YINGCHUN CAI

Prime geodesic theorem

<http://www.numdam.org/item?id=JTNB_2002__14_1_59_0>
Prime geodesic Theorem

par YINGCHUN CAI

1. Introduction

Let \(\Gamma = PSL(2, Z) \). By definition an element \(P \in \Gamma \) is hyperbolic if as a linear fractional transformation

\[
Pz = \frac{az + b}{cz + d}, \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

it has two distinct real fixed points. By a conjugation any hyperbolic element \(P \) can be given in a form \(P = \sigma^{-1}P'\sigma \) with \(\sigma \in SL(2, R) \) and \(P' = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, t > 1 \). Here \(P' \) acts as multiplication by \(t^2 \), \(P'z = t^2z \).

The factor \(t^2 \) is called the norm of \(P \), let us denote it by \(NP \), it depends only on the class \(\{P\} \) of elements conjugate to \(P \), \(NP = N\{P\} = t^2 \). \(P \) and \(\{P\} \) are called primitive if they are not essential powers of other hyperbolic elements and classes respectively. For primitive \(P \) the norms can be viewed as "pseudoprimes", they have the same asymptotic distribution as the rational primes,

\[
\pi_r(x) = \#\{\{P\} - \text{primitive}; NP \leq x\} \sim \text{liz},
\]

where

\[
\text{liz} = \int_2^x \frac{dt}{\log t}.
\]

The problem of finding a formula with good error term was intensively studied by many mathematicians, first of all by H. Huber [4], D. Hejhal [2, 2001], P. Sarnak [2, 1993], W. Luo et al. [2, 1993].
3], A. B. Venkov [13] and N. V. Kuznetzov [7] before the eighties, not always for the same group. The result were of the type
\[
\pi_\Gamma(x) = \text{li}x + O(x^{3/4} \log^\alpha x), \quad \alpha > 0,
\]
this result was also known to A. Selberg and P. Sarnak [12] gave a “direct” proof of it.

In order to investigate the asymptotic distribution of \(\pi_\Gamma(x) \) A. Selberg introduced the Selberg zeta-function which mimics the classical zeta-function of Riemann in various aspects. The Selberg zeta-function is defined by
\[
Z(s) = \prod_{\{P\}} \prod_{k=0}^{\infty} (1 - (NP)^{-s-k})
\]
for \(\text{Re}(s) > 1 \) where \(\{P\} \) runs over the set of all primitive hyperbolic classes of conjugate elements in \(\Gamma \). The most fascinating property of the Selberg zeta-function \(Z(s) \) is that the analogue of the Riemann hypothesis is true. In view of this property one should expect an error term \(O(x^{1/2+\varepsilon}) \). Let us explain why this result is not obvious. It is convenient to speak of the allied sum
\[
\Psi_\Gamma(x) = \sum_{N\{P\} \leq x} \Lambda P
\]
where \(\Lambda P = \log NP \) if \(\{P\} \) is a power of a primitive hyperbolic class and \(\Lambda P = 0 \) otherwise. Then like in the theory of rational primes, we have the following explicit formula:

Lemma 1 ([5]).

(1.1) \[
\Psi_\Gamma(x) = x + \sum_{|t_j| \leq T} \frac{x^{s_j}}{s_j} + O \left(\frac{x \log^2 x}{T} \right), \quad 1 \leq T \leq x^{1/2} \log^{-2} x
\]
where \(s_j = 1/2 + t_j \) runs over the zeroes of \(Z(x) \) on \(\text{Re}(s) = 1/2 \) counted with their multiplicities.

Here, in the sum each term \(\frac{x^{s_j}}{s_j} \) has the order \(\frac{x^{1/2}}{|t_j|} \) but the number of terms is (refer to [2])
\[
\#\{j; |t_j| \leq T\} \sim \frac{T^2}{12},
\]
therefore, treat (1.1) trivially yields
\[
\Psi_\Gamma(x) = x + O \left(x^{1/2}T + \frac{x \log^2 x}{T} \right).
\]
On taking the optimal value $T = x^{1/4} \log x$ we obtain the error term $O(x^{3/4} \log x)$. At this point the situation differs very much from the one concerning rational primes because the Selberg zeta-function $Z(x)$ has much more zeroes than does the Riemann $\zeta(s)$.

