Linear fractional transformations of continued fractions with bounded partial quotients

<http://www.numdam.org/item?id=JTNB_1997__9_2_267_0>
Linear Fractional Transformations of Continued Fractions with Bounded Partial Quotients

par J.C. LAGARIA ET J.O. SHALLIT

RéSUMÉ. Soit θ un nombre réel de développement en fraction continue

$$\theta = [a_0, a_1, a_2, \ldots] ,$$

et soit

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

une matrice d'entiers tel que $\det M \neq 0$. Si θ est à quotients partiels bornés, alors $a_{\theta+b}/(c\theta+d) = [a_0^*, a_1^*, a_2^*, \ldots]$ est aussi à quotients partiels bornés. Plus précisément, si $a_j \leq K$ pour tout j suffisamment grand, alors $a_j^* \leq |\det(M)|(K+2)$ pour tout j suffisamment grand. Nous donnons aussi une borne plus faible qui est valable pour tout a_j^* avec $j \geq 1$. Les démonstrations utilisent la constante d’approximation diophantienne homogène $L_\infty(\theta) = \limsup_{q \to \infty}(q||q\theta||)^{-1}$. Nous montrons que

$$\frac{1}{|\det(M)|} L_\infty(\theta) \leq L_\infty \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\det(M)| L_\infty(\theta).$$

ABSTRACT. Let θ be a real number with continued fraction expansion

$$\theta = [a_0, a_1, a_2, \ldots] ,$$

and let

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be a matrix with integer entries and nonzero determinant. If θ has bounded partial quotients, then $a_{\theta+b}/(c\theta+d) = [a_0^*, a_1^*, a_2^*, \ldots]$ also has bounded partial quotients. More precisely, if $a_j \leq K$ for all sufficiently large j, then $a_j^* \leq |\det(M)|(K+2)$ for all sufficiently large j. We also give a weaker bound valid for all a_j^* with $j \geq 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty(\theta) = \limsup_{q \to \infty}(q||q\theta||)^{-1}$. We show that

$$\frac{1}{|\det(M)|} L_\infty(\theta) \leq L_\infty \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\det(M)| L_\infty(\theta).$$
1. INTRODUCTION.

Let θ be a real number whose expansion as a simple continued fraction is

$$\theta = [a_0, a_1, a_2, \ldots] ,$$

and set

$$K(\theta) := \sup_{i \geq 1} a_i ,$$

where we adopt the convention that $K(\theta) = +\infty$ if θ is rational. We say that θ has bounded partial quotients if $K(\theta)$ is finite. We also set

$$K_\infty(\theta) := \limsup_{i \geq 1} a_i ,$$

with the convention that $K_\infty(\theta) = +\infty$ if θ is rational. Certainly $K_\infty(\theta) \leq K(\theta)$, and $K_\infty(\theta)$ is finite if and only if $K(\theta)$ is finite.

A survey of results about real numbers with bounded partial quotients is given in [17]. The property of having bounded partial quotients is equivalent to θ being a badly approximable number, which is a number θ such that

$$\liminf_{q \to \infty} q||q\theta|| > 0 ,$$

in which $||x|| = \min(x - \lfloor x \rfloor, \lfloor x \rfloor - x)$ denotes the distance from x to the nearest integer and q runs through integers.

This note proves two quantitative versions of the theorem that if θ has bounded partial quotients and $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then $\psi = \frac{a\theta + b}{c\theta + d}$ also has bounded partial quotients.

The first result bounds $K_\infty(\frac{a\theta + b}{c\theta + d})$ in terms of $K_\infty(\theta)$ and depends only on $|\det(M)|$:

Theorem 1.1. Let θ have a bounded partial quotients. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then

$$\frac{1}{|\det M|} K_\infty(\theta) - 2 \leq K_\infty\left(\frac{a\theta + b}{c\theta + d}\right) \leq |\det M|(K_\infty(\theta) + 2) .$$

The second result upper bounds $K\left(\frac{a\theta + b}{c\theta + d}\right)$ in terms of $K(\theta)$, and depends on the entries of M:
Theorem 1.2. Let \(\theta \) have bounded partial quotients. If \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is an integer matrix with \(\det(M) \neq 0 \), then
\[
K \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\det(M)|(K(\theta) + 2) + |c(c\theta + d)|.
\]

The last term in (1.4) can be bounded in terms of the partial quotient \(a_0 \) of \(\theta \), since
\[
|c\theta + d| \leq |c|(|a_0| + 1) + |d| \leq |ca_0| + |c| + |d|.
\]

Theorem 1.2 gives no bound for the partial quotient \(a_0 := \lfloor \frac{a_0}{d} \rfloor \) of \(\frac{a_0}{d} \).

