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A note on free pro-p-extensions
of algebraic number fields

par MASAKAZU YAMAGISHI

ABSTRACT. For an algebraic number field k and a prime p, define the num-
ber p to be the maximal number d such that there exists a Galois extension

of k whose Galois group is a free pro-p-group of rank d. The Leopoldt con-
jecture implies 1~ p ~ r2 +1, (r2 denotes the number of complex places of
k). Some examples of k and p with 03C1 = r2 + 1 have been known so far. In

this note, the invariant 03C1 is studied, and among other things some examples
with p  r2 + 1 are given.

Introduction

In this note we shall consider free pro-p-extensions (i.e. Galois exten-
sions whose Galois groups are free pro-p-groups) of algebraic number fields.
This is a natural generalization of Zp-extensions since Zp is a free pro-p-
group of rank one. It would be of interest to generalize some deep results
in Iwasawa’s theory on Zp-extensions to the case of free pro-p-extensions
of arbitrary ranks. (For local fields, some results have been obtained by
T. Nguyen Quang Do [11, §8].)

Our guiding problem in this note, however, is to determine the maximal
rank p of free pro-p Galois groups over a fixed algebraic number field k
for a fixed prime p. If the Leopoldt conjecture is true for k and p, then
by class field theory we have p  r2 + 1, where r2 denotes the number of
complex places of k (cf. (1.5) below). Some examples of k and p for which
the equality p = r2 + 1 hold are known. The main results of this note are
the following:

(1) We shall prove p  r2+1 under the assumption that the "weak Leopoldt
conjecture" is true for all Zp-extensions of k (Proposition 3.5).
(2) If p is odd, k contains a primitive p-th root of unity, and if there exists

Mots-clés : Algebraic number field, Zp-extension, free pro-p-group.
Manuscrit requ le 22 septembre 1992, version definitive le 31 juillet 1993.
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a prime vo of k which does not decompose at all in the maximal pro-p-
extension of k unramified outside p, then p is explicitly given by

where kv denotes the completion of k at v. This is a special case of Corollary
4.6. Using this formula, we shall give examples of k and p such that p 
r2 + 1 is a strict inequality.

For the proof of (2), we use K. Wingberg’s "free product decomposition"
of Galois groups ([20], [21]).

The assumption of the existence of vo in (2) seems quite strong. For

example this implies the validity of the Leopoldt conjecture for k and p.
We think that we are far from the complete determination of p in general.

Acknowledgement. The author wishes to express his hearty thanks to
Professor Shoichi Nakajima, under whose guidance this work was done, to
Professor Mamoru Asada for the proof of Lemma 2.1, and to other members
of the Number Theory Seminar at Komaba, Tokyo, especially to Professor
Kenkichi Iwasawa, for valuable advice and comments. The author is also
grateful to the referee for useful comments on the bibliography.

1. Formulation of the problem

Free pro-p-groups (cf. [15]). Let p be a prime, which will be fixed
throughout this note. For any set I of indices, the free pro-p-group F(I)
generated by is defined ([15,1-1.5]), and F(J) if and only if
j(7 = #J, (~ denotes the cardinality of a set). The cardinality of I is called
the rank of F(I), which we denote by rk(F(I)). (For a general pro-p-group
G, rk(G) is defined to be the cardinality of a, minimal generating subset of
G’. This is equal to dimz/pz cf. [ 15, 1-4.2] .) In all cases of
interest to us, the rank will be finite. We shall write Fd instead of F(I)
when d = ~I is finite. In particular, Fl = Zp (the additive group of p-adic
integers).

As in the case of abstract free groups, any closed subgroup of a free
pro-p-group is again free ((15, I-37, Cor. 3]). Furthermore, let F be a free
pro-p-group of finite rank and U be an open subgroup of F. Then U is also
of finite rank, which is given by Schreier’s formula, (cf. [15, 1-38]):
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Fd-extensions. By a G-extension, where G is a profinite group, we mean a
Galois field extension whose Galois group is isomorphic to G as a topological
group. As a generalization of Zp-extensions ([4]), we consider Fd-extensions,
and we introduce the following invariant: for a field k and a prime p, define

We shall write p instead of pp(k~ if the reference to k and p is clear from
the context.

Examples.
(1) If k is a finite field, then pp(k) = 1 for all p.
(2) If k is a local number field, then we can give an explicit formula for
pp(k). See Proposition 4.9 below.

