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Multiplicative functions and k-automatic

sequences

par SOROOSH YAZDANI

RÉSUMÉ. Une suite est dite k-automatique si son ne terme peut
être engendré par une machine à états finis lisant en entrée le
développement de n en base k. Nous prouvons que, pour de nom-
breuses fonctions multiplicatives f, la suite (f(n) mod u)n~1 n’est
pas k-automatique. C’est en particulier le cas pour les fonctions
multiplicatives 03C4m(n), 03C3m(n), 03BC(n) et ~(n).

ABSTRACT. A sequence is called k-automatic if the n’th term in
the sequence can be generated by a finite state machine, reading
n in base k as input. We show that for many multiplicative func-
tions, the sequence (f(n) mod u)n~1 is not k-automatic. Among
these multiplicative functions are 03C4m(n), 03C3m(n), 03BC(n), and ~(n).

We call a function f : N B 101 - C multiplicative, if for all m, n E

N B 101, m and n coprime, we have f (mn) = f (m) f (n). As usual let T(n),
Q(n), ~(n), represent the number of divisors of n, sum of the divi-
sors of n, number of numbers less than or equal to n and prime to n,
and the M6bius function respectively. We know that T(~), Q(n), ~(n),
and /-L(n) are multiplicative. Also let be number of elements in

{ ~au a2~ ... a~) I alaz ... am = n and al,a2,... ,am E N‘ ~ ~0~ ~. Then
we have

where pi’s are distinct primes (see for example [9, p. 72]). Furthermore let

Recall that is multiplicative for all integers m. Note that al(n) =
a (n), and T2(n) = T(n).

Manuscrit requ le 5 octobre 1999.
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Given k &#x3E; 2, we say a sequence T = is k-automatic if and only
if 

-

is finite, where = (t(kln + r))~,&#x3E;1. The set T~k~ is called the k-kernel
of T. We say a set S C I~Y B 101 is k-automatic if the sequence 
is k-automatic, where 

-

If t : I~Y B 101 - X for some set X, and if there is a mapping -D : X - Y,
then we can extend $ to sequences in X with ~(T) = (~(t(n))n&#x3E;1). Note
that

is an onto mapping. Specifically note that the cardinality of T~~&#x3E; is greater
than or equal to the cardinality of ~(T)~k~, and hence if T is k-automatic,
then so is ~(T). Therefore we have the following,
Lemma 1. Let be a sequence of integers. If there exist integers
v, k &#x3E; 2 such that ( f (n) mod V)n&#x3E;l is k-automatic, then for all qlv we have
that the sequence ( f (n) mod is also k-automatic.

The term k-automatic is used because one can compute t(n) by feeding
the base k representation of n as an input to a finite state machine [5]. In
[3], see also [4], it is shown that given prime p and a sequence 
with values in IEP, then

is algebraic over Fp (X) if and only if is p-automatic.
Now we proceed to prove the first theorem in this paper, whose proof is

a variation of a proof suggested by J. Shallit.

Theorem 2. Let v &#x3E; 1 be an integer and f a multiplicative function. As-
sume that for some integer h &#x3E; 1 there exist infinitely many primes ql
such that - 0 (mod v). Furthermore assume that there exist rela-
tively prime integers b and c such that for all primes q2 = c (mod b) we
have l(q2) t 0 (mod v). Then the sequence F = ( f (n) mod is not

k-automatic for any k &#x3E; 2.

Proof. Choose an arbitrary integer k &#x3E; 2. Since gcd(b, c) = 1, by Dirichlet’s
theorem there exists some integer m such that bm + c &#x3E; k, and bm + c is
prime. Letting a = bm + c, we get gcd(a, bk) = 1.
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Now we will show that given l, rl, r2 E N ) (0) such that kl &#x3E; 2bk,
0  r2  kl, and r2 - a (mod bk), there exists n E 1‘~ B (0) such that
¡(kin + + r2) (mod v), hence This in turn means

that the k-kernel of F is infinite, which means that F is not k-automatic.
Choose a prime ql &#x3E; kl such that 0 (mod v). Observe that

= 1 since ql is prime and ql &#x3E; k~ &#x3E; b. Hence there exists an

integer no such that

Furthermore observe that

for all no. Therefore for all j E N B {0}, we have

and

We need to show that for some j, no + jq’4+lb &#x3E; 0 and the left-hand

side of Equation (3) is prime. To do so we will show that gcd(nobkl +
1, and apply Dirichlet’s theorem.

Note that r2 - a (mod k), and gcd(a, k) = 1. Therefore

Also nobkl + r2 - a (mod b). Since gcd(a, b) = 1, we get

Finally from Equation (2) we have that &#x3E;
We know that rl ,-E r2, and I

that

. Since ql is prime, we get

Therefore gcd(nobkl + r2, klq?+lb2) = 1. Hence by Dirichlet’s theorem, we
can find an integer j &#x3E; I such that

is prime. By hypothesis, + bno) + r2) mod v =f. 0.
On the other hand we have that by Equation (2)

Since f is multiplicative, we have

Letting
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Therefore F is not k-automatic for any k &#x3E; 2. 0

From this theorem we immediately get the following corollaries.

Corollary 3. Given m &#x3E; 1 and v &#x3E; 3, the sequence mod 
not k-automatic for any k &#x3E; 2.

