JEAN-MARC DESHOUILLERS
FRANÇOIS HENNECART
BERNARD LANDREAU

Waring’s problem for sixteen biquadrates. Numerical results

Journal de Théorie des Nombres de Bordeaux, tome 12, no 2 (2000), p. 411-422

<http://www.numdam.org/item?id=JTNB_2000__12_2_411_0>
Waring's problem for sixteen biquadrates -
Numerical results

par JEAN-MARC DESHOUILLERS, FRANÇOIS HENNECART
et BERNARD LANDREAU

À Jacques Martinet, pour ses soixante ans

1. Introduction

Davenport [1] showed in 1939 that every sufficiently large integer is a sum of (at most) 16 biquadrates; Kempner [6], considering the integers 31×16^k had previously shown that the value 16 cannot be reduced. In the other direction, Thomas [8] showed in 1974 that every integer in the range $[13793 ; 10^{80}]$ is a sum of 16 biquadrates. Although Davenport’s method is effective, that is to say that it can lead to a numerical value for an integer N_0 beyond which every integer is a sum of 16 biquadrates, such a N_0 would be completely out of reach of numerical computation. In a forthcoming paper, Kawada, Wooley and the first-named author show
that 10^{220} is an admissible value for N_0: it thus makes sense to pursue Thomas’ computation. The main result of this paper is

Theorem. Every positive integer in the interval $[13793; 10^{245}]$ is the sum of sixteen fourth powers.

The list of the 96 integers in $[1; 13792]$ which require at least 17 biquadrates is given in Proposition 7, at the end of the fifth section.

2. Scheme of the proof

In the sequel, we shall write that an integer n is a B_s (or is B_s) if n is the sum of s fourth powers. For $M > b > a > 0$, we shall say that n belongs to $a \leftrightarrow b$ modulo M when the residue class of n lies in the interval $[a, b]$. Even if the general scheme of the proof is classical, we give in this section the main argument leading to our result.

The first step consists in the numerical verification that all integers in some finite arithmetic progression (we deal with residue 4 modulo 80) are B_5. We explain our algorithm in Section 3. Then, by a 11-fold application of the ascent argument (cf. Lemma 1), we deduce that all integers in the much larger interval $I = (5865530312564; 10^{245}]$ and belonging to $4 \leftrightarrow 15$ modulo 16 are B_{16}. The lower bound of I is the largest integer found by our algorithm congruent to 4 modulo 80 which is not a B_5. A probabilistic argument, similar to that explained for the sums of four cubes (cf. [5]), would show that 5865530312564 is most likely the last non-B_5 in this arithmetic progression.

By applying again the ascent method on some very short arithmetic progressions of B_9 (checked of course on a computer by a straightforward implementation), we show in Section 5 that any integer, not a multiple of 16, in the interval $(2.5 \times 10^5; 10^{16})$ is a B_{16}. This section is completed by showing that any integer in $[13793; 2.5 \times 10^5]$ is a B_{16}, and by giving the non-B_{16} integers up to 13792.

In Section 6, we show how the remaining non-zero residue classes modulo 16 can be covered by a slight modification in the ascent application (cf. Lemma 2).

Now since 16 is a biquadrate, any integer $n \in [13793; 16 \times 10^{245}]$ divisible by 16 will be a B_{16} if $n/16$ is itself a B_{16}. We may repeat this argument until we obtain an integer $n/16^a$ which is either in the interval $[13793; 10^{245}]$ and belonging to $1 \leftrightarrow 15$ modulo 16, or lies in a short interval $[13793; 2.5 \times 10^5]$ covered by the sequence of B_{16}.

We now give an ascent lemma, which is the key of our argument. This result is a slight variation of the standard greedy algorithm [2], and already appeared more or less in [4]. For any real number x, we denote by $\lceil x \rceil$ the smaller integer greater than or equal to x. For any non-empty sets A and
B of integers, we write $A + B$ the set of all the sums $m + n$ where $m \in A$ and $n \in B$.

Lemma 1. Let $M \geq 1$ be an integer, and a, b two residues modulo M. For ℓ_0 and L integer, we denote by A the finite arithmetic progression consisting of the integers n in $(\ell_0, L]$ congruent to a modulo M, and B an infinite sequence of biquadrates congruent to b modulo M: $b_1^4 < b_2^4 < \cdots < b_s^4 < \cdots$. We assume that $T = \max_k (b_{k+1} - b_k)$ exists.