Leopoldt conjecture. From now on, let k be an algebraic number field
(i.e. a finite extension of the rational number field Q). Let us recall the

Leopoldt conjecture (cf. [4, 2.3]). Embed the group of global units E of k
diagonally into the direct product Ilv, where Uv denotes the group of
local units of the completion kv of k at v, and let E be the closure of the
image of E with respect to the natural topology on Ilvlp Uv. Define the

non-negative integer 6p(k) as

Then the Leopoldt conjecture is stated as follows.

CONJECTURE 1.4 (THE LEOPOLDT CONJECTURE). 6p(k) = 0 holds.

In other words, 6p(k) measures the defect of the Leopoldt conjecture. We
often write 6 instead of bp(k) when there is no risk of confusion. Conjecture
1.4 is known to be true for all p if k is an abelian extension over Q or over an
imaginary quadratic field (Ax, Brumer). Several equivalent formulations of
Conjecture 1.4 or equivalent definitions of 6 are known. They are of much
interest in their own, but the one that we need is the following: there exists
exactly r2 -f 1 6 independent Zp-eztensions over k, where r2 denotes the
number of complex places of k.

Let us return to Fd-extensions. Since an Fd-extension contains a 
extension as a subextension, we have an inequality:
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In particular, p  r2 + 1 holds if the Leopoldt conjecture is valid for k and
p.

Examples with p = r2 + 1.

Example 1.6 (1. R. Safarevic [14, §4]). Let k = Q(pp) be the p-th cyclo-
tomic field and assume that p is regular (i.e. p does not divide the class
number of k). Then the Galois group of the maximal pro-p-extension of
k unramified outside p is a free pro-p-group of rank (p + 1)/2 == T2 + 1.
Since the Leopoldt conjecture is true for k and p, we find, by (1.5), that

Let GSp denote the Galois group of the maximal pro-p-extension of k
which is unramified outside p. A necessary and sufficient condition on k

and p for GSp to be free pro-p has been known (cf., for example, [9, 2.1],
[21, Cor.]). In this case, the rank of Gsp is equal to r2 + 1. Since the

Leopoldt conjecture at p is valid for such k, we find that p = r2 + 1 holds
for such k and p. (Alternatively, use Lemma 2.1 instead of the validity of
the Leopoldt conjecture to conclude p = r2 + 1.)

A. Movahhedi and T. Nguyen Quang Do [9] (see also [8]) define such an
algebraic number field k (i.e. for which GSP is free pro-p) to be p-rational,
and they investigate interesting arithmetic properties of p-rational fields.
Simultaneously, G. Gras and J.-F. Jaulent [2] introduced the notion of p-
regular number field. This notion is, in a sense, a natural generalization of
the regularity of primes. We refer the reader to [5] concerning these topics.

Example 1.7 (cf. [8, p. 166]). For a prime p &#x3E; 5, an imaginary quadratic
field k is p-rational if p does not divide the class number of k. The converse
is not true in general.

Other examples of p-rational fields are found in [8] and [5].
On the other hand, by a result of K. Wingberg [18, Kor. 3.3], we can

see the existence of non p-rational k with p = r2 + 1.

Problems. A complete determination of p seems to be difficult. In this

note, we shall focus on the following two problems, in view of the inequality
(1.5) and known examples.

Problem 1.8. Prove p  r2 + 1 without assuming the Leopoldt conjecture.

Problem 1.9. Can it happen that p  r2 + 1 ?
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As we mentioned in the introduction, we shall give partial answers to
these problems in what follows.

2. Unramifiedness outside p of Fd-extensions

The aim of this section is to prove the following

LEMMA 2.1. An Fd-extension over a finite algebraic number field is un-
ramified outside primes above p.

Remark. This is well known when d = 1, ([4, 2.2]).

Proof. We shall give two proofs.

