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The genus class group I.

par A. FRÖHLICH

Introduction.

This is something of a variation on a theme of S. Wilson (cf. [3], [4]).
Applications to Galois module structure force on us a generalisation of
the theory of class groups of orders. Both for additive structure, as in

Wilson’s work, and more so for multiplicative structure the relevant Galois
objects are no longer necessarily locally free over the given order, nor-in the
miltiplicative case - even acted on faithfully. Indeed demanding faithful
action would be too restricitve. An important concept is now the genus

classgroup and our purpose here is to develop a direct "Hom-language"
approach to it. This is all the more relevant because of the connection
which arises with the new concept of factorisability.

Our approach also throws new light on the foundations of the theory
of the locally free classgroup, clarifying the customary dichotomy between
the "additive" language of K-theory and the "multiplicative" language of
Galois homomorphisms.

Every genus classgroup is isomorphic to a locally free classgroup of some
order of endomorphisms. We make heavy use of this for a considerable sim-
plification of proofs. This fact however is almost irrelevant for applications.

The Hom description of the classgroup is naturally forced on us by the
prospective applications, relating modules to arithmetic character invari-
ants. As already in the locally free case this Hom language is also the most
convenient for the formulation of functorial properties, e.g. on change of
genus. We shall come back to this problem in a subsequent paper.

As usual the symbols N,Z,Q stand for the natural numbers, the inte-
gers and the rational numbers. R* is the multiplicative group of invertible
elements of a ring R.

Manuscrit reçu le 10 juin 1991.
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1. Some axiomatics.

We are considering quadruplets consisting of

(i) an additive Abelian semigroup ,C;

(ii) a surjective homomorphim r : ,C --~ N (the positive integers);

(iii) a multiplicative Abelian group C;

(iv) a map C x ,C --~ ,C, written as (c, x) - cx.

These object are to satisfy the following axioms.

Write for the Grothendieck group of ,C, i.e. the universal object
for homomorphims .c --+ Abelian groups. The rank map r extends to a

homomorphism /Co(~C) 2013~ Z, whose kernel we denote by 

Write ~C for the image of ,C in /(,0(£), and z - x for the map ~C 2013~.

Proof : The hypothesis is x + z = y -~ z for some z E ,C. But then by
(l.l.a) and (l.l.d), cx + z = c(x + z) = c(y + z) = cy + z, i.e.cx = 

Using (1.2) we can define cx. We thus get a new
quadurplet satisfying our axioms with .C replaced by .C.

By (l.l.c) C acts on each of the inverse image sets r-~ (n) in £, n any
positive integer.

(1.3). If G acts fixed point free and transitively on each r-~ (n) =

f-, i.e. ,C admits the cancellation law.

Proof : Suppose x = y, i.e. x + z = y + z. Then = r(y), so by
transitivity y - cx for some c E C. Thus x -f- z = cx + z - c(x + z) by
(l.l.d~. As action is fixed point free we have c = 1, i.e. x = y. ·

We now define a homomorphism
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of Abelian groups, which plays a central r61e. By (1.1.c) c7 E 
By (l.l.d) cx - x = cy - y for all x, y So the element

does not depend on x at all. Finally applying (l.l.b) and (l.l.d)
once more we verify that B(C1C2)-= B(Cl) + B(c2). Trivially 0(l) = 0.

(1.5). The following conditions are equivalent.

(a~ 0 is injective;

(b) C acts fixed point free ’on ,C;

(c) C acts faithfully on ,C.

Proof : (b) # (c) trivially. But if = % for some zo then by (l.l.d)
cx = 7 for all x. Thus (c) » (b). Trivially (a) 4=~ (c). 0

We call an element zo of ,C of rank = 1 a generator of ,C if every
m&#x3E;0.

(1.6). The following conditions are equivalent

(a) 0 is surjective;

~b~ C acts transitively on each set r-l(n) E ,C (n &#x3E; 0);

(c) £ has a generator;

(d) Each xo E r-~ (1~ C ,C is a generator of f-.