Then the sumset $A + B$ contains all integers congruent to $a + b$ modulo M lying in the interval

$$\left(\ell_0 + b_1^4, L + \left[\left(\frac{L - \ell_0}{4T}\right)^{1/3} - T\right]^4\right],$$

which contains the interval

$$\left(\ell_0 + b_1^4, L + \left(\frac{L - \ell_0}{4T}\right)^{4/3}\right].$$

Proof. Let $A_k = A + b_k^4$. For any k such that $b_k^4 - b_{k-1}^4 \leq L - \ell_0$, the set $A_{k-1} \cup A_k$ contains all the integers congruent to $a + b$ modulo M in the interval $(\ell_0 + b_{k-1}^4, L + b_k^4]$. Since

$$b_{k-1} \geq b_k - T, \quad \text{for any } k \geq 2,$$

we have $b_k^4 - b_{k-1}^4 \leq 4Tb_k^3$, for any $k \geq 1$. Thus the set $\bigcup_{k=1}^s A_k$ contains all integers congruent to $a + b$ modulo M in the interval $(\ell_0 + b_1^4, L + b_s^4)$, if $b_s \leq (L - \ell_0)/4T^{1/3}$ for any $k \leq s$.

By (1), the integer b_s may be chosen greater or equal than

$$\left\lfloor (L - \ell_0)/4T^{1/3} \right\rfloor - T.$$

Lemma 1 is proved. \hfill \Box

The following lemma will enable us to use a modified ascent argument for B_{14}'s congruent to 1 modulo 16 by starting from B_{13}'s with non-zero residue class modulo 16. We have

Lemma 2. Let n be an integer congruent to 1 modulo 16. Then among any set of 50 consecutive integers,

(i) there exists an odd integer u such that $m_u := (n - u^4)/16$ belongs to $4 \longleftrightarrow 12$ modulo 16 and $m_u \equiv n \mod 5$,

(ii) there exists an odd integer v such that $m_v := (n - v^4)/16$ belongs to $4 \longleftrightarrow 12$ modulo 16 and $m_v \equiv n - 1 \mod 5$.

Proof. We first observe that the sequence $S := (s_{2q+1})_{q \geq 0}$ of the residue class modulo 16 of $(1 - (2q + 1)^4)/16$ is 32-periodic; its first 32 terms are

$$0, 11, 9, 10, 6, 13, 7, 4, 12, 15, 5, 14, 2, 1, 3, 8, 8, 3, 1, 2, 14, 5, 15, 12, 4, 7, 13, 6, 10, 9, 11, 0.$$
We now describe how we proceed if we require further the residue class modulo 5 of \(m_u = (n - u^4)/16 \) to be fixed (we have either \(m \equiv n \) or \(n - 1 \mod 5 \)), we choose either \(u \equiv 5 \mod 10 \) or \(u \equiv 1 \mod 10 \).

We first look at the subsequence \(S_0 := \{s_u : u \geq 0 \text{ and } u \equiv 5 \mod 10 \} \): \(S_0 \) is also 32-periodic and its first 32 terms are

\[
9, 4, 2, 3, 15, 6, 0, 13, 5, 8, 14, 7, 11, 10, 12, 1, 1, 12, 10, 11, 7, 14, 8, 5, 13, 0, 6, 15, 3, 2, 4, 9.
\]

Let \(k \geq 0 \) such that \(n = 1 + 16k \). In order to have \(m_u \) in \(4 \rightarrow 12 \mod 16 \) and \(m_u \equiv n \mod 5 \), we may choose \(u \equiv 5 \mod 10 \) such that \(s_u + k \) belongs to \(4 \rightarrow 12 \mod 16 \).

We easily observe that for each \(k \mod 16 \), the longest series of consecutive terms in \(S_0 + k \) which are not in \(4 \rightarrow 12 \mod 16 \) have at most four elements. Remember that a difference of five between the ranks of two elements in the sequence \(S_0 + k \) corresponds to 25 in the whole sequence \(S + k \), and thus corresponds to 50 in the set of integers. This proves (i).