From the above arguments one sees that in order to reduce the exponent $3/4$ one cannot simply handle the sum over the zeroes in (1.1) by summing up the terms with absolute values but a significant cancellation of terms must be taken into account. Only after N. V. Kuznetzov [8] published his summation formula does this suggestion become realizable. In 1983 H. Iwaniec [5] realized such a treatment and proved that

$$\pi_T(x) = \text{li}x + O(x^{3/4 + \varepsilon}), \quad \varepsilon > 0$$

by means of Kuznetzov trace formula incorporated with estimates for sums of real character of a special type. More precisely, the basic ingredients in Iwaniec’s arguments is the following mean value estimate for the Rankin zeta-function:

$$(1.2) \quad \sum_{|t_j| \leq T} \frac{|R_j(s)|}{\cosh \pi t_j} \ll T^{3/5} |s|^A \log^2 T$$

where $R_j(s)$ is the Rankin zeta-function and $Re(s) = \frac{1}{2}$; and the estimate for the following sum

$$(1.3) \quad \sum_{B < a \leq B + A} \sum_{R < r \leq 2R} \left(\frac{a^2 - 4}{r} \right)$$

where $\left(\cdot \right)$ denotes the Jacobi’s symbol.

In the meantime P. G. Gallagher obtained

$$\pi_T(x) = \text{li}x + O(x^{3/4} \log^{-1} x).$$

In 1994 W. Z. Luo and P. Sarnak [9] proved Iwaniec’s mean value conjecture: (1.2) holds with the exponent $5/2$ replaced by $2 + \varepsilon$. By this mean value estimate and A. Weil’s upper bound for Kloosterman sum,

$$\left| \sum_{\substack{a \pmod{c} \atop \gcd(a,c) = 1}} e \left(\frac{ma + n\bar{a}}{c} \right) \right| \leq 2(m, n, c)^{1/2} c^{1/2} d(c)$$

they proved

$$\pi_T(x) = \text{li}x + O(x^{7/6 + \varepsilon}), \quad \varepsilon > 0$$

for the modular group $\Gamma = PSL(2, \mathbb{Z})$.

In 1994 W. Z. Luo, Z. Rudnick and P. Sarnak [10] made considerable advance in the research of Selberg’s eigenvalue conjecture. They showed
that for any congruence subgroup $\Gamma \subset SL(2, \mathbb{Z})$ the least nonzero eigenvalue $\lambda_1(\Gamma) \geq \frac{23}{100}$. As a by-product they obtained

$$\pi_\Gamma(x) = lx + O(x^{\frac{7}{10}})$$

for any congruence subgroup $\Gamma \subset SL(2, \mathbb{Z})$.

In this paper we insert Burgess's bound for the character sum estimate and the mean value estimate (1.2) for the Rankin zeta-function into the arguments of Iwaniec and obtain the following result.

Theorem. For the modular group $\Gamma = PSL(2, \mathbb{Z})$,

$$\pi_\Gamma(x) = lx + O(x^{\frac{71}{102} + \varepsilon}), \quad \varepsilon > 0.$$

2. Some preliminary lemmas

Lemma 2 ([9]). Let $\rho_j(n)$ denote the n-th Fourier coefficients for the Fourier expansion at ∞ of the j-th Maass cusp form, and

$$R_j(s) = \sum_{n=1}^{\infty} \frac{|\rho_j(n)|^2}{n^s}$$

denote the Rankin-Selberg L-function for the j-th Maass cusp form. Then

$$\sum_{|t_j| \leq T} \frac{|R_j(s)|}{\cosh \pi t_j} \ll |s|^{4T^2 + \varepsilon}.$$

Lemma 3 ([1]). If q is not a square then

$$\sum_{r \leq H} \left(\frac{q}{r}\right) \ll H^{\frac{2}{3}} q^{\frac{1}{3} + \varepsilon},$$

where $\left(\frac{q}{r}\right)$ denotes the Jacobi's symbol and the constant implied in \ll depends on ε at most.

