

p∗ij




(
p∗ij

ps
ij

)λ

− 1


 ,

and the value at λ = 0 is taken to be the limit as λ → 0. The value λ is chosen
by the user. Note that I(λ) is the Cressie-Read power-divergence between {p∗ij}
and {ps

ij}, and in particular I(0) is the Kullback-Leibler information between
them. For more details of the power-divergence see Cressie and Read (1984),
and Read and Cressie (1988, p.15). This measure may be expressed as, for
λ > −1,

Φ(λ) =
∑ ∑

i<j

(p∗ij + p∗ji)

(
1 −

λ2λ

2λ − 1
H

(λ)
ij

)
,

where

H
(λ)
ij =

1

λ
(1 − (pc

ij)
λ+1 − (pc

ji)
λ+1),

pc
ij =

pij

pij + pji

, pc
ji =

pji

pij + pji

.

Note that H(λ)
ij is Patil-Taillie diversity index for {pc

ij , p
c
ji}, which includes the

Shannon entropy when λ = 0; see Patil and Taillie (1982).
For each λ > −1, (i) 0 � Φ(λ) � 1, (ii) there is a structure of symmetry in
the r× r table, i.e., {pij = pji}, if and only if Φ(λ) = 0, and (iii) the degree of
departure from symmetry is largest (say, complete asymmetry), in the sense
that pc

ij = 0 (then pc
ji = 1) or pc

ji = 0 (then pc
ij = 1) for all i �= j, if and only

if Φ(λ) = 1. According to the Cressie-Read power-divergence or Patil-Taillie
index, Φ(λ) represents the degree of asymmetry, and the degree increases as
the value of Φ(λ) increases.
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Let W (λ) denote the power-divergence statistic for testing goodness-of-fit of
the symmetry, i.e.,

W (λ) =
2

λ(λ+ 1)

r∑
i=1

r∑
j=1

nij




(
2nij

nij + nji

)λ

− 1


 (−∞ < λ < +∞),

where nij is the observed frequency in the (i, j)th cell of the table, and the
values at λ = −1 and λ = 0 are taken to be the limits as λ → −1 and λ → 0,
respectively. Note that W (0) and W (1) are the likelihood ratio chi-squared
statistic and the Pearson’s chi-squared statistic, respectively. Then we see

Φ̂(λ) =
λ(λ+ 1)

2(2λ − 1)n∗W
(λ) (λ > −1),

where n∗ =
∑ ∑

i �=j nij , and Φ̂(λ) is Φ(λ) with pij replaced by p̂ij = nij/n,
n =

∑ ∑
nij (see Tomizawa et al., 1998). The measure Φ̂(λ) is always in

the range between 0 and 1, but the test statistic W (λ) depends on the off-
diagonal observations n∗. Thus Φ̂(λ) would be better than W (λ) for comparing
the degree of asymmetry in several tables (for more details see Tomizawa et

al., 1998, and Tomizawa et al., 2001). We note that the measure Φ̂(λ) cannot
be used for testing goodness-of-fit of the symmetry model although W (λ) is
used only for testing it.
The measure Φ̂(λ) is useful for comparing the degree of departure from
symmetry in several tables, and for measuring what degree the departure from
symmetry is toward the complete asymmetry (see Tomizawa et al., 1998). We
point out that we cannot measure it by the goodness-of-fit test statistic of the
symmetry model. We note that Yamamoto (2004) extended the measure Φ(λ)

into the multi-way table with nominal categories.