Proof. Given an integer v &#x3E; 3, there are infinitely many primes ql - 1

(mod v). Taking h = v - 1 we get

- 

__...._

Also for primes q2 - 1 (mod v), we have am(q2) mod v = 2, since v &#x3E; 3.
So the hypotheses of Theorem 2 are satisfied, and hence mod 
is not k-automatic. D

Corollary 3 answers the question raised by Allouche and Thakur of whether

is always transcendental over Fp (X) for odd primes p [2]. They proved the
transcendence of Equation (4) for many cases of p and m in order to give
a proof of the function field analogue of Mahler-Manin conjecture. Since

(am(n) mod P)n&#x3E;1 is not p-automatic for primes p &#x3E; 3, using Christol’s
theorem [3] and [4] we get that the formal power series in

Equation (4) is always transcendental over 
-

Corollary 4. Given v &#x3E; 3, the sequence (§(n) mod is not k-automa-
tic for any k &#x3E; 2.

Proof. Note that

Hence given a prime ql - 1 (mod v) we have O(ql) =- 0 (mod v). Also,
given a prime q2 = -1 (mod v) we have ~(q2) - -2 (mod v). Since v &#x3E; 3
the hypotheses of Theorem 2 are satisfied. Hence is not k-
automatic. 0
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Note that (4)(n) mod 2),~~1 is k-automatic for all k, since 0(n) is even
for all n &#x3E; 2, and hence (~(n) mod 2)n&#x3E;l is constant for n &#x3E; 2.

We also get the following well-known result, which is a direct consequence
of the fact that square-free numbers are not k-automatic [5, p. 183].

Corollary 5. Given an integer v &#x3E; 2, the sequence mod is not

k-automatic for any k &#x3E; 2.

Proof. This is a direct consequence of Theorem 2. _ 
D

The proof of Theorem 2 relied heavily on the existence of primes q such
that (mod v). Now we look at another set of multiplicative func-
tions f , where for all primes q, and some integer v. The technique
used in this section is different from that used in the proof of the previous
theorem, and we need to give the following definition.

Definition 1. Let T = and #S be the number of elements in
the set S. Then the density of the symbol a in the sequence T is defined to
be 

,, , ~ , .... ,

if the limit exists, and is undefined otherwise.

Using this definition we will cite the following lemma due to Minsky and
Papert [8], see also [5, p. 184].
Lemma 6. For any k-automatic sequence F, if d(F, a) = 0 then

where aj is the position of the j’th occurrence of a.

We now proceed to prove the following theorem.

Theorem 7. Let v &#x3E; 1 be an integer, and let f be a multiplicative function
such that for some function g, where the pi are distinct
primes. Also suppose that g(l) =- 0 (mod v) and that there exists some
integer h &#x3E; 1 such that g(h) 0 0 (mod v). Then F = ( f (n) mod 
not k-autorraatic for any integer k &#x3E; 2.

Proof. First, we need the following lemma.

Lemma 8. Let f be a multiplicative function such that f (q) - 0 (mod v)
for all primes q. Then

where F = ( f (n) mod 
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Proof. Note that if 0 (mod v), then n is a powerful number (a
number where each of its prime factor occurs to a power greater than 1).
Choose a ~ 0 (mod v). From [6], see also [7, p. 178], we have that for any
e &#x3E; 0

for large enough n. Choosing E  I we get that d(F, a) = 0 for 0. Hence
the desired result follows. l7

Now we are ready to prove our next Theorem. Let a = g(h) mod v and
aj be the j’th occurrence of a in F. By definition of h, we get a ~ 0. From
Lemma 8 we have d(F, a) = 0. So if we show that lim supj,,,. a = 1, weaj
are done.
On the other hand, note that is a subsequence of where

pi is the i’th prime. Therefore for all j there exists i such that

Hence

Therefore

But limsupi, = limi = 1, this is an immediate consequence
of the prime number theorem limi,. Pi /i log i = 1.

Therefore 1. It follows that F is not k-automatic
for any k &#x3E; 2. 0

Corollary 9. Given an integer m &#x3E; 1, the sequence mod 
not k-automatic for any k &#x3E; 2.

Proof. Let n = 2Q:d, where d is odd. Then we have

Furthermore, we know that T(d) is odd only when d is a perfect square.
So mod 2 = 1 if and only if n is a perfect square times a power of 2.
Let S = mod 2)~,&#x3E;1. Then we get d(S,1) = 0 since
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On the other hand if an represents the position of the n’th occurrence of
1, we get

So we have (am(n) mod 2)n&#x3E;l is not k-automatic by Theorem 7. 0

Also combining Theorems 1 and 2 we get the following new result.

Corollary 10. For all integers v, rrz, k &#x3E; 2 the sequences (Tm(n) mod V)n2:1
is not k-automatic.

Proof. Assume that for some v, m, k &#x3E; 2 the sequence mod v)n&#x3E;1
is k-automatic. Therefore by Lemma 1 we get given an integer p~v the
sequence (T m (n) is also k-automatic. Therefore assume without
loss of generality that v is a prime. Consider the following cases.
Case 1: m ~ 0 (mod v). Then if we choose a and h such that va 11 m-1

and h - 1 - m (mod va+i) we get

Therefore for any prime q we have mod v = 0 by (1). On the other
hand for all primes q we have mod v = 0. Hence by
Theorem 2, we get that mod is not k-automatic.

Case 2: m - 0 (mod v). Let g(h) = We have that /(TIpiQi) =
TIg(ai) by (1). Also we know g(1) = m - 0 (mod v). Assume that va 11m.
Then we get g(va) t 0 (mod v). Therefore by Theorem 7, mod

is not k-automatic. D

Corollary 10 can be used to prove the transcendence of xq (an analogue of
x in the field GF(q)((X)) ) over the field GF(q)(X) [1].

It is worth mentioning that both of our theorems relied on vlf (n), for
some n. If f is multiplicative and v t f (n) for any n &#x3E; 1, then its the
analysis becomes much more difficult. For example the Liouville function
defined by

is never divisible by any prime. It seems that the question of whether or
not is k-automatic is an open problem worth pursuing.
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