Chowla [3] proved in 1931 that \(K(\frac{a}{d}) < 2ad(K(\theta) + 1)^3 \), a result rather weaker than Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate Diophantine approximation constants of \(\theta \) and \(\frac{a\theta + b}{c\theta + d} \), which appear below as Theorem 3.2 and Theorem 4.1, respectively. Theorem 3.2 is a simple consequence of a result of Cusick and Mendès France [5] concerning the Lagrange constant of \(\theta \) (defined in Section 2).

The continued fraction of \(\frac{a\theta + b}{c\theta + d} \) can be directly computed from that for \(\theta \), as was observed in 1894 by Hurwitz [9], who gave an explicit formula for the continued fraction of \(2\theta \) in terms of that of \(\theta \). In 1912 Châtelet [2] gave an algorithm for computing the continued fraction of \(\frac{a\theta + b}{c\theta + d} \) from that of \(\theta \), and in 1947 Hall [7] also gave a method. Let \(\mathcal{M}(n, \mathbb{Z}) \) denote the set of \(n \times n \) integer matrices. Raney [15] gave for each \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}(2, \mathbb{Z}) \) with \(\det(M) \neq 0 \) an explicit finite automaton to compute the additive continued fraction of \(\frac{a\theta + b}{c\theta + d} \) from the additive continued fraction of \(\theta \).

In connection with the bound of Theorem 1.1, Davenport [6] observed that for each irrational \(\theta \) and prime \(p \) there exists some integer \(0 \leq a < p \) such that \(\theta' = \theta + \frac{a}{p} \) has infinitely many partial quotients \(a_n(\theta') \geq p \). Mendès France [13] then showed that there exists some \(\theta' = \theta + \frac{a}{p} \) having the property that a positive proportion of the partial quotients of \(\theta' \) have \(a_n(\theta') \geq p \).

Some other related results appear in Mendès France [11,12]. Basic facts on continued fractions appear in [1,8,10,18].

2. BADLY APPROXIMABLE NUMBERS

Recall that the continued fraction expansion of an irrational real number
\[\theta = [a_0, a_1, \ldots] \] is determined by
\[\theta = a_0 + \theta_0, \quad 0 < \theta_0 < 1, \]
and for \(n \geq 1 \) by the recursion
\[\frac{1}{\theta_{n-1}} = a_n + \theta_n, \quad 0 < \theta_n < 1. \]

The \textit{n-th complete quotient} \(\alpha_n \) of \(\theta \) is
\[\alpha_n := \frac{1}{\theta_n} = [a_n, a_{n+1}, a_{n+2}, \ldots]. \]

The \textit{n-th convergent} \(\frac{p_n}{q_n} \) of \(\theta \) is
\[\frac{p_n}{q_n} = [a_0, a_1, \ldots, a_n], \]
whose denominator is given by the recursion \(q_{-1} = 0, q_0 = 1, \) and \(q_{n+1} = a_{n+1}q_n + q_{n-1}. \) It is well known (see [8, §10.7]) that
\[||q_n\theta|| = |q_n\theta - p_n| = \frac{1}{q_n\alpha_{n+1} + q_{n-1}}. \]

Since \(a_{n+1} \leq \alpha_{n+1} < a_{n+1} + 1 \) and \(q_{n-1} \leq q_n, \) this implies that
\[\frac{1}{a_{n+1} + 2} < q_n||q_n\theta|| \leq \frac{1}{a_{n+1}}, \]
for \(n \geq 0. \)

We consider the following Diophantine approximation constants. For an irrational number \(\theta \) define its \textit{type} \(L(\theta) \) by
\[L(\theta) = \sup_{q \geq 1} (q||q\theta||)^{-1}, \]
and define the \textit{homogeneous Diophantine approximation constant} or \textit{Lagrange constant} \(L_{\infty}(\theta) \) of \(\theta \) by
\[L_{\infty}(\theta) = \limsup_{q \geq 1} (q||q\theta||)^{-1}. \]
We use the convention that if θ is rational, then $L(\theta) = L_{\infty}(\theta) = +\infty$. (N.B.: some authors study the reciprocal of what we have called the Lagrange constant.)