5.2. Measures of other symmetry and asymmetry

Tahata et al. (2004) considered the measure of departure from Caussinus’
quasi-symmetry model and the Bradley-Terry model. Also, Tomizawa (1995a),
Tomizawa and Makii (2001), and Tomizawa, Miyamoto and Ashihara (2003)
considered the measures of departure from the marginal homogeneity model.
Some measures of departure from the asymmetry models are also considered.
For example, see Tomizawa and Saitoh (1999a, 1999b) for the measures of de-
parture from the conditional symmetry model, and see Tomizawa, Miyamoto
and Yamane (2005) for the measure of departure from the diagonals-parameter
symmetry model.
Yamamoto and Tomizawa (2007) gave the decomposition of measure for
marginal homogeneity into the measure for the extended marginal homogene-
ity model and the measure from equality of marginal means.
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5.3. Measure from correspondence analysis approach

For square contingency tables, van der Heijden et al. (1989), Gower (1977), and
Constantine and Gower (1978) considered the singular value decomposition
of a skew symmetric matrix (denoted by N) of which elements are residuals
from the independence model, the quasi-independence model, the symmetry
model and the quasi-symmetry model (being log-linear models), and analyzed
the structure in residuals from the model with the correspondence analysis
approach (also see Greenacre, 2000, and Dossou-Gbété and Grorud, 2002).
Tomizawa and Murata (1992) considered the measure to represent the degree
of residuals from the symmetry model by modifying the sum of squared
singular values of matrix N (namely, by modifying the ‘total inertia’ in
correspondence analysis).

5.4. Kappa measure of agreement and quasi-symmetry

Suppose that two raters separately classify each subject on an r response
categories, and let pij denote the probability of rating i by the first rater
and rating j by the second rater. Cohen (1960) proposed the measure ‘kappa’
describing degree of agreement between two raters defined as

κ =

∑
pii −

∑
pi·p·i

1 −
∑

pi·p·i
.

Tanner and Young (1985), Darroch and McCloud (1986), and Agresti (1988,
1989) proposed modeling the structure of agreement between raters, rather
than describing it with a single summary measure. Tanner and Young (1985),
Agresti (1988, 1989), and Agresti and Natarajan (2001) considered models
having the structure of baseline association (null association, uniform associ-
ation and linear-by-linear association) plus a main diagonal parameter.
For classification of subject h by rater a, let ρhat denote the probability
that the rating is in category t. In a population of S subjects, if one
assumes (i) that classifications are made independently in the sense that
pij = S−1

∑
h ρh1iρh2j , and (ii) that {ρhat} satisfies the condition of no

three-factor interaction, then Darroch and McCloud (1986) showed that
{pij} satisfies the Caussinus’ quasi-symmetry model. In this sense, reasonable
models for agreement should be special cases of the quasi-symmetry model.
As such a model, Agresti (1989) considered the model defined by

pij =
{

pipj(1 − κ) (i �= j),
p2

i + κpi(1 − pi) (i = j),

where pi = pi· = p·i (also see Agresti, 2002a, p.453). This model has the
structure of symmetry plus quasi-independence with kappa as parameter.
Tomizawa (1992c) considered the model defined by

pij =
{

φij (i �= j),
(κ+ (1 − κ)

∑r
t=1 p

2
t )/r (i = j),
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where φij = φji and pt = pt· = p·t. This model has the structure of symmetry
plus main diagonal equiprobability with kappa as parameter. Since both
models are special cases of quasi-symmetry model, they would be reasonable
models for agreement. Although the details are omitted, for the data from
Bishop et al. (1975, p.397), Tomizawa (1992c) showed that both models for
agreement fit well and described that three estimated κ (i.e., κ estimated
under the Agresti model, under the Tomizawa model, and under the saturated
model) are quite close.

6. Symmetry, quasi-symmetry and marginal symmetry for
multi-way tables

Consider the rT contingency table (T � 2). Let i = (i1, . . . , iT ) for ik =
1, . . . , r (k = 1, . . . , T ), and let pi denote the probability that an observation
will fall in the ith cell of the table. Also let Xk (k = 1, . . . , T ) denote the kth
variable. The complete symmetry (ST ) model is defined by

pi = pj

for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). See, for instance,
Bhapkar (1979), Bhapkar and Darroch (1990), Lovison (2000), and Agresti
(2002a, p.440).
Denote the hth-order (1 � h < T ) marginal probability P(Xs1 = i1, . . . , Xsh