First Proof: archimedean primes do not ramify in an Fd-extension since
Fd has no non-trivial torsion element. Let K be an Fd-extension over an
algebraic number field k, .~ (resp. 1) be a non-archimedean prime of K
(resp. of k), such that C ~ p. Consider the localization Kzlkf. This
is also a free pro-p-extension because Gal(Kz/kt) may be considered as a
closed subgroup of Gal(K/k). But by the assumption k( possesses a
unique Zp-extension, namely the maximal unramified pro-p-extension k r
(cf. [4, 12.1]), and consequently is also the unique non-trivial free pro-
p-extension of kt. Therefore Ke coincides either with kur or with kj, hence
is unramified over k f. 0

Second Proof (due to M. Asada): as we mentioned above, the case d = 1
is well known, which we admit in the following. Therefore a multiple Zp-
extension (i.e. a Z~-extension for some e  oo) over a finite algebraic num-
ber field is unramified outside p. Leth’/k be as in the first proof with its
Galois group G ~ Fd. Put Gi = G, and inductively Gn+i = Gn]
(the Frattini subgroup of Gn). Then the descending series of closed sub-
groups

has the following properties (cf. [15, 1-38]):
(1) is an open normal subgroup of G for all n &#x3E; 1,
(2) is abelian for all n &#x3E; 1,

Let kn be the fixed field of Gn. Corresponding to (1)-(3), the tower of
fields
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satisfies the following properties:

( 1 )’ is a finite normal extension for all n &#x3E; 1,
(2)’ is an abelian extension for all n &#x3E; 1,

00

(3)’ U kn = .
n=1

Since is a quotient of the maximal abelian quotient

and since Gnb is isomorphic to Z~ for some e  oo, kn+1/kn is embeddable
in a multiple Zp-extension, hence is unramified outside p. By virtue of (3)’,
Klk is unramified outside p. D

As is clear from the second proof, any filtration of G satisfying (1)-
(3) will suffice. For example, the descending p-central series defined by

= The one that we used, however, has an additional
property:

(4) is the maximal abelian quotient of Gn with exponent p,
and this enables us to prove the following

PROPOSITION 2.2. 1 Let k be an algebraic number field. Assume that the
Leopoldt conjecture with respect to p is true for any finite p-extension over
k which is unramified outside p. If p = r2 + 1 holds, then k possesses a
unique Fp-extension Klk, and any Fd-extension (d  p) over k is contained
in 7~.

Proof. Let 7~ be an arbitrary Fp-extension over k with Galois group G.
Then, with the same notation as in the second proof of Lemma 2.1, the
extension is characterized as the maximal abelian extension with

exponent p which is embeddable in a multiple Zp-extension. Indeed, the
maximality can be seen as follows:

by (4)

. Schreier’s formula (1.1)

1 Professor Kenkichi Iwasawa has kindly informed the author of this application.
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and note that the Leopoldt conjecture for kn and p is true. Thus K is

unique. Let K’ be an Fd-extension (d  p) and define k~ in the same way
as we defined kn for K. Then we can show k~ C kn for all n &#x3E; 0. 0

3. Weak Leopoldt conjecture

In this section we recall the weak Leopoldt conjecture and apply it to
our problem. Let k be an algebraic number field, k,,Ik be a Zp-extension,
and for each n &#x3E; 0 let kn be the n-th layer of k,,Ik, (i.e. kn is the unique
subfield such that [kn : k] = p~).

CONJECTURE 3.1 (THE WEAK LEOPOLDT CONJECTURE).
bp(kn) is bounded as n - oo.

Note that is a non-decreasing sequence of non-negative inte-
gers.

For the importance of Conjecture 3.1 in Iwasawa theory, see [3]. See
also [12, §2], [13, §3], or [19, §5] for Galois cohomological treatment. An
application is found in [22].
We abbreviate "the Leopoldt conjecture for k" to LC(k), and "the weak

Leopoldt conjecture for k~~&#x3E;" to WLC(k~), (note that whether Conjecture
3.1 is true or not depends only on but not on the ground field k). We
omit the reference to p since it is fixed. The following facts are known
concerning WLC.

(3.2) is true for the cyclotomic Zp-extension 
(3.3) If LC(k) is true, then is true for any Zp-extension kclk.
(3.4) Consider the set E of all Zp-extensions of k, and let ~’ denote the
subset of E consisting of those Zp-extensions such that 
is true. Then E’ is an open dense subset of E with respect to the natural
topology on E ([1, Thm. 3], [12, Thm. 2.11]. See also [3, §3]).

Our result in this section is the following

PROPOSITION 3.5. If K/k is an Fd-extension with the condition d &#x3E; 
then is false for any Zp-extension contained-in K. In

particular, the following assertions hold.
(1) If WLC(k~) is true for all k~/k, then p  r2 + 1.