We now examine the case where we need to get \(u \) such that \(n \equiv (n - v^4)/16 + 1 \mod 5 \). We thus take the subsequence \(S_1 := \{s_v : v \geq 0 \text{ and } v \equiv 1 \mod 10 \} \): \(S_1 \) which is also 32-periodic and its first 32 terms are

\[
0, 13, 5, 8, 14, 7, 11, 10, 12, 1, 1, 12, 10, 11, 7, 14, 8, 5, 13, 0, 6, 15, 3, 2, 4, 9, 9, 4, 2, 3, 15, 6.
\]

By considering again the shifted sequence \(S_1 + k \) where \(n = 1 + 16k \), we still realize that the longest series of consecutive elements of \(S_1 + k \) which are not in \(4 \rightarrow 12 \mod 16 \) is four terms long.

This ends the proof of Lemma 2. \(\square \)

Although the ascent method is rather efficient, we may largely improve the final bound if we jump by a single ascent from \(B_5 \)'s to \(B_7 \)'s with \(B_2 \)'s instead of two ascents with \(B_1 \)'s as was noticed in [4]. We shall use

Lemma 3. Let \(M \geq 1 \) be an integer, and \(a,b \) two residues modulo \(M \).

For \(\ell_0 \) and \(L \) integers, we denote by \(A \) the finite arithmetic progression consisting of the integer \(n \) in \((\ell_0, L] \) congruent to \(a \) modulo \(M \), and by \(B \) a set of integers \(b_1 < b_2 < \cdots < b_s \) all congruent to \(b \) modulo \(M \) and such that \(b_k - b_{k-1} \leq L - \ell_0 \), for \(2 \leq k \leq s \).

Then the sumset \(A + B \) contains all integers congruent to \(a + b \) modulo \(M \) lying in the interval \((\ell_0 + b_1, L + b_s] \).

Proof. This easily follows from the fact that for any \(k, 2 \leq k \leq s \), the set \(A + b_{k-1} \cup A + b_k \) contains all the integers lying in the interval \((\ell_0 + b_{k-1}, L + b_k] \) and congruent to \(a + b \) modulo \(M \). \(\square \)
3. On the B_5's congruent to 4 modulo 80

In this section, we explain how we obtain the following

Proposition 1. Every integer lying in the interval

$$\{5,865,530,312,564; 2.17 \times 10^{14}\}$$

which is congruent to 4 modulo 80 is a B_5.

Since the sequence of B_3's has a zero density, the least number of summands necessary to represent a large arithmetic progression of integers is 4: it is a great problem to know whether the sequence of B_4's has a positive density or not. On the contrary, a density argument and numerical evidence lead us to expect infinite arithmetic progressions of B_5's.

Let us now explain our choice of the arithmetic progression 4 modulo 80.

Our goal is to find an arithmetic progression which is rich in sums of 5 biquadrates. For a fixed modulus M and any residue k, this can be measured thanks to the number $\rho(k, M)$ which is the number of incongruent solutions of $k \equiv x_1^4 + x_2^4 + x_3^4 + x_4^4 \mod M$. For an odd prime $p \equiv 3 \mod 4$, since biquadrates coincide with squares modulo p, there is an almost uniform distribution of the B_5's modulo p. For $p \equiv 1 \mod 4$, the numbers $\rho(k, p)$ are badly distributed when p is small and especially for $p = 5$. The number $\rho(k, 5)$ is maximal for $k = 4$. Indeed we have

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(k, 5)$</td>
<td>1025</td>
<td>20</td>
<td>160</td>
<td>640</td>
<td>1280</td>
</tr>
</tbody>
</table>

Table 1. Number of representations modulo 5

Biquadrates also are badly distributed modulo 16: every biquadrate is congruent to 0 or 1 modulo 16. Starting from an interval of B_5's, we still have 11 biquadrates to add. Since every biquadrate is congruent to 0 or 1 modulo 16, in order to represent integer congruent to 15 modulo 16, we are led to select either B_5's congruent to 4 modulo 16, or B_5's congruent to 5 modulo 16. There have more sums of five fourth powers congruent to 4 modulo 16 than congruent to 5 modulo 16. Hence we have considered the arithmetic progression 4 modulo 80.