=
ih) by ps

i , where s = (s1, . . . , sh) and i = (i1, . . . , ih) with 1 � s1 < . . . < sh �
T and ik = 1, . . . , r (k = 1, . . . , h). The hth-order marginal symmetry (MT

h )
model is defined by

ps
i = ps

j = pt
i (6.1)

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any s =
(s1, . . . , sh) and t = (t1, . . . , th) (Bhapkar and Darroch, 1990; Agresti, 2002a,
p.440). For instance, when T = 3, the M3

1 model is defined by

pi·· = p·i· = p··i (i = 1, . . . , r),

where ‘·’ denotes the sum; thus pi·· =
∑

s

∑
t pist, etc., and the M3

2 model is
defined by

pij· = pji· = pi·j = p·ij (i = 1, . . . , r; j = 1, . . . , r). (6.2)

The ST model may be expressed as in a log-linear form,

log pi = λ(i),

where λ(i) = λ(j) for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). In a
three-way table, for instance, log p122 = log p212 = log p221 = λ(122) (Agresti,
2002a, p.440).
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Bhapkar and Darroch (1990) defined the hth-order (1 � h < T ) quasi-
symmetry (QT

h ) model, which may be expressed as

log pi = λ+
T∑

k=1

λk(ik) +
∑ ∑

1�k1<k2�T

λk1k2(ik1 , ik2)

+ . . .+
∑

. . .
∑

1�k1<...<kh�T

λk1...kh
(ik1 , . . . , ikh

) + λ(i), (6.3)

where λ(i) = λ(j) for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). For
instance, when T = 3, the Q3

1 model is expressed as

log pijk = λ+ λ1(i) + λ2(j) + λ3(k) + λ(ijk),

where λ(ijk) = λ(ikj) = λ(jik) = λ(kij) = λ(jki) = λ(kji); and the Q3
2

model is expressed as

log pijk = λ+λ1(i)+λ2(j)+λ3(k)+λ12(ij)+λ13(ik)+λ23(jk)+λ(ijk), (6.4)

where λ(ijk) = . . . = λ(kji). Also see Bishop et al. (1975, p.303).
Bhapkar and Darroch (1990) gave the extension of Theorem 1 into multi-way
tables as follows:

THEOREM 7. — For rT table and 1 � h < T , the ST model holds if and only
if both the QT

h and MT
h models hold.

When T = 2, this theorem is identical to Theorem 1. When T = 3 with h = 1
and 2, this theorem is identical to the relation pointed out by Bishop et al.
(1975, p.307) in which however the proof was not given.

7. Orthogonality of decomposition of test statistic for
multi-way tables

Consider the rT contingency table (T � 2). Lang and Agresti (1994), and
Lang (1996) considered the simultaneous modeling of the joint distribution
and of the marginal distribution. Aitchison (1962) discussed the asymptotic
separability, which is equivalent to the orthogonality in Read (1977) and the
independence in Darroch and Silvey (1963), of the test statistics for goodness-
of-fit of two models (also see Lang and Agresti, 1994; Lang, 1996; Tomizawa,
1992a, 1993b). We are now interested in whether or not, for rT table, the test
statistic for the ST model is asymptotically equivalent to the sum of the test
statistic for the QT

h model and that for the MT
h model.

This section shows that for the multi-way tables, the test statistic for the ST

model is asymptotically equivalent to the sum of those for the QT
h and MT

h

models. We note that the Q2
1 model is the quasi-symmetry model.
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7.1. The case of r × r table

We shall consider the case of T = 2, i.e., the r×r square table. The Q2
1 model

is expressed as

log pij = λ+ λ1(i) + λ2(j) + λ(ij) (i = 1, . . . , r; j = 1, . . . , r), (7.1)

where λ(ij) = λ(ji). Without loss of generality, for example, we may set
λ1(r) = λ2(r) = λ(rj) = λ(ir) = 0. Let

p = (p11, . . . , p1r, p21, . . . , p2r, . . . , pr1, . . . , prr)′,

β = (λ, β1, β2, β12)′,

where
β1 = (λ1(1), . . . , λ1(r − 1)), β2 = (λ2(1), . . . , λ2(r − 1)),

and

β12 = (λ(11), . . . , λ(1, r − 1), λ(22), . . . , λ(2, r − 1), . . . , λ(r − 1, r − 1))

is the 1× r(r− 1)/2 vector of λ(ij) for 1 � i � j � r− 1. Then the Q2
1 model

is expressed as
log p = Xβ = (1r2 , X1, X2, X12)β,

where X is the r2 ×K matrix with K = (r2 + 3r − 2)/2 and 1s is the s × 1
vector of 1 elements,