(2) If 6 &#x3E; 0 (i.e. the Leopoldt conjecture is false for k and p), then p 
Tz + 1 + 6 (strict inequality) holds.

Remark. (1) is a refinement of (1.5) in view of (3.3).
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Proof. For any finite subfield L of K/k, is also a free pro-p-extension,
and the rank is given by Schreier’s formula (1.1):

The last equality follows from unramifiedness at archimedean primes, (see
Lemma 2.1). Then it is clear that (L : k~, and this proves the first
statement. (1) follows from this. For (2) use (3.2). D

Question. Can we improve this by using (3.4) ?

4. Application of a theorem of K. Wingberg

In this section we compute p explicitly in a special case (Corollary 4.6)
by using K. Wingberg’s "free product decomposition" of Galois groups
(Theorem 4.5).

First we extend the definition (1.2) of the invariant p to a pro-p-group
G as follows:

p(G) := sup~d &#x3E; 0 ; G has a quotient isomorphic to Fd}. (4.1)

(We may allow d to be a cardinal number, but in the following G will always
be finitely generated.) Then, for a field k, we have

where k(p) denotes the maximal pro-p-extension of k. Furthermore, if k is
an algebraic number field, then by Lemma 2.1 we have

where G sp is the Galois group of the maximal pro-p-extension of k which
is unramified outside p (this notation is consistent with that introduced
below). Thus some information on Gs, may be useful in determining p.
The pro-p-group Gsp has been extensively studied by many people, and
among their works we shall apply a result of K. Wingberg to our problem.
We fix the notation.

p is a prime,
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k is an algebraic number field (we assume p is odd or k is totally
imaginary, therefore an archimedean prime does not ramify in a
p-extension),
S 00 is the set of archimedean primes of k,
SP is the set of primes of k above p,
S is a finite set of primes of k such that S D So U sP,
ks(p) is the maximal pro-p-extension of k unramified outside S,
GS := Gal(ks(p)~k),
gv := Gal(kv(p)/kv), where kv is the completion of k at a prime v,
and kv(p) is the maximal pro-p-extension of kv,
up is the group of p-th roots of unity,
6(F) = 1 or 0 according as F D lip or F 1J tip for a field F of
characteristic 0 (this is irrelevant to (1.3)),
So is a maximal subset of S B S~ satisfying

THEOREM 4.5 (K. Wingberg ~20~, [21]). With the notation and assumption
as above, if there exists So such that = 0, then

where * denotes free pro-p product (cf. ~10~) and .~’ is a free pro-p-group
with

Remark. In addition to above, K. Wingberg proves that if 0 for

any So, then Gs is a pro-p duality group (or strict Cohen-Macaulay in the
terminology of [15]) of dimension 2. We shall not treat this case in this
note.

Our result is the following

COROLLARY 4.6. With the same notation as above, 0 for some

So, t h en 
°

/ ,
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where -, = 1 or 0 according as (kv : Qp] is odd or even.

Remark. The formula for p stated in the introduction is a special case of
this by virtue of [21, Lemma 2].

Examples.
(1) p = 2, k = Q(v/--i), where i &#x3E; 0 is a rational prime such that 1 7
(mod 8). In this case p = 1, while r2 + 1 = 2.
(2) p = 3, k = ~(~, Vï5) or k = ~(~, -26). In this case p = 2,
while r2+l=3.
In each case, Sp consists of two elements, say, SP = (vo , Take S’ = S,,,, U
Sp and So = The condition -lv7sso = 0 was checked by V. M. Tsvetkov
[17] in case (1), and by L. V. Kuz’min [6], V. M. Tsvetkov [17] respectively
in case (2).

Proof of Corollary 4.6.

LEMMA 4.7. Let G1, ... , Gm be finitely generated pro-p-groups. Then

holds.

LEMMA 4.8 (J. Sonn [16], cf. [11, p. 102]). Let G be a (pro-p) Demuskin
group. Then p(G) = 2 (rk(G) - E), where - = 1 or 0 according as rk(G) is
odd or even.