<table>
<thead>
<tr>
<th>k</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(k, 16)$</td>
<td>163840</td>
<td>32768</td>
</tr>
</tbody>
</table>

Table 2. Number of representations modulo 16

In the following table, we describe the action of the ascent on the residue classes modulo 16 and modulo 5. In the right hand column, we indicate the value of T when applying Lemma 1.
The residue class modulo 80 of the added B_1 is fixed among those given at each ascent step B_j to B_{j+1} according to the considered arithmetic progression modulo 80 of the B_{j+1}’s.

TABLE 3. the 11-fold ascent

A biquadrate is congruent to 0, 1, 16 or 65 modulo 80. Thus the only ordered representations of 4 modulo 80 as sums of five biquadrates are

$$4 \equiv 0 + 1 + 1 + 1 + 1 \equiv 1 + 1 + 1 + 16 + 65 \mod 80$$

It is easy to see that the second representation type generates much more B_5’s than the first one (the ratio is 4). In our algorithm, we thus have first used the most productive representation, and the other one only when necessary.

Our algorithm may be described as follows:

- Compute all B_1’s up to a given bound L, divide them by 80, and rearrange their quotient in four different arrays U_0, U_1, U_{16} and U_{65} according to their remainder modulo 80.
- Calculate separately the B_2’s up to L congruent to 1 modulo 80, and the ones congruent to 2 modulo 80 in the following way.
 - For each class 1 or 2 and each interval, a bits array is initialized to zero, and a two-loops routine on each pair (U_j, U_k) - considering $(j, k) = (1, 1)$ for B_2’s congruent to 2, and $(j, k) = (0, 1)$ or $(16, 65)$ for B_2’s congruent to 1 – switches at each new B_2 the corresponding bit to one.
 - Then read the B_2’s identified by the location of the bits “one” in the bits array and arrange them in two different arrays according to their class modulo 80: array V_1 for the B_2’s congruent to 1 (mod 80) and array V_2 for the B_2’s congruent to 2 mod 80. Next interval is considered.
In order to check that a fixed interval I of integers congruent to 4 modulo 80 contains only B_5’s, we associate to each quotient modulo 80 a bit which is initialized to zero.

A three loops routine on U_1, V_1 and V_2 sifts the interval I, by switching at each new B_5 the corresponding bit to one.

When all the bits are to one, checking is stopped. Next interval is considered.

4. On the B_7’s congruent to 6, 21 or 36 modulo 80

We deal in this section with B_2’s. We show

Proposition 2. For each $k \in \{2, 17, 32\}$, the increasing sequence $\{b_j : j \geq 1\}$ of the B_2’s congruent to k modulo 80 is such that there exists an element b_s satisfying $b_s \geq 1.36 \times 10^{23}$ and $\max_{k \leq s}(b_k - b_{k-1}) \leq 2.11 \times 10^{14}$.

A single application of Lemma 3 leads to the following

Proposition 3. Every integer lying in the interval $[5.87 \times 10^{12} ; 1.36 \times 10^{23}]$ which is congruent to 4, 5 or 6 modulo 16 and to 1 modulo 5 is a B_7.

We give in Table 4, for each step $j \geq 1$ of the ascent, the upper bound related to the sums of $5 + j$ fourth powers in the arithmetic progressions described in Table 1. We have denoted by L_{5+j}, $j \geq 1$, the decimal logarithms of these bounds. We give for comparison the bounds obtained when using two ascents with B_1’s from B_5’s to B_7’s. In the four last ascents from B_{12}’s to B_{16}’s, the bounds are calculated from Lemma 1 in the worst case $T = 10$.

<table>
<thead>
<tr>
<th>two ascents with B_1’s</th>
<th>one single ascent with B_2’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{16}</td>
<td>226.44</td>
</tr>
<tr>
<td>L_{15}</td>
<td>171.43</td>
</tr>
<tr>
<td>L_{14}</td>
<td>130.17</td>
</tr>
<tr>
<td>L_{13}</td>
<td>99.23</td>
</tr>
<tr>
<td>L_{12}</td>
<td>76.02</td>
</tr>
<tr>
<td>L_{11}</td>
<td>58.22</td>
</tr>
<tr>
<td>L_{10}</td>
<td>44.87</td>
</tr>
<tr>
<td>L_{9}</td>
<td>34.85</td>
</tr>
<tr>
<td>L_{8}</td>
<td>27.34</td>
</tr>
<tr>
<td>L_{7}</td>
<td>21.71</td>
</tr>
<tr>
<td>L_{6}</td>
<td>17.49</td>
</tr>
<tr>
<td>L_{5}</td>
<td>14.32</td>
</tr>
</tbody>
</table>

Table 4. Upper bounds in the ascent
Below we state precisely two useful consequences.