X1 =
[
Ir−1 ⊗ 1r

Or,r−1

]
; the r2 × (r − 1) matrix,

X2 = 1r ⊗
[
Ir−1

0′r−1

]
; the r2 × (r − 1) matrix,

and X12 is the r2×r(r−1)/2 matrix of 1 or 0 elements, determined from (7.1),
Ir−1 is the (r − 1) × (r − 1) identity matrix, Ost is the s × t zero matrix, 0s

is the s× 1 zero vector, and ⊗ denotes the Kronecker product. Note that the
model matrix X is full column rank which is K. In a similar manner to Haber
(1985), and Lang and Agresti (1994), we denote the linear space spanned by
the columns of the matrix X by S(X) with the dimension K. Let U be an
r2 × d1, where d1 = r2 − K = (r − 1)(r − 2)/2, full column rank matrix
such that the linear space spanned by the columns of U , i.e., S(U), is the
orthogonal complement of the space S(X). Thus, U ′X = Od1,K . Therefore
the Q2

1 model is expressed as

h1(p) = 0d1 ,

where
h1(p) = U ′ log p.
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The M2
1 model, which is the marginal homogeneity model, may be expressed

as
h2(p) = 0d2 ,

where d2 = r − 1,
h2(p) = Wp,

and W is the d2 × r2 matrix with

W = [Ir−1 ⊗ 1′r, Or−1,r] − 1′r ⊗ [Ir−1, 0r−1].

Therefore we see that W ′ = X1 −X2. Thus the column vectors of W ′ belong
to the space S(X), i.e., S(W ′) ⊂ S(X). Hence WU = Od2d1 . From Theorem
1, the S2 model, which is the symmetry model, may be expressed as

h3(p) = 0d3 ,

where d3 = d1 + d2 = r(r − 1)/2,

h3 = (h′1, h
′
2)

′.

Note that hs(p), s = 1, 2, 3, are the vectors of order ds × 1, and ds, s = 1, 2, 3,
are the numbers of degrees of freedoms for testing goodness-of-fit of the Q2

1,
M2

1 and S2 models, respectively.
Let Hs(p), s = 1, 2, 3, denote the ds × r2 matrix of partial derivatives of hs(p)
with respect to p, i.e., Hs(p) = ∂hs(p)/∂p′ . Let Σ(p) = diag(p) − pp′, where
diag(p) denotes a diagonal matrix with ith component of p as ith diagonal
component. We see that

H1(p)p = U ′1r2 = 0d1 ,

H1(p)diag(p) = U ′,

H2(p) = W.

Therefore we obtain

H1(p)Σ(p)H2(p)′ = U ′W ′ = Od1d2 .

Thus we obtain the following lemma.

LEMMA 1. — ∆3 = ∆1 + ∆2 holds, where

∆s = hs(p)′[Hs(p)Σ(p)Hs(p)′]−1hs(p).

Assume that a multinomial distribution applies to the r×r table. For a model,
say, Ω, let G2(Ω) denote the likelihood ratio statistic for testing goodness-of-
fit of model Ω. From the asymptotic equivalence of the Wald statistic and the
likelihood ratio statistic (Rao, 1973, Sec. 6e. 3) and from Lemma 1, Darroch
and Silvey (1963), and Aitchison (1962), we obtain the following theorem.