We infer from Lemma 3 a simple corollary.

Lemma 4. Let $1 \leq R_1 < R_2, a \geq 1, q \geq 1$. Then

$$\sum_{R_1 < r \leq R_2, (r,a)=1} \mu^2(r) \left(\frac{a^2 - 4}{r}\right) \ll a^{\frac{2}{3}} R_2^{\frac{3}{2}} (aqR_2)^\varepsilon.$$

Lemma 5 ([8]). Let $\varphi(x)$ be a smooth function on $[0, \infty]$ such that

$$\varphi(0) = \varphi'(0), \varphi^{(l)}(x) \ll x^{-3}, x \to \infty, (l = 0, 1, 2, 3).$$
Define
\[\varphi_0 = \frac{1}{2\pi} \int_0^\infty J_0(y) \varphi(y) dy, \]
\[\varphi_B(x) = \int_0^1 \int_0^\infty \xi x J_0(\xi x) J_0(\xi y) \varphi(y) dy d\xi, \]
\[\varphi_H(x) = \int_1^\infty \int_0^\infty \xi x J_0(\xi x) J_0(\xi y) \varphi(y) dy d\xi, \]
\[\varphi(t) = \frac{\pi}{2i \sinh \pi t} \int_0^\infty (J_{2it}(x) - J_{-2it}(x)) \frac{\varphi(x)}{x} dx, \]
where \(J_\nu(x) \) is the Bessel function. Then
\[\sum_{t_j} \frac{\rho(m) \overline{\rho_j(n)}}{\cosh \pi t_j} \varphi(t_j) + \frac{2}{\pi} \int_0^\infty \frac{\varphi(t)}{|\zeta(1 + 2it)|^2} d_{it}(m) d_{-it}(n) dt \]
\[= \delta_{mn} \varphi_0 + \sum_{c=1}^\infty \frac{S(m, n, c)}{c} \varphi_H \left(\frac{4\pi \sqrt{mn}}{c} \right), \]
where
\[d_{it}(n) = \sum_{d \mid n} d^it, S(m, n, c) = \sum_{a \equiv 1 (mod c)} e \left(\frac{ma + n\overline{a}}{c} \right), \]
\(\delta_{mn} \) is the Kronecker's delta symbol.

Proof. This is Kuznetzov Trace Formula. See Theorem 9.5 in [6]. \(\square \)

3. A mean value theorem for Fourier coefficients

Let
\[\Lambda_j(N) = \sum_n \frac{h(n)|\rho_j(n)|^2}{\cosh \pi t_j} \]
where \(h(\xi) \) is a smooth function supported in \([N, 2N]\) such that
\[|h^{(l)}(\xi)| \ll N^{-l}, l = 0, 1, 2, \ldots \]
\[\int h(\xi) d\xi = N. \]
By Rankin [11] we know that \(R_j^2(s) = \zeta(2s)R_j(s) \) has meromorphic continuation onto the whole complex with only a simple pole at \(s = 1 \) with residue \(2 \cosh \pi t_j \). And by [11] we know that \(R_j(s) \) is of polynomial growth in \(|s|\).
Lemma 6. We have

$$\Lambda_j(N) = \frac{12}{\pi^2} N + r(t_j, N)$$

with

$$\sum_{|t_j| \leq T} |r(t_j, N)| \ll T^2 N^{\frac{1}{2}} \log^2 NT.$$

Proof. Consider the Mellin transformation

$$\Omega(s) = \int h(\xi) \xi^{s-1} d\xi \ll (1 + |\tau|)^{-1999} N^\sigma$$

for \(s = \sigma + i\tau \) by partial integration 1999 times. By the inverse Mellin transformation and Cauchy's theorem we have