The best approximation properties of continued fraction convergents give

\begin{equation}
L(\theta) = \sup_{n \geq 0} \left(q_n ||q_n \theta|| \right)^{-1}
\end{equation}

and

\begin{equation}
L_{\infty}(\theta) = \limsup_{n \geq 0} \left(q_n ||q_n \theta|| \right)^{-1}.
\end{equation}

The set of values taken by $L_{\infty}(\theta)$ over all θ is called the Lagrange spectrum [4]. It is well known that $L_{\infty}(\theta) \geq \sqrt{5}$ for all θ. If $\theta = [a_0, a_1, a_2, \ldots]$, then another formula for $L_{\infty}(\theta)$ is

\begin{equation}
L_{\infty}(\theta) = \limsup_{j \to \infty} ([a_j, a_{j+1}, \ldots] + [0, a_{j-1}, a_{j-2}, \ldots, a_1]);
\end{equation}

see [4, p. 1].

There are simple relations between these quantities and the partial quotient bounds $K(\theta)$ and $K_{\infty}(\theta)$, cf. [16, pp. 22–23].

Lemma 2.1. For any irrational θ with bounded partial quotients, we have

\begin{equation}
K(\theta) \leq L(\theta) \leq K(\theta) + 2.
\end{equation}

Proof. This is immediate from (2.2) and (2.3). \qed

Lemma 2.2. For any irrational θ with bounded partial quotients

\begin{equation}
K_{\infty}(\theta) \leq L_{\infty}(\theta) \leq K_{\infty}(\theta) + 2.
\end{equation}

Proof. This is immediate from (2.2) and (2.4). \qed

Although we do not use it in the sequel, we note that both inequalities in (2.7) can be slightly improved. Since $q_n \leq (a_n + 1)q_{n-1}$, (2.1) yields

\[q_n ||q_n \theta|| \leq \frac{1}{a_{n+1} + \frac{q_{n-1}}{q_n}} \leq \frac{1}{a_{n+1} + 1/(a_n + 1)}. \]
Since \(a_n \leq K_\infty(\theta) \) from some point on, this and (2.4) yield

\[
L_\infty(\theta) \geq K_\infty(\theta) + \frac{1}{K_\infty(\theta) + 1}.
\]

Next, from (2.1) we have

\[
g_n ||q_n\theta|| = \frac{q_n}{\alpha_{n+1}q_n + q_{n-1}} = \frac{1}{a_{n+1} + \frac{1}{\alpha_{n+2}} + \frac{q_{n-1}}{q_n}}.
\]

Hence

\[
(q_n ||q_n\theta||)^{-1} = a_{n+1} + \frac{1}{\alpha_{n+2}} + \frac{q_{n-1}}{q_n}.
\]

Let \(K = K_\infty(\theta) \). Then for all \(n \) sufficiently large we have

\[
\alpha_{n+2} \geq 1 + \frac{1}{K + 1} = \frac{K + 2}{K + 1},
\]

so

\[
(q_n ||q_n\theta||)^{-1} \leq K + \frac{K + 1}{K + 2} + 1 = K + 2 - \frac{1}{K + 2}.
\]

We conclude that

\[
L_\infty(\theta) \leq K_\infty(\theta) + 2 - \frac{1}{K_\infty(\theta) + 2}.
\]

3. LAGRANGE CONSTANTS AND PROOF OF THEOREM 1.1.

An integer matrix \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) with \(\det(M) \neq 0 \), acts as a linear fractional transformation on a real number \(\theta \) by

\[
M(\theta) := \frac{a\theta + b}{c\theta + d}.
\]

Note that \(M_1(M_2(\theta)) = M_1M_2(\theta) \).
Lemma 3.1. If M is an integer matrix with $\det(M) = \pm 1$, then the Lagrange constants of θ and $M(\theta)$ are related by

$$L_\infty(M(\theta)) = L_\infty(\theta).$$

Proof. This is well-known, cf. [14] and [5, Lemma 1], and is deducible from (2.5).