THEOREM 8. — For the r×r table, the following asymptotic equivalence holds:

G2(S2) � G2(Q2
1) +G2(M2

1 ).
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7.2. The case of r × r × r table

We shall consider the case of T = 3, i.e., r×r×r table, with order h = 2. The
Q3

2 model is expressed as (6.4). Without loss of generality, we set λm(r) = 0,
λst(rj) = λst(ir) = 0, and λ(rjk) = λ(irk) = λ(ijr) = 0 for m = 1, 2, 3, and
1 � s < t � 3. Let

p = (p111, . . . , p1r1, . . . , pr11, . . . , prr1, p112, . . . , p1r2, . . . , pr12, . . . , prr2,

. . . , p11r, . . . , p1rr, . . . , pr1r, . . . , prrr)′,

β = (λ, β1, β2, β3, β12, β13, β23, β123)′,

where
βm = (λm(1), . . . , λm(r − 1)), m = 1, 2, 3,

βst = (λst(11), . . . , λst(1, r − 1), λst(21), . . . , λst(2, r − 1),
. . . , λst(r − 1, 1), . . . , λst(r − 1, r − 1)), 1 � s < t � 3;

and

β123 = (λ(111), . . . , λ(11, r − 1), λ(122), . . . , λ(12, r − 1), . . . , λ(222),
. . . , λ(22, r − 1), . . . , λ(r − 2, r − 1, r − 1), λ(r − 1, r − 1, r − 1))

is the 1 × (r3 − r)/6 vector of λ(ijk) for 1 � i � j � k � r − 1. Then Q3
2

model is expressed as

log p = Xβ = (1r3 , X1, X2, X3, X12, X13, X23, X123)β, (7.2)

where X is the r3 ×K vector with K = (r3 + 18r2 − 19r + 6)/6,

X1 = 1r ⊗
[
Ir−1 ⊗ 1r

Or,r−1

]
; the r3 × (r − 1) matrix,

X2 = 1r2 ⊗
[
Ir−1

0′r−1

]
; the r3 × (r − 1) matrix,

X3 =
[
Ir−1 ⊗ 1r2

Or2,r−1

]
; the r3 × (r − 1) matrix,

X12 = 1r ⊗


 Ir−1 ⊗

[
Ir−1

0′r−1

]
Or,(r−1)2


 ; the r3 × (r − 1)2 matrix,

X13 =




C1

C2
...

Cr−1

Or2,(r−1)2


 ; the r3 × (r − 1)2 matrix,
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where

Ci =
[
Ir−1 ⊗Ai

Or,(r−1)2

]
; the r2 × (r − 1)2 matrix,

Ai = [Or,i−1, 1r, Or,r−1−i]; the r × (r − 1) matrix,

with
A1 = [1r, Or,r−2], Ar−1 = [Or,r−2, 1r],

and

X23 =




D11 . . . D1,r−1

. . .
Dr−1,1 . . . Dr−1,r−1

Or2,(r−1)2


 ; the r3 × (r − 1)2 matrix,

where
Dij = 1r ⊗ Eji; the r2 × (r − 1) matrix,

Eji is the r× (r−1) matrix with a 1 in the (j, i)th element and 0’s elsewhere,
and X123 is the r3×(r3−r)/6 matrix of 1 or 0 elements, determined from (6.4).
Let U be an r3×d1, where d1 = r3−K = (r−1)(r−2)(5r−3)/6, full column
rank matrix such that the linear space spanned by the columns of U , i.e.,
S(U), is the orthogonal complement of the space S(X). Thus, U ′X = Od1,K .
Therefore the Q3

2 model is expressed as

h1(p) = 0d1 ,

where
h1(p) = U ′ log p.

The M3
2 model, which is defined by (6.2), may be expressed as

pi·· = p·i· = p··i (i = 1, . . . , r − 1), (7.3)
pij· = pi·j (i = 1, . . . , r − 1; j = 1, . . . , r − 1), (7.4)
pij· = p·ij (i = 1, . . . , r − 1; j = 1, . . . , r − 1), (7.5)
pij· = pji· (i = 1, . . . , r − 1; j = 1, . . . , r − 1). (7.6)

The equation (7.3), which is the M3
1 model, is expressed as

W1p = 02(r−1),

where W1 is the 2(r − 1) × r3 matrix with

W ′
1 = [X1, X1] − [X2, X3] .