$$\Lambda_j(N) \cosh \pi t_j = \frac{1}{2\pi i} \int_{(2)} \Omega(s) R_j(s) ds$$

$$= 2\zeta^{-1}(2) \Omega(1) \cosh \pi t_j + O\left(N^{\frac{1}{2}} \int_0^\infty \frac{|R(\frac{1}{2} + i\tau)|}{(1 + \tau)^{1999}} d\tau \right),$$

and Lemma 6 follows from Lemma 2.

\[\square\]

4. A mean value theorem for \(\rho(c,a) \)

Let \(\rho(c,a) \) stand for the number of solutions \(d \pmod{c} \) of

$$d^2 - ad + 1 \equiv 0 \pmod{c},$$

and

$$F(A, B, C) = \sum_{B < a \leq A + B} \sum_{c \leq C} \rho(c, a)$$

for \(1 \leq A \leq B \) and \(C \geq 1 \). We have

$$\sum_{a \pmod{c}} \rho(c, a) = \varphi(c)$$

where \(\varphi(c) \) is the Euler's function. Now

$$F(A, B, C) = \sum_{c \leq C} \left(\frac{A}{c} + O(1) \right) \varphi(c) = \frac{6}{\pi^2} AC + O(A + C^2).$$

Lemma 7. For \(1 \leq A \leq B, C \geq 1 \) and any \(\varepsilon > 0 \),

$$F(A, B, C) = \frac{6}{\pi^2} AC + O((A^{\frac{3}{2}} B^{\frac{1}{5}} C + AC^{\frac{1}{2}})(BC)^\varepsilon).$$
Proof. Write $c = kl$ where k is a squarefree odd number and $4l$ is a square-full number coprime with k. By the multiplicativity of $\rho(c, a)$ in c we get

$$\rho(c, a) = \rho(k, a)\rho(l, a).$$

$d^2 - ad + 1 \equiv 0 \pmod{c}$ in $d \pmod{k}$ is equivalent to $x^2 \equiv a^2 - 4 \pmod{k}$ in $x \pmod{k}$ and the number of incongruent solutions of the latter is

$$\rho(k, a) = \prod_{p \mid k} \left(1 + \left(\frac{a^2 - 4}{p}\right)\right) = \sum_{r \mid k} \left(\frac{a^2 - 4}{r}\right).$$

Let Q stand for the set of squarefull numbers. Then

$$F(A, B, C) = \sum_{l \in Q, (rs, 4l) = 1} \mu^2(rs) \sum_{B < a \leq A + B} \rho(l, a) \left(\frac{a^2 - 4}{r}\right)$$

$$= \sum_{lr \leq R} + \sum_{lr > R} = F_0(A, B, C) + F_\infty(A, B, C).$$

By (44) in [5] we have

$$F_0(A, B, C) = \lambda AC + O((CR^{\frac{1}{3}} + ACR^{-\frac{1}{3}} + AC^{\frac{1}{3}})(BC)^\varepsilon).$$

with some absolute constant λ.

By Lemma 4, after splitting up the summation over r in $F_\infty(A, B, C)$ into intervals of the form (R_1, R_2) with $l^{-1}R_1 \leq R_2 \leq 2R_1$ we deduce that

$$F_\infty(A, B, C) \ll \sum_{l \in Q} \sum_{B < a \leq A + B} \rho(l, a) \sum_{s \leq \frac{C}{lR_1}} R_1^{\frac{2}{3}} B^{\frac{2}{3}} (BC)^\varepsilon$$

$$\ll \sum_{l \in Q} \sum_{B < a \leq A + B} \rho(l, a) \frac{CR_1^{\frac{2}{3}} B^{\frac{2}{3}}}{lR_1} (BC)^\varepsilon$$