Proof : (b) » (a). A typical element of is of form y - x where
= By (b) 5 = cx, = 0(c).

(a) » (b). Let x, y E r-~ (n~. By = z - cz for some z. By (l.l.d)
z - cz == ~ 2013 cx, whence y = cz.

(b) » (d~. Let r(§) = n. As = n we have, by (6), y = 
(n - diio by (l.l.d).

(d) » (c) is trivial, and so is (c) » (b).

2. The Grothendieck group and the class group of a genus.
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Let F be an algebraic number field (always of finite degree over Q and con-
tained in a fixed algebraic closure Qr. of G~~, Denote by OF or just ~7 its ring
of algebraic integers. Let furthermore B be a finite dimensional semisimple
F-algebra and 0153 be an (9-order spanning B. We consider !B-Iattices, i.e.

finitely generated (right) 23-modules, torsion-free over 0. Recall that two
such lattices L and M belong to the same genus if for all finite places p of
F there is an isomorphism of 

Here the subscript denotes completion at p.

Given (2.1) we have for all p an isomorphism of B,,-modules

and hence an isomorphism of B-modules

Thus given a genus g we have an associated B-module

unique to within isomorphism, such that for all 

Fix G from now on. For L e g and n E N (i.e. n = l, 2, ...~, write ~" for
the genus of L’ (product of n copies of L). Clearly gn does not depend on
the choice of L within ~. Now let

Each M E 0 determines a unique and we put

the rank of M.
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r(M) can be described in terms of = W : there is an isomorphism
of B-modules

We now get a Grothendieck group which by abuse of language we call the
Grothendieck group of G and denote by lCo(g). It is the Abelian group

generated by elements [M] (M E 0), one for each isomorphism class, with
relations given by direct sums. The rank map r yields a surjection onto Z;
we denote its kernel by Ko(g). The subsemigroup of of elements [M]
will be denoted by ,~(G~.

By definition any finite direct sum of modules in G defines an element
of d. The converse is true as well: every module M in 0 is a finite direct
sum of modules in G. All we have to do is to show that if r(M) &#x3E; 1 then

Indeed by Krull-Schmidt To establish (2.5) let S be a finite,
nonempty set of finite places of F, including those for which S~ is not a
maximal order. For each p E S let L,, C W, be a Q3,,-lattice in the local
isomorphism class associated with (7. There is then a splitting surjection
g(p) : M&#x26;, ---+ of 93,-)-lattices, i.e. the map

induced by g(p) is surjective. By weak approximation there is a surjective
homomorphism f : M --&#x3E; L of 93-modules, with L spanning W , such that
for all p 6 ’9

and that the maps (2.6) induced by f ~, are still surjective. For any p 0 S
the Im in (2.7) are still the local components of a module in G and are
projective 93,,,-modules, whence (2.6) is still surjective. Therefore the maps

are surjective for all p,2.e.
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is surjective, i.e. ,f : ~VI -~ L splits, which yields (2.5).
Now we are going to prepare the ground for the definition of the class-

group of g. For any F-vector space V we denote by V’ = V 0p Q~ its
extension to the algebraic closure Q’, assuming always that V~ inherits
any additional structure from V. The Grothendieck group carries a

symmetric bilinear map into Z, given by

Write (W ‘’)1 for the subgroup of generated by the simple B’-
modules orthogonal to Wr.. This subgroup is in general non-zero, as we
do not assume W to be a faithful B-module. We let be the

subgroup of Ko(B’) generated by the classes of those simple B~-modules
which occur in Wr.. Then

We define the idele group 3(Qr.) in the usual way as the direct limit of the
idele groups as E runs over the finite extensions of Q in Qr. It is a
module over the Galois group

and so are the groups appearing in (2.8). The classgroup CI(G) of G will
then be defined as a quotient of the Hom group