The equations (7.4) and (7.5) are expressed as

W2p = 02(r−1)2 ,
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where W2 is the 2(r − 1)2 × r3 matrix with

W ′
2 = [X12, X12] − [X13, X23] .

The equation (7.6) is expressed as

W3p = 0(r−1)(r−2)/2,

where W3 is the (r − 1)(r − 2)/2 × r3 matrix with

W ′
3 = A1 −A2,

A1 = [a12, a13, . . . , a1,r−1, a23, . . . , a2,r−1, . . . , ar−2,r−1],

A2 = [a21, a31, . . . , ar−1,1, a32, . . . , ar−1,2, . . . , ar−1,r−2],

and aij is the r3 × 1 vector, being one of column vectors in X12 for (7.2),
shouldering λ12(ij). Thus, the M3

2 model is expressed as

h2(p) = 0d2 ,

where d2 = (r − 1)(5r − 2)/2,

h2(p) = Wp, W =


W1

W2

W3


 .

All column vectors of W ′ belong to the space S(X), i.e., S(W ′) ⊂ S(X).
Therefore, in the similar manner to the case of r × r table (in Section 7.1),
we see

H1(p)Σ(p)H2(p)′ = Od1d2 .

Although the detail is omitted, the similar result is also obtained for order
h = 1, i.e., for the Q3

1 and M3
1 models. Therefore we obtain

THEOREM 9. — For the r × r × r table, the following asymptotic equivalence
holds: for order h = 1, 2,

G2(S3) � G2(Q3
h) +G2(M3

h).
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7.3. The case of rT table

Consider the rT table. For order h with 1 � h < T , the QT
h model is expressed

as (6.3). Without loss of generality, we may set λk1...kl
(ik1 , . . . , ikl

) = 0 if
it = r for some it of (ik1 , . . . , ikl

), where 1 � l � h, and λ(i1, . . . , iT ) = 0 if
im1 = . . . = imv = r for some im1 , . . . , imv of (i1, . . . , iT ), where T−h � v � T .
In the similar way to the cases of r × r and r × r × r tables, for 1 � h < T ,
the QT

h model is expressed as the form,

log p = Xβ. (7.7)

From (6.1), the MT
1 model is expressed as

p1
(i) = p2

(i) = . . . = pT
(i) (i = 1, . . . , r − 1), (7.8)

where ps
(i) = P(Xs = i). The MT

2 model may be expressed as the MT
1 model,

i.e., (7.8), plus
p
(s1,s2)
(i,j) = p

(s1,s2)
(j,i) = p

(t1,t2)
(i,j)

for i = 1, . . . , r − 1; j = 1, . . . , r − 1; 1 � s1 < s2 � T and 1 � t1 < t2 � T .
Similarly, the MT

h model may be expressed as the MT
h−1 model plus

ps
i = ps

j = pt
i

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih), where ik = 1, . . . , r−1
(k = 1, . . . , h), and for s = (s1, . . . , sh) and t = (t1, . . . , th), where 1 � s1 <
. . . < sh � T and 1 � t1 < . . . < th � T . Then the MT

h model is expressed as

Wp = 0d2 , (7.9)

where

d2 =
h∑

u=0

(
T
u

)
(r − 1)u −

h∑
u=0

(
r − 2 + u

u

)
, (7.10)

though the detail is omitted. In (7.9), for instance, consider one of the
restrictions for the MT

h model for the mth (1 � m � h) marginal probabilities
such that

ps
i − pt

i = 0

for i = (i1, . . . , im), where ik = 1, . . . , r − 1 (k = 1, . . . ,m), and for
s = (s1, . . . , sm) and t = (t1, . . . , tm), where 1 � s1 < . . . < sm � T and
1 � t1 < . . . < tm � T . This restriction is expressed as

wlp = 0,

where wl is a 1 × rT vector being one of the row vectors of W in (7.9). Let
as1...sm

(i1, . . . , im) and at1...tm
(i1, . . . , im) be the rT ×1 vectors, being column
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vectors in X for (7.7), shouldering λs1...sm
(i1, . . . , im) and λt1...tm

(i1, . . . , im)
in β, respectively. Then we see

w′
l = as1...sm

(i1, . . . , im) − at1...tm
(i1, . . . , im).