We shall prove these lemmas in §5.
Recall the structure of the local Galois group G, (cf. [15, 11-5.6]):

Combining this with the preceding lemmas, we can compute p. 0

Remark. If we assume that S = U Sp, k D Ap and k is a Galois
extension over Q, then V~ = 0 implies either
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(1) Sp = So = and GS is a free pro-p-group of rank r2 + 1, or

(2) Sp = {vo, vl}, So = and GS = gvo = 9Vl is a Demugkin group
of rank r2 + 2 (so that p = 1 + [r2 /2] where [x] = the greatest integer not
exceeding x). This is the case with the examples given above.

Proof of Remark. First note that So consists of a single element if k J J-Lp.
Assume V£ = 0. Then the formula for rk(0) in Theorem 4.5 becomes:
rk(0) = (2 - g) + (1/g - 1)rl + (2/g - 1)r2, where g = ~Sp and T1 denotes
the number of real places of k. Since rk(.F) must be non-negative, we have
either (1) g = 1 or (2) g = 2 and T1 = 0. This completes the proof. D

From this point of view, we cannot expect more interesting phenomena
as long as we restrict ourselves to the case k J J-Lp and k/Q is Galois
(S = S~ U Sp is no restriction in the light of Lemma 2.1). In particular,
under these assumptions (including Vso = 0), we cannot find any example
with p = r2 + 1 other than the case that GS itself is free.

Finally, combining (4.2), Lemma 4.8 and the known structure of the Ga-
lois groups of the maximal pro-p-extensions of local fields, we can compute
p for local fields.

PROPOSITION 4.9. Let k be a local field, (in the sense that it is obtained as
the completion of an algebraic number field with respect to a non-archimed-
ean prime) with residue characteristic t. Then

where - - 1 or 0 according as [k : Qp] is odd or even. 0

Remark. For another proof based on a viewpoint of embedding problem,
see [11, §5].

5. Proof of the lemmas

Proof of Lemma ~.7. Firstly, if there exist surjective homomorphisms
Fd, (1  i  m), then we can construct a surjective homo-

morphism 
- - -- - -
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m m

where d (cf. [10, Satz 1.2]). Hence we have * 
j= i=i i=1

In order to obtain the inverse inequality, we claim that if there exists a

surjective homomorphism Gi ~ Fd, then there exist a partition d =
i=1

m

(d2 &#x3E; 0), and surjective homomorphisms pj : Gi - (1  i  m).
i=1

We may assume m = 2. Let us consider each Gi as a closed subgroup of
G, * G2 . Then p induces a homomorphism 1b : Gi * GZ -~ * ~p(G2 ).
On the other hand, there exists a natural (surjective) homomorphism h :

-~ Fd, and it is clear that ~p - h o 0. The images 
(i = 1, 2) are free pro-p-groups, and we have

since h is surjective. Starting from the natural surjections Gi ~ 
(i = 1, 2), and taking quotients if necessary, we obtain a desired partition
d d, + d2 and surjective homomorphisms Fd, , (I = 1, 2). 0

Proof of Lemma 4.8. Let G be a Demu0161kin group. We must show that there
exists a surjective homomorphism from G to Fd if and only if d  2 rk(G).
This is a part of a theorem of J. Sonn [16, Thm. 7], but in the case
q(G) - 2, he only stated this and gave no proof. We therefore prove this
along his idea, for completeness. Note that the "if" part is obvious from
the canonical form of the "Demuskin relation" (cf. [7]). In the proof of
the "only if" part, the key point is that Lemma 5.1 below holds even in
characteristic 2. Now let G -~ Fd be a surjective homomorphism. Put
M = and N = where Z /pZ is acted trivially.
Both M and N are Z/pZ-vector spaces, and we identify N with its image
in M under the inflation map. Then the following diagram is commutative:

Thus ~V is an "isotropic" subspace of the "symplectic" space .M. Therefore
it suffices to prove the following

LEMMA 5.1. Let t be a field, M be a finite dimensional vector space over e
equipped with a non-degenerate, anti-symmetric bifinear form M X M - t,
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and N be an isotropic subspace of M with respect to this pairing ~i. e.
a~b = 0 for aI~ a, b E N). Then dim(M).

Proo f. Put r = dim(N). Then, by an induction on r, we can choose linearly
independent vectors b1, ~ ~ ~ , ar, bT E M such that ar) is a basis
of N, and = 1 if i == j, 0 otherwise. 0 D

Remark. If t is not of characteristic 2, we can impose 0, i.e. we
can choose a,, b,} which forms a part of a symplectic basis of
M (cf. [16, Prop. 3]).
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