For given n and a given B’-module t~ (always finite dimensional over Q’)
we consider the Qr--vector space

The map [!7] ~ (Xn(U)~ is a homomorphism

of S2F-modules, whose kernel contains (W’)-L. It thus yields a homomor-
phism
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of S2F-modules. With AutR (W"’) acting on Xn(U~ via its action on 
we now obtain a representation T1J,n of the group by Q’-linear
transformations of X7J,(U). Thus for (3 E AutR(W’~) the determinant

is an element of (Q~)*. Write then

Taking account of what we said above, we now have derived a homomor-
phism

Going over to ideles we get analogously a homomorphism

Of course, as usual an element ~i of 3(AutR(wn» is given by local com-
ponents with the property that if N E ~"’ then

for almost all p. Those ideles for which this relation holds for all pare
the unit ideles of N,’,, These form a subgrbup of We
shall now show that if also M E c"’ then

Indeed we way suppose that N and M both span W". For each p there
is then an automorphism of the B,-module with = M,,
whence fi, o o = Here for almost all p we
may take ft, the identity map. This however implies (2.13). We shall now
denote the common value of the Detl(UB(L» for all by Det(U(g».
Now we define the classgroup of G : :

Thus Cl(g) is a quotient of the Hom group 1t(g) in (2.9) and write
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for the quotient map.

We shall lead up to the "action" of on ,C (~) . Let M E E

Assume that M spans W". Then, for each p, 3,.,(M,,) spans
and there is an isomorphism of B",-lattices

For almost all p we have Rg,(M~,) = M,,. Therefore there exists (3(M) E

Our construction of the action of idelic automorphisms ,Q seems to de-
pend on a choice of modules within an isomorphism class. This is how-

ever superficial. A typical isomorphic copy of the ,Ci-module M is of form
§(M) where § : : W" = W’"’ is an isomorphism of B-modules. Now

and § will also restrict to an iso-
morphism 

-

But, as we shall see, it is really only the elements Det(,8) and 
which count and these coincide. From now on we may suppose that any M

in çn spans W’~ .

Going over to determinants, as above, the operation of 3 will also respect
stable isomorphism. Indeed, let M, M’ E G"’ , E 
with Det(,8) = Suppose moreover,that for some L E ~~ we have
M 0153 L ££ M’ fli L. Thus

THEOREM 1.

(1) Given c E CI(G) and given a positive integer n, 3{3 E 
with c = Given moreover a module M E gn, the class ~,Q(M~~
in Ko (g) will only depend on c, not on /3, and on [M] E ICo(G). Denote it
by c[M] .

(II) The quadruplet consisting of
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(II) the map r (cf. (2.3));

(iii) the group C = 

(iv) the pairing (c, [M] ) - c[M]
satisfies axioms (1.1).
Moreover acts fixed point free on .c(g) and transitively on each
r-l(n) 

In the particular case when 9 = is the genus of the (right) B-Iattice
L3, then and ICo(9) are the classgroup, and the Grothendieck group,
respectively, of locally free B-modules. In this case the assertions of Theo-
rem I are - perhaps slightly reformulated - known results (see e.g. [1], [2]).
For instance (I .I .b) goes back to the fact that the determinant of the prod-
uct of two linear transformations is the product of their determinants, and
( l.l.d) to the fact that the determinant of a direct sum of transformations
is also the product of their determinants.

Our proof of Theorem 1 proceeds by reduction to the locally free case,
which we shall take for granted. It must be emphasized however that for
applications, e.g. to Galois module structure, a restriction to locally free
classgroups would be self-defeating.

§3. The basic isomorphisms.

In this section it will avoid confusion if we are strict and explicit in fixing
on which side various rings will act on modules. Thus if X, Y are say right
modules we shall often write Hom(XR, YR) in place of HomR(X, Y).
We still consider the genus g of right B-lattices as before. Fix a module

and write

Then ,,4 is an order in the semisimple F-algebra A. We shall write for
simplicity

We define a functor ~I from right B-modules to right A-modules by



106

with ,~4 acting by

Next we have a functor G from right A-modules to right jP-moduIes, where

with ,~ acting via ~. We moreover "extend" H and G to functors of modules
over A and B, or Ar. and B~ respectively, in the obvious way. Thus e.g.