The main result of Cusick and Mendès France [5] yields:

Theorem 3.2. For any integer $m \geq 1$, let

$$G_m = \{ M \in M(2,\mathbb{Z}) : |\det(M)| = m \}.$$

Then for any irrational number θ,

$$\sup_{M \in G_m} (L_\infty(M(\theta))) = mL_\infty(\theta).$$

and

$$\inf_{M \in G_m} (L_\infty(M(\theta))) \geq \frac{1}{m} L_\infty(\theta).$$

Proof. Theorem 1 of [5] states that

$$\max_{\substack{a, b, d \in \mathbb{Z} \cap \mathbb{Z} \backslash \{0\} \mid \gcd(a, d) = 1 \atop ad = m, 0 \leq b < d}} \left(L_\infty \left(\frac{a\theta + b}{d} \right) \right) = mL_\infty(\theta).$$

Let $GL(2, \mathbb{Z})$ denote the group of 2×2 integer matrices with determinant ± 1. We need only observe that for any M in G_m there exists some $\tilde{M} \in GL(2, \mathbb{Z})$ such that $\tilde{M}M = \begin{bmatrix} a' & b' \\ 0 & d' \end{bmatrix}$ with $a'd' = m$ and $0 \leq b' < d'$. For if so, and $\psi = \frac{a\theta + b}{c\theta + d}$, then Lemma 3.1 gives

$$L_\infty(\psi) = L_\infty(\tilde{M}(\psi)) = L_\infty(\tilde{M}M(\theta)) = L_\infty \left(\frac{a'\theta + b'}{d'} \right),$$

whence (3.4) implies (3.2). To construct $\tilde{M} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, we must have

$$Ca + Dc = 0.$$
Take $C = \frac{\text{lcm}(a,c)}{a}$ and $D = \frac{\text{lcm}(a,c)}{c}$. Then $\gcd(C,D) = 1$, so we may complete this row to a matrix $\tilde{M} \in GL(2, \mathbb{Z})$. Multiplying this by a suitable matrix $\begin{pmatrix} \pm 1 & \pm 1 \\ 0 & c \end{pmatrix}$ yields the desired \tilde{M}.

The lower bound (3.3) follows from the upper bound (3.2). We use the adjoint matrix

$$M' = \text{adj}(M) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix},$$

which has $M'M = \text{det}(M)I = mI$ and $\text{det}(M') = \text{det}(M)$. If $\theta' = M(\theta)$, then

$$M'(\theta') = M'(M(\theta)) = M'M(\theta) = \theta.$$ We prove by contradiction. Suppose (3.3) were false, so that for some $M \in G_m$ and some θ we have

$$L_\infty(M(\theta)) < \frac{1}{m} L_\infty(\theta).$$

This states that

$$mL_\infty(\theta') < L_\infty(M'(\theta')),$$

which contradicts (3.2) for θ', since $\text{det}(M') = \text{det}(M) = m$. \(\square\)

Remark. The lower bound (3.3) holds with equality for some values of θ and not for other values. If for given θ we choose an $M \in G_m$ which gives equality in (3.2), so that $L_\infty(M(\theta)) = mL_\infty(\theta)$, then equality holds in (3.3) for $\theta' = \text{adj}(M)(\theta)$. However, if $L_\infty(\theta) = \sqrt{5}$, as occurs for $\theta = \frac{1+\sqrt{5}}{2}$, then $L_\infty(M(\theta)) \geq L_\infty(\theta)$ for all M; hence (3.3) does not hold with equality when $m \geq 2$.