Proposition 4. Every integer lying in the interval \([5.87 \times 10^{12} ; 10^{107}]\) which is congruent to 1 or 2 modulo 5 and to 4, 5, 6, 7, 8, 9, 10, 11 or 12 modulo 16 is a \(B_{13}\).

Every integer lying in the interval \([5.87 \times 10^{12} ; 10^{245}]\) which is congruent to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 modulo 16 is a \(B_{16}\).

It is not surprising to notice that the ascent with \(B_2\)'s is much better than two ascents with \(B_1\)'s. Indeed the numbers of \(B_2\)'s up to \(x\) is asymptotically equivalent to \(\frac{\Gamma(1/4)^2}{32\Gamma(3/2)}\sqrt{x}\), and the \(B_2\)'s appears to be more or less as well-distributed as a regular sequence of squares. Hence we may expect that one ascent with \(B_2\)'s increases the bound on \(B_5\)'s by a power 2, when two ascents with \(B_1\)'s gives only \(\frac{4}{3} \cdot \frac{4}{3} = \frac{16}{9}\). Unfortunately, the sequence of \(B_2\)'s is not so regular than expected, but this trick yet provides a significant gain on the bound for \(B_7\)'s, which leads to a major improvement on the bound for \(B_{16}\)'s.

We now present the calculations leading to Proposition 3. In each residue class \(k \in \{2, 17, 32\}\) modulo 80, we simply have computed the values of \(B_2\)'s and noticed the highest difference.

In order to reach the upper bound \(2 \times 10^{23}\), we proceed as follows. We easily compute the values of \(B_2\) lying in an interval \([a, b]\) and put them in a large vector say \(V\) (with at most \(10^7\) numbers). We quickly sort this vector by ascending order and then compute all the differences between two consecutive \(B_2\)'s. As soon as a new highest difference is found, we record it as well as the two corresponding \(B_2\)'s.

To deal with \(B_2\)'s up to \(10^{24}\), although these calculations have been performed on a DIGITAL workstation (64 bits) we need to use a special 128 bits structure. Since the number of \(B_2\)'s lying in an interval is decreasing, and in order to work for quickness with an interval of maximal length \(L\), we were led to change several times the value of \(L\) keeping in mind that the number of \(B_2\)'s for \(V\) should be less than \(10^7\). These calculations took about 20 hours CPU time in each residue class 2 or 32 and 40 hours in the residue class 17.

Table 5 below gives the largest differences between two consecutive \(B_2\)'s that occur in one of the arithmetic progressions 2, 17 or 32 modulo 80 in the range \([10^{23} ; 2 \times 10^{23}]\).

We observe that up to \(1.36 \times 10^{23}\), in each residue class 2,17 or 32 modulo 80, the largest difference between two consecutive \(B_2\)'s is not greater than 210 565 453 462 800 which implies Proposition 3.
5. Small values, exceptions

The last number ℓ_0 congruent to 4 modulo 80 which is not a B_5 is too large and does not permit to check directly (even with a powerful computer) the whole interval $(0, \ell_0)$ to know whether a number is a B_{16} or not.

Many computations on fourth powers have been performed. Those described by Thomas in [7, 8] lead to show that all integers in the interval $[13793; 10^{80}]$ are B_{16} (see also [3] for comments), which is widely sufficient to our needs.

In order to make our result depending only on our algorithms, we chose to perform our own calculations which are closely adapted to our needs. We checked

Proposition 5. All integers in the interval $[13793; 2.5 \times 10^5]$ are B_{16}.

All integers in the interval $[2.5 \times 10^5; 5 \times 10^5]$ congruent to 1 modulo 16 are B_9.

Starting from the B_9's, we apply a 7-fold ascent using Lemma 1 with $T = 2$.