THEOREM 2.

(i~ H and G give rise to inverse equivalences between the categories 0 and
~(.A)(= locally free A - modules). They thus induce inverse isomorphisms

preserving ranks;

(ii~ For (3 M E have an isomorphism of A-modules

and

(iii) There are inverse isomorphisms

hence we obtain an isomorphism
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natural in the variable Q F-module ~;

(v) From (iii) and (iv) we obtain an isomorphism

Remark 1. There is an analogue to assertions (i)-(iii) with locally free
A-modules replaced by projective A-modules and direct sums of modules

by direct summands of such direct sums.

Remark 2. The setup of Theorem 2 also allows us to conclude that the
cancellation law holds for direct sums of modules in G if and only if it holds
for locally free A-modules.

Proof of Theorem 2: The rule

defines a natural homomorphism of right jP-modules

For X = L this is the standard isomorphism ,A 0A L ^_-’ L. Localising, we
conclude that it is an isomorphism for X E ~, hence finally for X E G.

Next define

This is a natural homomorphism

It is an isomorphism for Y = ,A, hence for all projective A-modules, in
particular for all locally free A-modules. Theorem 2 (i) is now clear.



108

The proof of (iii) is a variant of that of (i), using now definitions (3.4).
The values of the new functor G are direct sums of those simple B‘-modules
which occur in W°. We thus get a commutative diagram

with injective unlabelled arrow.

Next, H annihilates the orthogonal complement (W")’ of WC, and we
therefore have a commutative diagram

with surjective unlabelled arrow.

Defining suitable analogues of the natural homomorphisms 0 and 0 (cf.
(3.5), (3.6)) we then prove that G’ and H’ are inverse isomorphisms. The
existence of the isomophism G is an immediate consequence. Next for ¡3 E
Aut 11 (Wn ) assertion (ii) follows as H is a functor. For Q E 
first localise and then proceed locally.

We delay the proof of (iv) and first show how (iii) and (iv) imply (v).
With LB as in (3.1) we have

Therefore by (iv)

Hence by (iii), with maps being induced by G,

There remains the proof of (iv), which we shall give for an element
,Q E Aut R(Wn). We identify the ring M",(A) of n by n matrices over A
with End(WR), and write accordingly
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as an n by n matrix, with E A. Thus

Next we identify W"’) = with A’~ via

Now H((3) acts on A’~ by the rule

Thus

We now come to the representation of AutA(An) on V)
for any A"-module V, which underlies the definition of Detn. - compare with
(2.12), (2.12a), with replaced by We identify

via

Then I

Therefore

Next we come to the representation of AutR(W") where we ab-
breviate W ~ == V 0 W’. The underlying vector space is
Homi3, ((W c) n, V 0 W") with AutR(wn) acting on W’*. We can identify

via
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(This extends the earlier isomorphism y of (3.6)). Then

By comparison with (3.7) we now verify that

But by definition,

and

§4. The proof of Theorem 1.

We put ourselves in the situation of Theorem 2. To establish (i) in Theorem
1 consider c E Cl(G). Then

(by Theorem 2 (v))
(by Theorem 1 for 

~ (by Theorem 2 (i))

(by Theorem 2 (iv))

(by Theorem 2 (iii, iv)).

Therefore, as G is an isomorphism, c = 

Next suppose that ,

We now have established a pairing as postulated in Theorem 1. It remains
to prove:



111

(4.1). The diagram

commutes.

Proof: Let

By Theorem 2 and (4.1) we conclude that the bijections H : 
/Co(A), G : Cl(A) preserve all operations. The validity for G of II
in Theorem 1 now follows from that for 
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