$$\ll R^{-\frac{1}{3}} B^{\frac{2}{3}} C (BC)^\varepsilon \sum_{B < a \leq A + B} \sum_{l \in Q} \rho(l, a) l^{-\frac{2}{3}}.$$
Since for $p > 2, \alpha > 2$ we have $\rho(p^\alpha, a) \leq 2p^{\left(\frac{\alpha}{2}\right)}$ where $p^\beta = (a^2 - 4, p^\alpha)$ it follows that

$$\sum_{\substack{l \leq C \\mathbb{I} \in \mathbb{Q}}} \frac{\rho(l, a)}{l^{\frac{3}{2}}} \ll \prod_{p \leq C} \left(1 + \sum_{\alpha \geq 2} \frac{\rho(p^\alpha, a)}{p^{\frac{3\alpha}{2}}}
ight)$$

\[\ll \prod_{1000 < p \leq C} \left(1 + \frac{2}{p^{\frac{3}{2}}}
ight) \prod_{1000 < p | (a^2 - 4)} \left(1 + \frac{10}{p^{\frac{3}{2}}}
ight) \]

\[\ll 2^{d(a^2 - 4)} \ll (BC)^{\varepsilon}, \]

and finally

$$F_{\infty}(A, B, C) \ll AR^{-\frac{1}{2}}B^{\frac{2}{3}}C(BC)^{\varepsilon}. \tag{4.3}$$

By (4.3) and (4.4) with $R = A^{\frac{6}{5}}B^{\frac{4}{5}}$ we get that

$$F(A, B, C) = \lambda AC + O((A^{\frac{2}{3}}B^{\frac{2}{15}}C + AC^{\frac{1}{2}})(BC)^{\varepsilon}). \tag{4.4}$$

Comparing (4.1) and (4.5) for $B = A^2, C = A^{\frac{1}{2}}, A \to \infty$ one finds $\lambda = \frac{6}{\pi^2}$, which completes the proof of Lemma 7.

\[\Box \]

5. An application of Kuznetzov trace formula

Let

$$\varphi(x) = -\frac{\sinh \beta}{\pi} x \exp(ix \cosh \beta),$$

$$2\beta = \log X + \frac{i}{T}. \tag{4.5}$$

Then (cf. [9])

$$\varphi(t) = \frac{\sinh(\pi + 2i\beta)t}{\sinh \pi t},$$

$$\varphi_0 = -\frac{\cosh \beta}{2\pi^2 \sinh^2 \beta},$$

$$\varphi_B(x) = -\frac{\sinh 2\beta}{2\pi} \int_0^1 \xi x J_0(\xi x)(\cosh^2 \beta - \xi^2)^{-\frac{3}{2}} d\xi,$$