Proof of Theorem 1.1. Theorem 3.2 gives $L_\infty(M(\theta)) \leq \text{det}(M)L_\infty(\theta)$. Now apply Lemma 2.2 twice to get

$$K_\infty(M(\theta)) \leq L_\infty(M(\theta)),$$

$$\leq |\text{det}(M)|L_\infty(\theta),$$

$$\leq |\text{det}(M)|(K_\infty(\theta) + 2).$$

(3.5)

To obtain the lower bound, we use the adjoint $M' = \text{adj}(M) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$, and apply (3.5) with M' and $\theta' = M(\theta)$ to obtain

$$K_\infty(\theta) = K_\infty(M'(M(\theta))) \leq |\text{det}(M')|(K_\infty(M(\theta))) + 2).$$
Since $|\det(M)| = |\det(M')|$, this yields

$$K_\infty(M(\theta)) \geq \frac{1}{|\det(M)|} K_\infty(\theta) - 2. \quad \square$$

4. NUMBERS OF BOUNDED TYPE AND PROOF OF THEOREM 1.2

Recall that the type $L(\theta)$ of θ is the smallest real number such that $q||q\theta|| \geq \frac{1}{L(\theta)}$ for all $q \geq 1$.

Theorem 4.1. Let θ have bounded partial quotients. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then

$$L \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\det(M)|L(\theta) + |c(c\theta + d)|.$$

Proof. Set $\psi = \frac{a\theta + b}{c\theta + d}$. Suppose first that $c = 0$ so that $|\det(M)| = |ad| > 0$. Then $L(\psi) \geq \frac{1}{x}$, where

$$x := q||q\psi|| = q||q \left(\frac{a\theta + b}{d} \right)|| = q|q \left(\frac{a\theta + b}{d} \right) - p|. $$

We have

$$|ad|x = |aq| |aq\theta + (bq - dp)|$$

$$\geq |aq| |aq\theta|| \geq \frac{1}{L(\theta)}.$$

For any $\epsilon > 0$ we may choose q in (4.2) so that $\frac{1}{x} \geq L(\psi) - \epsilon$. Then

$$|\det(M)|L(\theta) = |ad||L(\theta)| \geq \frac{1}{x} \geq L(\psi) - \epsilon.$$

Letting $\epsilon \to 0$ yields (4.1) when $c = 0$.

Suppose now that $c \neq 0$. Again $L(\psi) \geq \frac{1}{x}$ where

$$x := q||q\psi|| = q|q \left(\frac{a\theta + b}{c\theta + d} \right) - p|. $$
We have

\[|c\theta + d| x = q |(qa - pc)\theta - (pd - qb)| , \]

so that

\[|c\theta + d| \left| \frac{qa - pc}{q} \right| x = |qa - pc| |(qa - pc)\theta - (pd - qb)| \geq |qa - pc| |(qa - pc)\theta|| . \]

(4.6)

We first treat the case \(qa - pc = 0 \). Now

\[
\begin{bmatrix}
 a & -c \\
 -b & d
\end{bmatrix}
\begin{bmatrix}
 q \\
 p
\end{bmatrix}
= \begin{bmatrix}
 qa - pc \\
 pd - qb
\end{bmatrix} \neq \begin{bmatrix}
 0 \\
 0
\end{bmatrix},
\]

since \(\det \begin{bmatrix}
 a & -c \\
 -b & d
\end{bmatrix} = \det(M) \neq 0 \). Thus if \(qa - pc = 0 \) then \(|pd - qb| \geq 1 \), hence (4.5) gives

\[|c\theta + d| x = q |pd - qb| \geq 1 . \]

(4.7)

It follows that \(qa - pc \neq 0 \) provided that

\[\frac{1}{x} > |c\theta + d| . \]

(4.8)

We next treat the case when \(qa - pc \neq 0 \). Now from the definition of \(L(\theta) \) we see

\[|qa - pc| |(qa - pc)\theta|| \geq \frac{1}{L(\theta)} . \]

(4.9)

Given \(\epsilon > 0 \), we may choose \(q \) so that \(\frac{1}{x} \geq L(\psi) - \epsilon \), and we obtain from (4.6) and (4.9) that

\[|c\theta + d| \left| \frac{qa - pc}{q} \right| L(\theta) \geq \frac{1}{x} \geq L(\psi) - \epsilon . \]

(4.10)

However, the bound

\[\left| q \left(\frac{a\theta + b}{c\theta + d} \right) - p \right| \leq \frac{1}{2} \]
implies that
\[
\left| \frac{qa - pc}{c} \right| = \left| q \left(\frac{a}{c} \right) - p \right| \leq \left| q \left(\frac{a\theta + b}{c\theta + d} \right) - q \left(\frac{a}{c} \right) \right| + \left| q \left(\frac{a}{c} \right) - p \right| \leq q|\text{det}(M)| \left| \frac{1}{c(c\theta + d)} \right| + \frac{1}{2}.
\]

