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On the Piatetski-Shapiro-Vinogradov Theorem

par ANGEL KUMCHEV

RÉSUMÉ. Dans cet article, nous considérons la formule asymptotique pour
le nombre de représentations d’un entier impair N sous la forme p1 + p2 +
p3 = N, où les pi sont des nombres premiers du type pi = [n1/03B3i] ; nous
utilisons la méthode de van der Corput en dimension deux et nous étendons
le domaine de validité de la formule asymptotique en affaiblissant les hy-
pothèses sur les 03B3i. Dans le cas le plus intéressant 03B31 = 03B32 = 03B33 = 03B3,
notre résultat entraîne que tout entier impair assez grand s’écrit comme
la somme de trois nombres premiers de Piatetski-Shapiro du type 03B3 pour
50/53  03B3  1.

ABSTRACT. In this paper we consider the asymptotic formula for the num-
ber of the solutions of the equation p1 + p2 + p3 = N where N is an odd
integer and the unknowns pi are prime numbers of the form pi = [n1/03B3i].
We use the two-dimensional van der Corput’s method to prove it un-

der less restrictive conditions than before. In the most interesting case
03B31 = 03B32 = 03B33 = 03B3 our theorem implies that every sufficiently large odd
integer N may be written as the sum of three Piatetski-Shapiro primes of
type 03B3 for 50/53  03B3  1.

1. Introduction.

In 1937 I. M. Vinogradov [15] solved the Goldbach ternary problem. He
proved that for a sufficiently large odd integer N,

where C~(N) is the singular series
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In 1986 E. Wirsing [16] considered the question of the existence of thin
sets of primes S such that every sufficiently large odd integer is the sum
of three elements of S (the set of prime numbers S is called to be thin if
E 1 = o(1f(x)) ). Wirsing proved that there exists such a set of primes

px,pES
S with the property that

The set of the Piatetski-Shapiro primes of type 7  1

is a well-known thin set of prime numbers. The counting function of

P, was studied by a number of authors [1, 4-6, 8-14]. The best results are
given by [14] and [10] where it is proved that

for 5302/6121  q  1, and

for 38/45  1  1.

In 1992 A. Balog and J. P. Friedlander [2] considered the ternary Gold-
bach problem with variables restricted to Piatetski-Shapiro primes. They
proved that if 11, y2, 13 are fixed real numbers such that -yi  1 and Ii is
close to 1, and N is a sufficiently large odd integer, then the asymptotic
formula (3) below is valid.

There are two interesting special cases of this theorem. 
1 in (3) we obtain an asymptotic formula for the number of representations
of a large odd integer as the sum of three Piatetski-Shapiro primes of type
y. If 11 = 72 = 1 in (3), we obtain an asymptotic formula for the number
of representations of a large odd integer as the sum of two primes and a
Piatetski-Shapiro prime.

The theorem of Balog and Friedlander implies that in the first case
the asymptotic formula is valid for 20/21  y  1, and in the second-
for 8/9  1 1. J. Rivat [14] extended the range 20/21  y  1 to
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188/199  1 ~ 1, and C.-H. Jia [7] used a sieve method to show that there
exists a positive constant po = Po ( 1) such that

for 15/16  -y  1.

In this paper we use better estimates of an exponential sum to prove:

THEOREM 1. Let y2 1’3 be fixed real numbers such that 0  1

and

Denote by T(N) the number of the representations of the integer N as the
sum of three primes pl, p2, p3 such that pi E Py,.Then the asymptotic
formula

holds. Here 6(N) is defined by (2).

In the special cases mentioned above this theorem gives:

COROLLARY 1. For any fixed 50/53  -y -.5 1 every sufficiently large odd
integer may be written as the sum of three Piatetski-Shapiro prime numbers
of type 7.

COROLLARY 2. For any fixed 64/73  7  1 every sufficiently large odd
integer may be written as the sum of two primes and a Piatetski-Shapiro
prime number of type -y.