$$\varphi_H(x) = -\frac{\sinh 2\beta}{2\pi} \int_1^\infty \xi x J_0(\xi x)(\cosh^2 \beta - \xi^2)^{-\frac{3}{2}} d\xi.$$
Then we have \(\varphi = \varphi_B + \varphi_H \). It is easy to show that
\[
\hat{\varphi}(t) = X^{it} \exp \left(-\frac{t}{T} \right) + O(e^{-\pi t}), \quad \varphi_0 = O(X^{-\frac{1}{2}}),
\]
\[
\int_0^\infty \frac{\hat{\varphi}(t)|d_\Theta(n)|^2}{|\zeta(1+2it)|^2} dt = O(T \log^2 T d^2(n)).
\]
Let
\[
S_n(\varphi) = \sum_{t_j>0} \frac{|\rho_j(n)|^2}{\cosh \pi t_j} \hat{\varphi}(t_j),
\]
\[
T_n(\varphi) = 2 \frac{2}{\pi} \int_0^\infty \frac{\hat{\varphi}(t)|d_\Theta(n)|^2}{|\zeta(1+2it)|^2} dt,
\]
\[
W_n(\varphi_H) = \sum_{c=1}^\infty \frac{S(n,c)}{c} \varphi_H \left(\frac{4\pi n}{c} \right),
\]
where \(S(n,c) = S(n,n;c) \). Then by Lemma 6 we have
\[
\sum_n h(n)S_n(\varphi) = \sum_{t_j>0} \hat{\varphi}(t_j) \Lambda_j(N) = \frac{12N}{\pi^2} \sum_{t_j>0} \hat{\varphi}(t_j) + \sum_{t_j>0} \hat{\varphi}(t_j) r(t_j,N)
\]
\[
= \frac{12N}{\pi^2} \sum_{t_j>0} X^{it_j} \exp \left(-\frac{t_j}{T} \right) + O(N^{\frac{1}{2}} T^2 \log^2 T),
\]
\[
\sum_n h(n)T_n(\varphi) \ll NT \log^{10} NT.
\]
By \(J_0(y) \ll \min(1, y^{-\frac{1}{2}}) \) and \(|S(n,c)| \leq 2(n,c)^{\frac{1}{2}} c\frac{1}{2} d(c)\) we get
\[
W_n(\varphi_B) \ll N^{\frac{1}{2}} X^{-\frac{1}{2}} \log^2 N.
\]
By the above arguments and Kuznetzov Trace formula we get
\[
(5.1) \quad \frac{12}{\pi^2} \sum_{t_j>0} X^{it_j} \exp \left(-\frac{t_j}{T} \right)
= \frac{1}{N} \sum_n h(n)W_n(\varphi) + O(T \log^{10} T + N^{-\frac{1}{2}} T^2 \log^2 T)
= \frac{1}{N} \sum_n h(n)W_n(\varphi) + O(T^{\frac{3}{2}} \log^2 T),
\]
where and below, we take
\[
X^{\frac{1}{10}} \leq T \leq X^{\frac{1}{2}}, N = T \log^{10} X.
\]
6. An estimation for $\sum_n h(n)W_n(\varphi)$

Since

$$S(n, c) = \sum_{a (\mod c)}^* \rho(c, a) e \left(\frac{na}{c} \right)$$

we have

$$\sum_n h(n)W_n(\varphi) = -4\sinh \beta \sum_{1}^{\infty} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \times \sum_n h(n) n e \left(\frac{n(2 \cosh \beta - a)}{c} \right).$$

Notice that

$$2 \cosh \beta = (X^{1/2} + X^{-1/2}) \cos \frac{1}{2T} + i(X^{1/2} - X^{-1/2}) \sin \frac{1}{2T}$$

$$= B + iE, \text{ say}$$

thus

$$B = X^{1/2} + O(X^{1/2}T^{-2}), \quad E = \frac{X^{1/2}}{2T} + O(X^{1/2}T^{-3}).$$

Moreover we have

$$\left| e \left(\frac{n(2 \cosh \beta - a)}{c} \right) \right| = \exp \left(-\frac{2\pi n}{c} E \right) \leq \exp \left(-\frac{NX^{1/2}}{cT} \right).$$

Let $C_1 = 18X^{1/2}, C_2 = X$. Then

$$\sum_{c=1}^{C_1} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \sum_n h(n) n e \left(\frac{n(2 \cosh \beta - a)}{c} \right) \ll N^2 X^{-10}.$$

