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On the minimum of the unit lattice.

PAR VOLKER KESSLER

1. Introduction.

Computations in lattices often require a lower bound for the minimum
of the lattice, both for practical purposes and for a theoretical analysis of
the algorithms, e.g. [1] and [2].

In this paper we recall two results of Dobrowolski [3] and Smyth [5] in
order to get such a bound for the unit lattice.

2. Lower bound.

Let Ii be a finite extension of Q of degree n with maximal order R. For
1  i  n we denote by

the n different embeddings of K into the field C of complex numbers. The
first rl of those embeddings are real, the last 2r2 embeddings are non-real
and numbered such that the (rl + r2 + i)th embedding is the complex-
conjugation of the (r, + i)th embedding. Then the logarithmic map is

given by

with the unit rank r = ri + r2 - 1 and

The kernel of Log consists exactly of the roots of the unity lying in K. We
define the minamum A(L) of the unat lattice L := Log(R*) by

Manuscrit reçu le 8 f6vrier 1991.
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where 11 II denotes the Euclidean norm.

- 

THEOREM : A lower bound for the minimum A(L) is given by

which is "a bit" larger than

Thus the inverse 1/A(L) is of the magnitude 0(nl/2+f) for every c &#x3E; 0.

PROOF. Let E E R* be a unit of degree m over Q, which is no root of
unity. Without loss of generality we can assume that m = n, because if
[[Log E~~ is larger than p(K’) for a subfield K’ of li it is also larger than
I~~I~~. 

-

We are interested in two subsets of the conjugates e~,’’’ , 

Since E is no root of unity S is non-empty and therefore T cannot be empty
because of N(e) = 1.

We call c reciprocal if E is conjugate i.e. its minimal polynomial
f(X) = X "’ + + ... + ao satisfies

If e is non-reciprocal we know from the theorem of [5] that

where 9 is the real root of X ‘~ - X - 1, i.e. 0 ;~-, 1.3247. Thus
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But from N(E) = 1 it follows

The value If(r+l)1 I does not occur in the norm of Log(E). But as a
consequence of (3) it does not matter if r + 1 lies in S or in T and so we
can assume without restriction that r + 1 ~ S. Thus

(The second inequality follows from the well known norm equivalence be-
tween 1-norm and Euclidean norm.)

For reciprocal E we know by Theorem 1 of [3] :

We now use the Taylor series of the logarithm (Iyl  1) :

The inequality follows directly from Lagrange’s representation of the resi-
due. Applying (5) to (4) yields

Since E is reciprocal the inverses of the conjugates of c are also conjugate
to E. This implies that the numbers of conjugates outside the unit circle
equals the number of conjugates inside the unit circle, i.e
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Again by (3) we can assume that r + 1 ~ S

which is larger than

Because of 2~~~~~~ ) ~ 0.001178 we thus proved the lower bound.

REMARK. If the conjecture of Schinzel and Zassenhaus [5] is correct the
term be substituted by a constant independent of n. Thisterm ( g n )
bound would be provable the best one (up to constants).
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