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On the number of subgroups of finite abelian groups

par ALEKSANDAR 

RÉSUMÉ. Soit

T(x) = K1x log2 x + K2x logx + K3x + 0394(x),

où T(x) désigne le nombre de sous groupes des groupes abéliens dont l’ordre
n’excède pas x et dont le rang n’excède pas 2, et 0394(x) est le terme d’erreur.
On démontre que

03942(x) dx ~ X2 log31/3 X, dx 03A9(X2log4 

ABSTRACT. Let

T(x) = K1x log2 x + K2x log x + K3x + 0394(x),

where T(x) denotes the number of subgroups of all Abelian groups whose
order does not exceed x and whose rank does not exceed 2, and 0394(x) is the
error term. It is proved that

1. Introduction

Let

where T(G) denotes the number of subgroups of a finite Abelian group
Q, is the rank of 9, and 19 is the order of Q. The group g has rank r
if
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so that one has

where Kj are effective constants and 0(x) is to be considered as the error
term in the asymptotic formula for T(x). One has the Dirichlet series

representation (this is due to G. Bhowmik [1]; the generating Dirichlet
series for Abelian groups of rank &#x3E; 3 are more complicated)

Using (1.2) and the estimate in the four-dimensional asymmetric divisor
problem of H.-Q. Liu [6], G. Bhowmik and H. Menzer [2] obtained the
bound

with c = 31/43 = 0.72093.... Recently H. Menzer [6] used two new esti-
mates in the three-dimensional asymmetric divisor problem to prove (1.3)
with the better value c = 9/14 = 0.64285... , and this is further improved in
the forthcoming paper by G. Bhowmik and J. Wu [3] to 0(x) C ~5~$ log4 ~.
Note that we can write (1.2) as

where the Dirichlet series for U(s) is absolutely convergent for Vie &#x3E; 1/3.
This prompts one to think that in (1.1) there should be a new main term
corresponding to the pole of order 3 of H(s) at s = 1/2, namely that we
should have
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where 0 (one cannot hope for E(x) = o(xl/2) since in [3] it was shown
that E(x) = O(Xl/2(log log x)6) holds). Even if the relation (1.5) is perhaps
too optimistic, it is very likely that 0(x) G holds, and that A(x)
cannot be of order lower than x 1/2 log2 x. In fact H. Menzer [5] conjectured
that

This was proved by Bhowmik and Wu [3], which is a corollary of their
bound 

__

Since heuristically in (1.5) the terms + C2 log x + C3) are the
residue of H(s)x8/s at s = 1/2 it is not difficult to see that the constant
Gl is negative, so actually in (1.6) Q is S2_, i.e. the S2-result of Bhowmik
and Wu is 

, ,

The object of this note is to investigate A(x) in mean square, and we shall
prove two fairly precise results contained in

THEOREM 1. We have

THEOREM 2. We have

Remark 1. The omega-result (1.8) implies another proof of Menzer’s
conjecture (1.6).

Remark 2. It is plausible to conjecture that, for X --~ oo and suitable
C &#x3E; 0, one has 

--
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although this seems to be out of reach at present.

Remark 3. It will be clear from the proof of Theorem 2 that the method
is capable of generalization to the case where the error term in question
corresponds to the Dirichlet series generated by suitable factors of the form
~(as + b) (a, b integers).

2. Proof of the upper bound estimate

To prove Theorem 1 we start from the relation

where c &#x3E; 0 is a suitable constant. The formula (2.1) follows from the
properties of Mellin transforms, similarly as in the case of the classical
divisor problem (see (13.23) on p. 357 of [4]). If the integral on the left-
hand side of (2.1) converges, so does the integral on the right-hand side and
conversely. We shall need the following facts about C(s) (see [4] for proofs):

The last bound follows e.g. from Th. 4.4 and Th. 5.2 of [4]. Now we take
c = 1/2 + 1/ log X, X &#x3E; Xo &#x3E; 0. Then from (1.4) and (2.1) we obtain first
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By symmetry we have

say. Since C(s) C 1/ls - 1~ [ near s = 1, we have 11 W log X. Using (2.2)
it follows that (Ci &#x3E; 0 is a constant)

Let

By integration by parts it follows that

But we have

and
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with the change of variable v = log t/ log X. We also have

Therefore

and (2.3) gives

Replacing X by E N and summing the resulting estimates we
obtain (1.7).

