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Diophantine equations
after Fermat’s last theorem

par Samir SIKSEK

Résumé. Cet article reprend les notes de mon exposé aux
25-ièmes Journées Arithmétiques, du 2 au 6 juillet 2007 à Edim-
bourg en Écosse. J’ai pour but d’apporter un peu de lumière sur
les deux questions suivantes :

(i) Étant donnée une équation diophantienne, quelle informa-
tion peut-on obtenir en suivant la stratégie de Wiles pour sa
preuve du théorème de Fermat ?

(ii) Est-il utile de combiner cette approche avec les approches
traditionnelles des équations diophantiennes : approximation
diophantienne, géométrie arithmétique, . . . ?

Abstract. These are expository notes that accompany my talk
at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh,
Scotland. I aim to shed light on the following two questions:

(i) Given a Diophantine equation, what information can be ob-
tained by following the strategy of Wiles’ proof of Fermat’s
Last Theorem?

(ii) Is it useful to combine this approach with traditional ap-
proaches to Diophantine equations: Diophantine approxima-
tion, arithmetic geometry, . . . ?

1. Introduction

These are expository notes that accompany my talk at the 25th Journées
Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. None of the ideas de-
scribed in Sections 2 and 3 are due to myself; these are now well-known
ideas for which credit goes to Hellegouarch, Frey, Serre, Ribet, Wiles, Tay-
lor, etc. The rest of the talk is based on work done in collaboration either
with Yann Bugeaud and Maurice Mignotte [6], [7], [8] or with John Cre-
mona [18]. This work builds on the ideas of many others: Darmon, Merel,
Kraus, Bennett, Skinner, Ivorra, etc.

I am foremost concerned with the explicit resolution of Diophantine
equations. There are three competing traditions in this field.

(i) elementary methods; I need not explain what these are.
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(ii) Diophantine approximation; one uses analytic techniques to derive
bounds for the sizes of solutions of certain Diophantine equations.

(iii) arithmetic geometry; one views Diophantine equations as algebraic
varieties.

The modular approach, used in Wiles’ celebrated proof of Fermat’s Last
Theorem, is the most radical recent idea in the field of Diophantine equa-
tions. It is based on a surprising series of ideas ‘Frey curves’, ‘Galois rep-
resentations’, ‘modularity’, ‘level-lowering’, etc and does not really fit into
the traditional view-points i–iii.

My objective is to explain the kind of information that can be obtained
from the modular approach and to give a sense that it is often necessary
to combine this method with the traditional view-points i–iii. To maintain
some coherence of exposition I will focus on the work done by myself and
collaborators. It would however be unfair not to mention that there are
others who have successfully combined the modular approach with tradi-
tional approaches, such as Bennett [2] or (as in the truly wonderful paper
of) Poonen, Schaefer and Stoll [16].

This article is aimed at a general number theory audience, and so I will
suppress the technicalities involved as much as possible.

This work is funded by an EPSRC grant and a Marie-Curie International
Reintegration grant. I would like to thank my friends Yann Bugeaud and
Maurice Mignotte for comments on a previous version of this paper.

2. Fermat’s last Theorem

The quickest way to immerse oneself into the modular approach is
through a summary of Wiles’ proof [21], [20] of Fermat’s Last Theorem.
Suppose there is some (x, y, z) satisfying xp + yp + zp = 0 where x, y, z are
coprime integers, xyz 6= 0 and p ≥ 5 is prime. Using the symmetries of the
Fermat equation, there is no loss of generality in assuming that x ≡ −1
(mod 4) and 2 | y. Associate to this solution (x, y, z) the Frey elliptic curve

Ex,y,z : Y 2 = X(X − xp)(X + yp).

This Frey curve has minimal discriminant

∆min =
1
28

(xyz)2p.

Wiles proved the modularity of semi-stable elliptic curves, which includes
the curve Ex,y,z. Historically this was the last step in the proof of Fermat’s
Last Theorem. The modularity is essential for the next step where we ap-
ply Ribet’s Theorem. Before doing that observe that modularity has been
established for all elliptic curves over the rationals [5]—I shall not need to
mention modularity again.
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We now look at the Galois representation on the p-torsion of Ex,y,z. Ri-
bet’s Level-lowering Theorem predicts that this Galois representation arises
from a newform 1 of level 2. Later on I shall talk a little more about how
Ribet’s Theorem applies to Frey curves, and say a little about newforms.
For now let me just quote the fact that there are no newforms of level 2
and so we have a contradiction.

Before we talk a little more about Frey curves and newforms, let us
observe that the Fermat equation has solutions, for example (−1, 0, 1). All
the known solutions satisfy xyz = 0. We did not state where the assumption
xyz 6= 0 was used. If xyz = 0 then the Frey curve has zero discriminant and
so is not even an elliptic curve and so the rest of the proof is not applicable.