<table>
<thead>
<tr>
<th>N</th>
<th>new largest difference at N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.043×10^{23}</td>
<td>95 138 992 318 480</td>
</tr>
<tr>
<td>1.089×10^{23}</td>
<td>194 899 909 381 840</td>
</tr>
<tr>
<td>1.135×10^{23}</td>
<td>203 592 000 262 640</td>
</tr>
<tr>
<td>1.157×10^{23}</td>
<td>99 109 783 064 240</td>
</tr>
<tr>
<td>1.161×10^{23}</td>
<td>119 417 876 967 680</td>
</tr>
<tr>
<td>1.170×10^{23}</td>
<td>205 382 223 918 000</td>
</tr>
<tr>
<td>1.205×10^{23}</td>
<td>210 565 453 462 800</td>
</tr>
<tr>
<td>1.368×10^{23}</td>
<td>233 263 552 681 200</td>
</tr>
<tr>
<td>1.484×10^{23}</td>
<td>240 353 667 777 520</td>
</tr>
<tr>
<td>1.680×10^{23}</td>
<td>130 380 781 594 720</td>
</tr>
<tr>
<td>1.747×10^{23}</td>
<td>252 139 980 148 720</td>
</tr>
<tr>
<td>1.756×10^{23}</td>
<td>238 326 205 393 520</td>
</tr>
<tr>
<td>1.806×10^{23}</td>
<td>242 236 651 101 680</td>
</tr>
<tr>
<td>1.827×10^{23}</td>
<td>276 110 546 369 280</td>
</tr>
<tr>
<td>1.917×10^{23}</td>
<td>141 705 034 717 520</td>
</tr>
</tbody>
</table>

Table 5. Largest differences between consecutive B_2's in the range $[10^{23}; 2 \times 10^{23}]$
TABLE 6. The 7-fold ascent for small B_{16}'s

We deduce

Proposition 6. All integers not divisible by 16 in the interval $[13793 ; 101s]$ are B_{16}.

We recall in the following the only known numbers which are not B_{16}.

Proposition 7. The following 96 numbers

\begin{align*}
47, 62, 63, 77, 78, 79, 127, 142, 143, 157, 158, 159, 207, 222, 223, 237, 238, 239, \\
478, 479, 527, 542, 543, 557, 558, 559, 607, 622, 623, 687, 702, 703, 752, 767, \\
782, 783, 847, 862, 863, 927, 942, 943, 992, 1007, 1008, 1022, 1023, 1087, \\
1102, 1103, 1167, 1182, 1183, 1232, 1247, 1248, 1327, 1407, 1487, 1567, \\
1647, 1727, 1807, 2032, 2272, 2544, 3552, 3568, 3727, 3792, 3808, 4592, \\
4832, 6128, 6352, 6368, 7152, 8672, 10992, 13792
\end{align*}

are the only non-B_{16} integers up to 13792 and satisfy

- the integers $79 + 80k$, $k = 0, 1, \ldots, 6$ are not B_{18}'s,

- the 24 integers
 - $63 + 80k$, $k = 0, \ldots, 14$,
 - $78 + 80k$, $k = 0, \ldots, 6$,
 - $48 + 80k$, $k = 12, 15$,
are B_{18}'s but not B_{17}'s.

- the 65 integers
 - $47 + 80k$, $k = 0, \ldots, 22, 46$,
 - $62 + 80k$, $k = 0, \ldots, 14$,
 - $77 + 80k$, $k = 0, \ldots, 6$,
 - $32 + 80k$, $k = 9, 12, 15, 25, 28, 44, 47, 57, 60, 79, 89, 108, 137, 172$,
 - $48 + 80k$, $k = 44, 47, 76, 79$,
 - $64 + 80k$, $k = 31$,
are B_{17}'s but not B_{16}'s.

6. the remaining residues modulo 16 - End of the proof

We now look at the integers congruent to 1, 2 or 3 modulo 16.

<table>
<thead>
<tr>
<th>interval</th>
<th>modulo 16</th>
<th>$B_1 \mod 16$</th>
<th>maximal difference T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{16} $[2.5 \times 10^5, 1.3 \times 10^{16}]$</td>
<td>1 \rightarrow 15</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{15} $[2.5 \times 10^5, 1.0 \times 10^{13}]$</td>
<td>1 \rightarrow 14</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{14} $[2.5 \times 10^5, 4.5 \times 10^{10}]$</td>
<td>1 \rightarrow 13</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{13} $[2.5 \times 10^5, 7.9 \times 10^8]$</td>
<td>1 \rightarrow 12</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{12} $[2.5 \times 10^5, 3.8 \times 10^7]$</td>
<td>1 \rightarrow 11</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{11} $[2.5 \times 10^5, 4.1 \times 10^6]$</td>
<td>1 \rightarrow 10</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_{10} $[2.5 \times 10^5, 8.1 \times 10^5]$</td>
<td>1 \rightarrow 9</td>
<td>0, 1</td>
<td>2</td>
</tr>
<tr>
<td>B_9 $[2.5 \times 10^5, 5 \times 10^5]$</td>
<td>1 \rightarrow 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6. The 7-fold ascent for small B_{16}'s
Let n be an integer congruent to 1 modulo 16 and to 1, 2 or 3 modulo 5, lying in the interval $[13793 ; 10^{114}]$. By Proposition 6, it suffices to consider the case $n \geq 10^{16}$.

