# VOLKER KESSLER On the minimum of the unit lattice

*Journal de Théorie des Nombres de Bordeaux 2<sup>e</sup> série*, tome 3, n° 2 (1991), p. 377-380

<http://www.numdam.org/item?id=JTNB\_1991\_\_3\_2\_377\_0>

© Université Bordeaux 1, 1991, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire de Théorie des Nombres, Bordeaux 3 (1991), 377-380

## On the minimum of the unit lattice.

### PAR VOLKER KESSLER

### 1. Introduction.

Computations in lattices often require a lower bound for the minimum of the lattice, both for practical purposes and for a theoretical analysis of the algorithms, e.g. [1] and [2].

In this paper we recall two results of Dobrowolski [3] and Smyth [5] in order to get such a bound for the unit lattice.

#### 2. Lower bound.

Let K be a finite extension of  $\mathbb{Q}$  of degree n with maximal order R. For  $1 \leq i \leq n$  we denote by

$$K \to K^{(i)} \subset \mathbb{C}, \ \alpha \to \alpha^{(i)}$$

the *n* different embeddings of *K* into the field  $\mathbb{C}$  of complex numbers. The first  $r_1$  of those embeddings are real, the last  $2r_2$  embeddings are non-real and numbered such that the  $(r_1 + r_2 + i)$ th embedding is the complex-conjugation of the  $(r_1 + i)$ th embedding. Then the logarithmic map is given by

$$\operatorname{Log}: K^* \to \mathbb{R}^r, \quad \operatorname{Log}(\alpha) := (c_1 \log |\alpha^{(1)}|, \cdots, c_r \log |\alpha^{(r)}|)$$

with the unit rank  $r = r_1 + r_2 - 1$  and

$$c_{i} = \begin{cases} 1 & \text{for } 1 \le i \le r_{1} \\ 2 & \text{for } r_{1} + 1 \le i \le r + 1. \end{cases}$$

The kernel of Log consists exactly of the roots of the unity lying in K. We define the minimum  $\lambda(L)$  of the unit lattice  $L := Log(R^*)$  by

$$\lambda(L) = \min\{ \|v\| \mid v \in L \setminus \{0\} \}$$

Manuscrit reçu le 8 février 1991.

where || || denotes the Euclidean norm.

THEOREM : A lower bound for the minimum  $\lambda(L)$  is given by (1)

$$\lambda(L) > \mu(K) := \sqrt{\frac{2}{r+1}} \left( \frac{1}{1200} (\frac{\log \log n}{\log n})^3 - \frac{1}{2880000} (\frac{\log \log n}{\log n})^6 \right)$$

which is "a bit" larger than

$$\frac{1}{\sqrt{r+1}}\frac{1}{1000}\left(\frac{\log\log n}{\log n}\right)^3.$$

Thus the inverse  $1/\lambda(L)$  is of the magnitude  $0(n^{1/2+\epsilon})$  for every  $\epsilon > 0$ .

**PROOF.** Let  $\epsilon \in \mathbb{R}^*$  be a unit of degree m over  $\mathbb{Q}$ , which is no root of unity. Without loss of generality we can assume that m = n, because if  $\|\text{Log }\epsilon\|$  is larger than  $\mu(K')$  for a subfield K' of K it is also larger than  $\mu(K)$ .

We are interested in two subsets of the conjugates  $\epsilon^{(1)}, \dots, \epsilon^{(n)}$ 

$$S := \{1 \le i \le r+1 \mid |\epsilon^{(i)}| > 1\}$$
$$T := \{1 \le i \le r+1 \mid |\epsilon^{(i)}| < 1\}.$$

Since  $\epsilon$  is no root of unity S is non-empty and therefore T cannot be empty because of  $N(\epsilon) = 1$ .