In both cases we may obtain an asymptotic formula for the number
of solutions. Thus Theorem 1 improves the known results of this type
contained in [2] and [14]. Note also that 64/73 = 0.8767 ... is not much

greater than 5302/6121 = 0.8661....
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2. Notation.

In this paper p, pl, ... are primes; 6 is an arbitrary small positive num-
ber, not necessary the same in the different appearances. The constants

cl, c2, ... in Section 4 depend at most on 7. We use [x], fxl and llxll to
denote the integral part of x, the fractional part of x and the distance from
x to the nearest integer correspondingly. A(n) is von Mangoldt’s function;
e(x) = = x - M - 2.

f (x) G g(x) means that f (x) = 0(g(x)); I
g(x) means that f (~) « g(x) G f (x);

f (xl, ... , Xn) means that

for all n-tuples ( j 1, ... , jn ) for which it makes sence.
x N X means that x runs through a subinterval of (X, 2X], which end-

points are not necessary the same in the different equations and may depend
on the outer summation variables; thus we may write, for example,

We also define

3. Preliminaries.

The idea of the proof of Theorem 1 is to reduce it to the following
weighted version of the Vinogradov estimate (1):
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The reduction depends on the asymptotic formula for an exponential sum
(Theorem 2 below) and indeed was done by Balog and Friedlander in Sec-
tion 2 of [2]. They showed that

provided that for 1  i  3 the estimate

holds with 61 = ~(1 - 72) + ~(1 - y3), 62 = ~(1 - 73). and 63 = 0,
correspondingly. Thus Theorem 1 follows from (4), (5) and the following
improved version of Theorem 4 of [2].

THEOREM 2. Assume that 071,0~1-7 and

Then, uniforrnl y in a E ( 0,1 ) , yve have

where the implied constant depends at most on y, 6 and c.

Throughout the rest of this section we reduce the proof of Theorem 2
to the estimation of a double exponential sum. Denoting the sum in the
left-hand side of (6) by F(a), and that in the right-hand side by G(a) we
get

It is easy to derive (6) from this equality and the estimate

provided that the last is proved for each 1  x  N. Since
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using the simplest splitting up argument, we obtain that to prove (7) it is
sufficient to obtain

From here on x is a fixed sufficiently large number subjected to x  N.
We recall the well-known expansions

where

We put Ho = and apply the first expansion for the left-hand
side of (8). Similarly to [4, p.246] and [2, p.51] we treat the error terms
via the second and the estimate of van der Corput [3, Theorem 2.2]. The
obtained estimate is admissible if 2(1 - y) + 36  1, so it remains to prove
that for each H  Ho

Working similarly to [4, p.247] we find that for to establish
the last inequality it is sufficient to prove

Otherwise we treat the sums involving e(hn’) and e(h(n+1)7) separately.
Thus in all the cases, it suffices to prove the following

PROPOSITION. Assume that 0~1~0~1-~ and
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Assume further that H  and u is either 0, or 1. Then

We prove this proposition in Section 5, and therefore complete the proofs
of both Theorem 1 and Theorem 2. The proof depends on the estimation
of some triple exponential sums, which we estimate in the next section.

4. Exponential sums estimates.

In this section we consider sums of the form

where

If the coefficients a(m) and b(n) satisfy the conditions

we denote the sum by SI, and if they satisfy the conditions

we denote it by SII.
For SII we use the estimate obtained in [2, Proposition 2]:

LEMMA 1. Let N satisfy the conditions

Then

For SI we give a new estimate contained in the following lemma which
we prove using van der Corput’s method as it is described in [3].
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LEMMA 2. be subjected to

an d N satisfy the condition

Then

Proof of Lemma 2. Since for "I, 8, N such that

the lemma is proved in [2, Proposition 3], it is sufficient to consider the
case

In the rest of the proof we suppose that the inequality (14) holds. We
also note that the condition mn - z implies x.