By Lemma 2, we may write $n = 16m + u^4$ where m belongs to 4 \leftrightarrow 12 modulo 16 and $u < \lfloor n^{1/4} \rfloor$. We assert that u and m may be chosen such that $10^{11} \leq m \leq 10^{107}$ and $m \equiv 1$ or 2 modulo 5.

Indeed let u be the largest nonnegative integer less than $\lfloor n^{1/4} \rfloor$ such that

$$m := \frac{(n - u^4)}{16} \equiv 12 \mod 16,$$

$$u \equiv \begin{cases} 5 \mod 10 & \text{if } n \equiv 1 \text{ or } 2 \mod 5, \\ 1 \mod 10 & \text{if } n \equiv 3 \mod 5. \end{cases}$$

We plainly have $m \equiv 1$ or 2 mod 5. Moreover we get

$$n - (\lfloor n^{1/4} \rfloor - 1)^4 \leq n - u^4 \leq n - (\lfloor n^{1/4} \rfloor - 50)^4,$$

then

$$n - (n^{1/4} - 1)^4 \leq n - u^4 \leq n - (n^{1/4} - 51)^4,$$

which gives the following bounds:

$$10^{11} \leq n^{3/4}/6 \leq m \leq 13n^{3/4} \leq 13 \times 10^{2L_{14}/4} \leq 10^{107},$$

by using $L_{14} = 140.8$ given in the third column of Table 4. By Proposition 4, we deduce that m is a B_{13}. Thus $n = 2^4m + u^4$ is a B_{14}.

It means that the upper bound L_{14} is still available for the integers n congruent to 1 modulo 16 to be B_{14}.

The last steps in the ascent in Tables 3 and 4 may be completed by

<table>
<thead>
<tr>
<th>modulo 16</th>
<th>modulo 5</th>
<th>maximal difference T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{16}</td>
<td>L_{16}</td>
<td>1 \leftrightarrow 3</td>
</tr>
<tr>
<td>B_{15}</td>
<td>L_{15}</td>
<td>1, 2</td>
</tr>
<tr>
<td>*B_{14}</td>
<td>L_{14}</td>
<td>1</td>
</tr>
<tr>
<td>B_{13}</td>
<td>L_{13}</td>
<td>4 \leftrightarrow 12</td>
</tr>
</tbody>
</table>

* means that the B_{14}'s are written as the sum of 16 times a B_{13} and a B_1.

TABLE 7. The ascent for the classes 1, 2, 3 modulo 16

We summarize the results proved up to now in the following

Proposition 8. All integers in the interval $[13793 ; 10^{245}]$ and belonging to 1 \leftrightarrow 15 modulo 16 are B_{16}.

We end by considering the residue class 0 modulo 16. For that we use Proposition 8, which concerns the integers non divisible by 16, and also the first part of Proposition 5.
Let now n be an integer congruent to 0 modulo 16 in the interval $[13793; 16 \times 10^{245}]$. We may write $n = 16^a m$ where either $m \in [13793; 2.5 \times 10^5]$, or $16 \nmid n$ and $m \in [13793; 10^{245}]$. In either case, m is a B_{16}, thus n is also a B_{16}.

This ends the proof of the theorem.

References

Jean-Marc Deshouillers*, François Hennecart, Bernard Landreau
Laboratoire Théorie des nombres et algorithmique arithmétique
UMR 5465 CNRS
Université Bordeaux 1
351, cours de la Libération
33405 Talence Cedex
France
E-mail: {dezou,hennec,landreau}@math.u-bordeaux.fr

* Egalement membre de l'EA 2619, Université Victor Segalen Bordeaux 2