Multiplying this by $\frac{\epsilon}{q}$ and applying it to the left side of (4.10) yields

\begin{equation}
(4.11) \quad L \left(\frac{a\theta + b}{c\theta + d} \right) - \epsilon \leq |\text{det}(M)|L(\theta) + \frac{1}{2} \left| \frac{c(c\theta + d)}{q} \right|.
\end{equation}

Letting $\epsilon \to 0$ and using $q \geq 1$ yields

\begin{equation}
(4.12) \quad L \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\text{det}(M)|L(\theta) + \frac{1}{2} |c(c\theta + d)|,
\end{equation}

provided that (4.8) holds. Now (4.8) fails to hold only if

\begin{equation}
(4.13) \quad L \left(\frac{a\theta + b}{c\theta + d} \right) \leq |c\theta + d|.
\end{equation}

The last two inequalities imply (4.1) when $c \neq 0$. \qed

Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

\[
K \left(\frac{a\theta + b}{c\theta + d} \right) \leq L \left(\frac{a\theta + b}{c\theta + d} \right) \leq |\text{det}(M)|L(\theta) + |c(c\theta + d)| \leq |\text{det}(M)|(K(\theta) + 2) + |c(c\theta + d)|,
\]

which is the desired bound. \qed

Remarks. (1). The proof method of Theorem 4.1 can also be used to directly prove the bounds

\begin{equation}
(4.14) \quad \frac{1}{|\text{det}(M)|}L_\infty(\theta) \leq L_\infty(M(\theta)) \leq |\text{det}(M)|L_\infty(\theta),
\end{equation}

of Theorem 3.2, from which Theorem 1.1 can be easily deduced. The lower bound in (4.14) follows from the upper bound as in the proof of Theorem 3.2. We sketch a proof of the upper bound in (4.14) for the case
\(\psi = \frac{a\theta + b}{c\theta + d} \) with \(c \neq 0 \). For any \(\epsilon^* > 0 \) and all sufficiently large \(q^* \geq q^*(\epsilon^*) \), we have

\[
(4.15) \quad q^*||q^*\theta|| \geq \frac{1}{L_\infty(\theta) + \epsilon^*}.
\]

We choose \(q = q_n(\psi) \) for sufficiently large \(n \), and note that

\[
q^* = |q_n(\psi)a - p_n(\psi)c| \to \infty
\]
as \(n \to \infty \), since \(\psi \) is irrational. We can then replace (4.9) by (4.15), and then deduce (4.11) with \(L(\theta) \) replaced by \(L_\infty(\theta) + \epsilon^* \). Letting \(q \to \infty \), \(\epsilon \to 0 \) and \(\epsilon^* \to 0 \) in that order yields the upper bound in (4.14).

(2). For a given matrix \(M \) consider the set of attainable ratios

\[
(4.16) \quad \mathcal{V}(M) := \left\{ \frac{L_\infty(M(\theta))}{L_\infty(\theta)} : \theta \text{ has bounded partial quotients} \right\}.
\]

By Lemma 3.1 the set \(\mathcal{V}(M) \) depends only on its \(SL(2, \mathbb{Z}) \)-double coset

\[
[M] = \{N_1MN_2 : N_1, N_2 \in SL(2, \mathbb{Z})\}.
\]

Theorem 3.2 shows that

\[
(4.17) \quad \mathcal{V}(M) \subseteq \left[\frac{1}{|\det(M)|}, \frac{1}{|\det(M)|} \right].
\]

It is an interesting open problem to determine the set \(\mathcal{V}(M) \). Both \(|\det(M)| \) and \(\frac{1}{|\det(M)|} \) lie in \(\mathcal{V}(M) \), as follows from Theorem 3.2 and the remark following it.

Acknowledgment. We are indebted to the referee for helpful comments and references, and in particular for raising the open problem about \(\mathcal{V}(M) \).

References

J. C. Lagarias
AT &T Labs – Research, Room C235
180 Park Avenue, P. O. Box 971
Florham Park, NJ 07932-0971, USA
email: jcl@research.att.com

J. O. Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
email: shallit@uwaterloo.ca