We call  $\epsilon$  reciprocal if  $\epsilon$  is conjugate to  $\epsilon^{-1}$ , i.e. its minimal polynomial  $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$  satisfies

$$f(X) = X^{n} f(\frac{1}{X}) = a_0 X^{n} + a_1 X^{n-1} + \dots + a_{n-1} X + 1.$$

If  $\epsilon$  is <u>non-reciprocal</u> we know from the theorem of [5] that

$$\prod_{i \in S} |\epsilon^{(i)}|^{c_i} \ge \theta$$

where  $\theta$  is the real root of  $X^3 - X - 1$ , i.e.  $\theta \approx 1.3247$ . Thus

(2) 
$$\sum_{i \in S} c_i \log |\epsilon^{(i)}| \ge \log \theta \approx 0.281$$

378

But from  $N(\epsilon) = 1$  it follows

(3) 
$$\sum_{i \in S} c_i \log |\epsilon^{(i)}| = -\sum_{i \in T} c_i \log |\epsilon^{(i)}|.$$

The value  $c_{r+1} \log |\epsilon^{(r+1)}|$  does not occur in the norm of  $\text{Log}(\epsilon)$ . But as a consequence of (3) it does not matter if r+1 lies in S or in T and so we can assume without restriction that  $r+1 \notin S$ . Thus

$$\begin{aligned} ||\text{Log}(\epsilon)|| &\geq \sqrt{\sum_{i \in S} (c_i \, \log |\epsilon^{(i)}|)^2} \\ &\geq r^{-1/2} \sum_{i \in S} (c_i \, \log |\epsilon^{(i)}|) \geq r^{-1/2} \log \theta > \mu(K). \end{aligned}$$

(The second inequality follows from the well known norm equivalence between 1-norm and Euclidean norm.)

For <u>reciprocal</u>  $\epsilon$  we know by Theorem 1 of [3] :

(4) 
$$\prod_{i \in S} |\epsilon^{(i)}|^{c_i} > 1 + \frac{1}{1200} \left( \frac{\log \log n}{\log n} \right)^3.$$

We now use the Taylor series of the logarithm (|y| < 1):

(5) 
$$\log(1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} \mp \cdots > y - \frac{y^2}{2}.$$

The inequality follows directly from Lagrange's representation of the residue. Applying (5) to (4) yields

$$\sum_{i \in S} c_i \, \log |\epsilon^{(i)}| > \frac{1}{1200} (\frac{\log \log n}{\log n})^3 - \frac{1}{2880000} (\frac{\log \log n}{\log n})^6.$$

Since  $\epsilon$  is reciprocal the inverses of the conjugates of  $\epsilon$  are also conjugate to  $\epsilon$ . This implies that the numbers of conjugates outside the unit circle equals the number of conjugates inside the unit circle, i.e

$$\#S = \#T \le \frac{r+1}{2} \le \frac{n}{2}.$$

379

Again by (3) we can assume that  $r + 1 \notin S$ 

$$\begin{aligned} \|\text{Log}(\epsilon)\| &\ge \sqrt{\sum_{i \in S} (c_i \log |\epsilon^{(i)}|)^2} \ge \sqrt{\frac{2}{r+1}} \sum_{i \in S} c_i \log |\epsilon^{(i)}| \\ &> \sqrt{\frac{2}{r+1}} \left( \frac{1}{1200} (\frac{\log \log n}{\log n})^3 - \frac{1}{2880000} (\frac{\log \log n}{\log n})^6 \right) = \mu(K) \end{aligned}$$

which is larger than

$$\sqrt{\frac{2}{r+1}} (\frac{1}{1200} - \frac{1}{2880000}) (\frac{\log \log n}{\log n})^3.$$

Because of  $\sqrt{2}(\frac{1}{1200} - \frac{1}{2880000}) \approx 0.001178$  we thus proved the lower bound.

REMARK. If the conjecture of Schinzel and Zassenhaus [5] is correct the term  $(\frac{\log \log n}{\log n})^3$  can be substituted by a constant independent of n. This bound would be provable the best one (up to constants).

#### References

- Buchmann, Zur Komplexität der Berechnung von Einheiten und Klassenzahlen algebraicher Zahlkörper, Habilitationsschrift Düsseldorf (1987).
- [2] Buchmann, Kessler, Computing a reduced lattice basis from a generating system, to appear.
- [3] Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta arithmetica 34 (1979), 391-401.
- [4] Schinzel, Zassenhaus, A refinement of two theorems of Kronecker, Mich. Math. J. 12 (1965), 81-84.
- [5] Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175.

Volker Kessler Siemens AG ZFE ST SN 5 Otto-Hahn-Ring 6 D-8000 München 83.

380