3. Proof of the omega-result

To prove the omega-result of Theorem 2 we shall use the method used in
proving Theorem 2 of [5], with the necessary modifications. Namely in [5]
the generating Dirichlet series was of the form

where 1  a2  ...  ak are integers, with k possibly infinite (e.g
the generating series of the function a(n), the number of non-isomorphic
Abelian groups with n elements, is (3.1) with aj = j, k = oo). The Dirichlet
series H(s) (see (1.4)) is clearly not of the form (3.1), since it contains the
factor C(2s - 1). Writing

it is seen that v(n) «E n~, and consequently we obtain
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where d(n) is the number of divisors of n. We remark that Bhowmik and
Wu [3] proved the sharper bound t2(n) G but for our

purposes (3.2) is more than sufficient. As on p. 82 of [5] we start from the
Mellin inversion integral (see also p. 122 of [4])

where h, U &#x3E; 0. We shall take T 1-~  t  T, h = log2 T, s = 2 +it, Y = TB,
where 6 &#x3E; 0 is a sufficiently small constant and B &#x3E; 1 is a suitable constant.

Setting U = n/Y we obtain from (3.3), by termwise integration,

We shift the line of integration to = -1/4 and apply the residue
theorem. The pole w = 0 of the integrand gives the residue H(s), while the
poles of H (s + w) give a total contribution which is 0 ( 1 ) in view of Stirling’s
formula for the gamma-function. The integral along the line 9Bew = - 1/4
is bounded, and we obtain

The idea of proof is as follows. We shall prove that

and then use (3.4) to show that (3.5) gives a contradiction if we assume
that (1.8) does not hold, namely that we have

To prove (3.5) it is enough to prove that
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since (3.7) gives (

Using (1.4) and (2.2) we have

Now let F(s) := (2(S)(4(2s) and use a general lower bound for mean values
of Dirichlet series (see e.g. K. Ramachandra [8], [9]; note that the factor
1/n is missing in (4.2) of [5]):
(3.8)

where F(s) = 1+~~=2 c(n)n-S converges for 91:e = Q &#x3E; uo, F(s) is regular
for 9te ~ 1/2, M  t  2M and both F(s) « eMD and c(n) « MD hold
for some D &#x3E; 0. In our case

where the divisor function d4(n) is generated by ~4(s). Hence (3.8) yields

by partial summation from Cx log3 x (C &#x3E; 0). Thus (3.5)
is proved, and it remains to see how it leads to the proof of Theorem 2.



379

To obtain the left-hand side of (3.5) from (3.4), we shall divide (3.4) by t,
square and integrate over t  T. We use the mean value theorem

for Dirichlet polynomials (see Theorem 5.2 of [4]) to deduce that

for 6 sufficiently small, where we used the bound (3.2) and the trivial bound

It remains to evaluate

This is done again by the use of the mean value theorem for Dirichlet
polynomials. However first we integrate by parts and use (1.1) to obtain

say. By the first derivative test (Lemma 2.1 of [4]) it is seen that 11 W
YT- 1/2t-I log2 T. Hence the contribution of 7i to I will be
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for B  2 - ~8. In 12 we use integration by parts and the bound 0(x) C
x 211 (see (1.3)) to obtain

v y

The contribution of the 0-term to I will be negligible, and so will be also
the contribution of h(x/y)h + 1/2 if B  3 - 38. The main contribution
to I from 12 will be from the term it. This is

By using the Cauchy-Schwarz inequality for integrals and inverting the
order of integration it is seen that the last integral does not exceed

where we used again the mean value theorem for Dirichlet polynomials. If
(3.6) holds, then obviously also

consequently we finally obtain from
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which is the contradiction that proves Theorem 2.
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