And Weil's bound $|S(n, c)| \leq 2(n, c)^{1/2} c^{1/2} d(c)$ implies

$$\sum_{c=C_2}^{\infty} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \sum_n h(n) n e \left(\frac{n(2 \cosh \beta - a)}{c} \right) \ll \sum_n h(n) n \sum_{c=C_2}^{\infty} \frac{|S(n, c)|}{c^2} \ll \sum_n h(n) n \sum_{c=C_2}^{\infty} \frac{(n, c)^{1/2} d(c)}{c^{3/2}} \ll C_2^{-1/2} N^2 \log^{10} C_2 \ll X^{-1/2} N^2 \log^{10} X.$$
Now
\[\sum_{c_1}^{C_2} \sum_{-c < 2a \leq c \leq C_2} \frac{1}{c^2} \rho(c, a) \sum_n h(n) ne \left(\frac{n(2 \cosh \beta - a)}{c} \right) \]
falls into one of at most \(O(\log X) \) partial sums of the form
\[\sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \sum_n h(n) ne \left(\frac{n(2 \cosh \beta - a)}{c} \right) \]
with \(C_1 \leq C < 2C \leq C_2 \). We have
\[\left| \frac{2 \cosh \beta - a}{c} \right| \leq \frac{5}{8}. \]
By Poisson summation formula we have
\[\sum_n h(n) ne \left(\frac{n(2 \cosh \beta - a)}{c} \right) = \sum_{x = -\infty}^{\infty} \int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} - kx \right) dx \]
\[= \int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} - kx \right) dx + \sum_{k \neq 0} \int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} - kx \right) dx. \]
For \(k \neq 0 \) we have
\[\int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} - kx \right) dx = \frac{1}{4\pi^2} \left(\frac{2 \cosh \beta - a}{c} - k \right)^2 \]
\[\times \int (h(x) x)^{\prime \prime} e \left(\frac{x(2 \cosh \beta - a)}{c} - kx \right) dx \ll \frac{1}{k^2}. \]
Hence
\[(6.4) \sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \sum_n h(n) ne \left(\frac{n(2 \cosh \beta - a)}{c} \right) \]
\[= \sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{-c < 2a \leq c} \rho(c, a) \int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} \right) dx + O(1). \]
For \(|B - a| > CN^{-1+\varepsilon} = A \) by a multiple partial integration we have
\[\int h(x) xe \left(\frac{x(2 \cosh \beta - a)}{c} \right) dx \]
\[= \frac{(-1)^l}{(2\pi i(2 \cosh \beta - a))^{\prime}} \int (h(x) x)^{(l)} e \left(\frac{x(2 \cosh \beta - a)}{c} \right) dx \]
\[\ll \left(\frac{C}{|B - a|} \right)^l N^{2-l} \ll 1, \]
where \(l = \left[\frac{2}{\varepsilon} \right] + 2 \). Thus

\[
(6.5) \quad \sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{-c < a \leq c} \rho(c, a) \sum_{n} h(n) n e \left(\frac{n(2 \cosh \beta - a)}{c} \right)
= \sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{|B - a| \leq A} \rho(c, a) \int h(x) e \left(\frac{x(2 \cosh \beta - a)}{c} \right) dx + O(1)
= \int \sum_{C < c \leq 2C} \frac{1}{c^2} \sum_{|B - a| \leq A} \rho(c, a) e \left(\frac{(B - a)x}{c} \right) \exp \left(-\frac{2\pi F_{\varepsilon}}{c} \right) h(x) dx + O(1)
= \int \sum_{C < c \leq 2C} \sum_{|B - a| \leq A} \rho(c, a) e \left((B - a)x \right) \exp \left(-2\pi F_{\varepsilon} \right) h(cx) dx + O(1).
\]

Let

\[
F_{\varepsilon}(A, B, C) = \sum_{C < c \leq 2C} \sum_{|B - a| \leq A} \rho(c, a) e \left((B - a)x \right)
= \int_{-A}^{A} e(\alpha x) d\alpha F_{\varepsilon}(A + \alpha, B - A, C)
= \frac{6C \sin(2\pi Ax)}{\pi^3 x} + O((1 + xA)(A^{3/4}B^{3/4}C + AC^{1/2})(BC)^{\varepsilon}),
\]

then

\[
\sum_{C < c \leq 2C} \sum_{|B - a| \leq A} \rho(c, a) e \left((B - a)x \right) h(cx)
= \int_{C}^{2C} h(y) dy F_{\varepsilon}(A, B, y)
= \frac{6 \sin(2\pi Ax)}{\pi^3 x} \int_{C}^{2C} h(y) dy + O((A^{3/4}B^{3/4}C + AC^{1/2})(BC)^{\varepsilon})
= M + R, \text{ say}
\]