Thus the vector w′
l belongs to the space S(X). Similarly, all column vectors

of W ′ belong to the space S(X), i.e., S(W ′) ⊂ S(X). Therefore, in the similar
manner to the cases of r × r and r × r × r tables, we obtain the following
theorem.

THEOREM 10. — For the rT table, the following asymptotic equivalence holds:
for order h (1 � h < T ),

G2(ST ) � G2(QT
h ) +G2(MT

h ).

The numbers of degrees of freedoms for testing goodness-of-fit of the QT
h , MT

h

and ST models are d1, d2 and d3, respectively, where d2 is given by (7.10),

d1 = rT −
h∑

u=0

(
T
u

)
(r − 1)u −

T∑
u=h+1

(
r − 2 + u

u

)

and

d3 = rT −
(
r − 1 + T

T

)
,

though the detail is omitted. Note that d3 = d1 +d2 since it is easily seen that

T∑
u=0

(
r − 2 + u

u

)
=

(
r − 1 + T

T

)
.

7.4. Concluding remarks

We point out from Theorem 10 that for instance, the likelihood ratio statistic
for testing goodness-of-fit of the ST model assuming that the QT

h model holds
true is G2(ST )−G2(QT

h ) and this is asymptotically equivalent to the likelihood
ratio statistic for testing goodness-of-fit of the MT

h model, i.e., G2(MT
h ).

We see that for each of the data in Tables 1 and 2 the value of G2(S2) is
very close to the sum of the values of G2(Q2

1) and G2(M2
1 ) (see Tables 3

and 4). As described in Section 4 we see by Theorem 8 that for each of the
data in Tables 1 and 2 the poor fit of the symmetry model is caused by the
influence of the lack of structure of the marginal homogeneity rather than the
quasi-symmetry.
The decomposition of test statistic is interesting not only from the testing
point of view but also sheds some light on the “decomposition” of symmetry
into quasi-symmetry and marginal homogeneity.
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Annex

TABLE 1. — Voting changes between 1966 and 1970 British Elections; from Upton

(1978, p.119).

1970

1966 Conservative Labour Liberal Abstention Total

Conservative 68 1 1 7 77
Labour 12 60 5 10 87
Liberal 12 3 13 2 30

Abstention 8 2 3 6 19

Total 100 66 22 25 213

TABLE 2. — Unaided distance vision of 7477 women aged 30-39 employed in Royal

Ordnance factories in Britain from 1943 to 1946; from Stuart (1953).

Right eye Left eye grade

grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

TABLE 3. — Likelihood ratio chi-square values of models applied to the data in

Table 1.

Applied Degrees of Likelihood ratio
models freedom chi-square

Symmetry 6 28.54*
Quasi-symmetry 3 4.20

Marginal homogeneity 3 24.97*

* means significant at the 0.05 level.
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TABLE 4. — Likelihood ratio chi-square values of models applied to the data in

Table 2.

Applied Degrees of Likelihood ratio
models freedom chi-square

Symmetry 6 19.25*
Quasi-symmetry 3 7.27

Marginal homogeneity 3 11.99*
Conditional symmetry 5 7.35

Linear diagonals-parameter symmetry 5 7.28
Diagonals-parameter symmetry 3 0.50

Cumulative diagonals-parameter symmetry 3 0.02
Extended quasi-symmetry 2 6.82*

Extended marginal homogeneity 2 0.005
Diagonal weighted marginal homogeneity I 2 0.005
Diagonal weighted marginal homogeneity II 2 0.015

Balance 1 0.11

* means significant at the 0.05 level.
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