We begin with the remark that since

amn + h(mn + u)" = arnn + + + 

one has

provided that 1-, + 38  1. Now we apply the Cauchy-Schwarz inequality
and Weyl-van der Corput lemma [3, Lemma 2.5] to the sum over n and get

where f 2 (m, n) = fi (m, n + q) - f 1 (rn, n) and Q  N is a parameter at our
disposal. We choose
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which makes the first term in (15) admissible. Applying partial summation
to the sums over n and m successively we find that if N &#x3E; X2(1--Y)+36+£
(which is not restrictive in view of (13)), then

We write k = [aq] and 0 = {aq} (note that k and 0 do not depend on m
and n, and 0  B  1) and we derive from (17) that

where f3 (m, n) = Brrt + hm7 ((n + ql’ - n7). Hence

Now we apply the Poisson summation formula [3, Lemma 3.6] over m. We
remove the arising smooth weights via partial summation and get

where

and

and m runs through an interval [M1, which endpoints are monomials
of n such that M1, Mi x FM-1. We substitute this estimate in (18) and
use (12), (14) to get
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Note that if FM-1 « xl, i.e. the summation over m in the last sum
is too short, then the trivial estimate of the sums over m and n in (19) is
sufficient to obtain the desired result. Thus we consider further the case
FM ‘1 » x£. We will estimate the sum over m, n in two different ways.

Our first tool is van der Corput’s estimate as it is stated in [3, Theorem
2.9]. We change the order of summation and apply it with q = 1 to the sum
over n (this is equivalent to the use of the exponent pair (.1, ’)). Summing
up the obtained estimate we find that

for

Thus, we may suppose further that

Note that when (12) holds this bound is always smaller than (14).
We can also estimate the sum in the left-hand side of (19) differently.

First we apply the Weyl-van der Corput inequality over n, introducing in
this way a new parameter N. We get

which makes the contribution of the first term sufficiently small.

Then we use the Poisson summation formula over n. Let [Ni (m), N2 (m) ]
be the interval through which runs r~ in (21) and let [N3 (m), N4(m)] be the
interval through which runs when n runs through ~Nl (m), N2 (m)] ]
(then N3 (m), N4 (m) x qlF N-2). Denoting by Yn the unique solution of
the equation
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we obtain from [3, Lemma 3.6] and partial summation that

where

If x£ then the first term in the right-hand side of (23) may be
omitted at the cost ofax£ factor and the lemma follows from (12), (13),
(16), (19)-(23). We consider further the case xl. Then the

argument of the proof of Lemma 3.9 of [3] shows that

Let us denote the sum over m, n in (23) by T. We apply to it Weyl-van
der Corput inequality over m and obtain

where Q2  FM-1 is a parameter, (m, n) runs through a subdomain of
the domain of summation in (23) and

We choose

and make the contribution of the first term in the right-hand side of (25)
admissible. From (24) and (26) we derive that
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where A2 = ~l + q2MF-1. Now we estimate the sum over m,n via [3,
Lemma 6.11~ with (x, y) = (m, n) and we get

Combining the last inequality with (12), (13), (16), (19)-(23), (25) and
(27), we complete the proof of the lemma.

5. Proof of the Proposition.
The inner sum in the left-hand side of (13) is an exponential sum over

primes. It is well-known that the sum

may be decomposed into double sums of two types-Type I and Type II
sums. Both Type I and Type II sums are sums of the form

mn-z

We call the sum Type I if the coefficients a(m) and b(n) satisfy the condi-
tions (10), and Type II if they satisfy the conditions (11).
We make the decomposition using an identity due Heath-Brown [4,

Lemma 3]

LEMMA 3. Let 3  U  V  Z  x and suppose that Z - 1/2 E N,
x &#x3E; 64Z2 U, Z &#x3E; 4U2, V3 &#x3E; 32x. Assume further that F(n) is a complex
valued function such that 1. Then the sum

may be decomposed into x) sums, each either of Type I with N &#x3E;

Z, or of Type II with U  N  V.

We apply Lemma 3 with F(n) = e (an + h (n + u) -1), U = 2-10xl-i+26+e,
V = 4~1~3 and

Then the Proposition follows from Lemmas 1 and 2.
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