the integration of \(M \) over \(x \) is

\[
(6.6) \quad \frac{6}{\pi^3} \int_{C}^{2C} \left(\int \frac{\sin(2\pi Ax)}{\exp(2\pi Ey)} h(y) dy \right) dx
= \frac{6}{\pi^3} \int_{C}^{2C} \left(\int \frac{\sin(2\pi Axy^{-1})}{\exp(2\pi Exy^{-1})} h(x) dx \right) \frac{dy}{y}
\ll \frac{1}{N^2},
\]

where we have used the multiple integration by parts

\[
\int \frac{\sin(2\pi Axy^{-1})}{\exp(2\pi Exy^{-1})} h(x) dx = \text{Im} \int \frac{e(Axy^{-1})}{\exp(2\pi Exy^{-1})} h(x) dx
= \text{Im} \left(\frac{(-1)^l}{(2\pi i A y^{-1})^l} \int \left(\frac{h(x)}{\exp(2\pi Exy^{-1})} \right)^{(l)} e(Axy^{-1}) dx \right)
\ll \frac{N}{(ANC^{-1})^l} \ll \frac{1}{N^2},
\]
with $l = \left[\frac{4}{3} \right] + 2$, since $\frac{ANC}{C}^{-1} \geq X^\varepsilon$.

Integration over x from $\left(\frac{N}{2C}, \frac{2N}{C} \right)$ of R yields

$$(6.7) \quad \ll N^2 C^{-2} (A \frac{3}{3} B^{3/2} C + AC^{3/2}) (BC)^\varepsilon) \ll X^{1/5 + \varepsilon} N^{7/5} C^{-3/5}.$$

Combining all the above arguments (6.1)—(6.7) we get

$$(6.8) \quad \sum_n h(n) W_n (\varphi) \ll X^{11/30 + \varepsilon} N^{7/5} C^{-3/5} + X^{1/3} + N^2 \log^{10} X$$

$$\ll X^{11/30 + \varepsilon} N^{7/5} C^{-3/5}.$$

7. Proof of the theorem

By (5.1) and (6.8) we get

$$(7.1) \quad \sum_{t_j > 0} X^{it_j} \exp \left(-\frac{t_j}{T} \right) \ll T^{\frac{2}{3}} X^{11/30 + \varepsilon} + T^{\frac{3}{2}} \log^2 T \ll T^{\frac{2}{3}} X^{11/30 + \varepsilon}. $$

By (7.1) and the Fourier Technique used in [9] we get

$$(7.2) \quad \sum_{|t_j| \leq T} X^{it_j} \ll T^{\frac{2}{3}} X^{11/30 + \varepsilon}. $$

By (58) in [9]

$$(7.3) \quad \sum_{|t_j| \leq T} X^{it_j} \ll T^{\frac{5}{4}} X^{1/3} \log^2 T.$$

By (7.2) and (7.3) and the inequality $\min(A, B) \leq A^\alpha B^\beta$ for $A > 0, B > 0, \alpha > 0, \beta > 0, \alpha + \beta = 1$ we get

$$\sum_{|t_j| \leq T} X^{it_j} \ll \min(T^{\frac{2}{3}} X^{11/30 + \varepsilon}, T^{\frac{5}{4}} X^{\frac{1}{8}} \log^2 T)$$

$$\ll (T^{\frac{2}{3}} X^{11/30 + \varepsilon})^{\frac{5}{17}} (T^{\frac{5}{4}} X^{\frac{1}{8}} \log^2 T)^{\frac{12}{17}} \ll TX^{10/51 + \varepsilon},$$

and the theorem follows from (7.4), Lemma 1 and summation by parts.

References

Yingchun Cai
Department of Mathematics
Shanghai University
Shanghai 200436, China