3. How the modular machinery is applied to Diophantine
equations

Suppose we have a Diophantine equation that we are interested in solv-
ing; the Diophantine equation should have some prime exponent p ≥ 5. Our
first step is to associate a hypothetical solution of the Diophantine equation
to a Frey curve. A Frey curve should satisfy the following conditions.

• Be an elliptic curve whose coefficients depend on the hypothetical
solution of the Diophantine equation.

• Have minimal discriminant ∆ = C ×Dp where
– C depends on the Diophantine equation that we would like to

solve and not on the solution, and
– D depends on the solution.

• The primes dividing D are primes of multiplicative reduction for
the elliptic curve.

The next step is to look at the Galois representation on the p-torsion and
apply Ribet’s Theorem. To apply Ribet’s Theorem we need that the Ga-
lois representation is irreducible (or some similar condition). For this we
probably need to quote some theorems of Mazur. For example this is au-
tomatically satisfied if p > 167 and the j-invariant is non-integral. Ribet’s
Theorem then tells us that the Galois representation on the p-torsion arises
from a newform at a certain (explicitly computable) level N . The main
point is that the level depends only on C which depends on the original
Diophantine equation, and not on D which depends on the solution. This is
exactly the same as in the proof of Fermat’s Last Theorem where N = 2 is
independent of the solution. Now if there are no newforms of level N then
our original Diophantine equation has no non-trivial solutions. The trivial
solutions are the ones that make the Frey curve singular.

1For those familiar with modular forms, I shall only be concerned with elliptic modular forms
of weight 2. By a newform of level N I mean a normalized cusp form of weight 2 belonging to
the new space at level N , that is a simultaneous eigenfunction for the Hecke operators.
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We should say that Frey curves have been constructed for only a few
families of Diophantine equations. For example,

axp + byp = czp, axp + byp = cz2, axp + byp = cz3, . . . .

What happens if there are newforms of the predicted level N? It is time
to talk a little about newforms. Associated to any positive integer N are
the newforms of level N . There are finitely many of these and they can be
determined by the modular symbols algorithm as explained in the books of
Cremona [12] and Stein [19]. It is helpful to think of newforms in terms of
their Fourier expansion around ∞:

f = q +
∞∑

n=2

anqn.

Here the coefficients an are algebraic integers in some totally real number
field. If all the an ∈ Z we say the newform is rational. Otherwise the
newform is said to be irrational. Rational newforms correspond to elliptic
curves, and irrational ones to higher dimensional modular abelian varieties.

Let us return to our problem of attacking a specific Diophantine equation
using the modular approach. We obtain a list of finitely many newforms at
the predicted level N . We want to know what information these newforms
tell us about the Diophantine equation. Surprisingly, it is much easier to
deal with the non-rational newforms than with the rational ones. The reason
is that the higher dimensional modular abelian variety that corresponds to
a non-rational newform looks nothing like our (1-dimensional) Frey elliptic
curve and this helps us to obtain very stringent conditions on the solutions
to the Diophantine equation. For example, we can obtain an explicit bound
for the exponent p. This is sometimes true for rational newforms as well,
but very often rational newforms are troublesome. It is now appropriate to
give an example.

4. The generalized Ramanujan–Nagell equation

In 1913 Ramanujan asked for the solutions to the equation x2 + 7 = 2m.
This was solved by Trygve Nagell in 1948, and the solution is found in sev-
eral undergraduate algebraic number theory texts. The equation is highly
unusual in that it has such large number of solutions (x,m) = (±1, 3),
(±3, 4), (±5, 5), (±11, 7), (±181, 15). It is natural to wonder about the
more general equation

(4.1) x2 + 7 = ym, x, y,m ∈ Z, m ≥ 3.

But for the history of this type of problem one needs to go back much
earlier, to Victor Lebesgue who in 1850 showed that the only solution to
the equation

x2 + 1 = ym, x, y,m ∈ Z, m ≥ 3,
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is the trivial one (x, y) = (0, 1). This is significant as it is one of the ear-
liest non-trivial exponential Diophantine equation to have been solved. By
exponential I mean that one of the unknowns is an exponent. Lebesgue’s
trick is to factor the left hand-side over Z[i] and exploit the fact that the
two factors (x + i), (x − i) are coprime Gaussian integers and so must be
perfect powers (for m odd). Over the next 140 years many equations of the
form

x2 + D = ym, x, y,m ∈ Z, m ≥ 3,

have been solved using Lebesgue’s elementary trick. In 1993 John Cohn
[11] published an exhaustive survey of this equation which completes the
solution for all but 23 values of D in the range 1 ≤ D ≤ 100. These are
(4.2)

7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100,

plus four more values which we write separately: 55, 74, 86, 95. The cases
D = 74, D = 86 were dealt with a little later by Mignotte and de Weger,
and D = 55, 95 by Bennett and Skinner. This leaves us with the values of D
in the range (4.2). It turns out that these are beyond elementary methods
because x +

√
−D and x−

√
−D need not be coprime.

Let us return to x2+7 = ym and attack it by the modular approach. This
is based on joint work with Cremona [18] and joint work with Bugeaud and
Mignotte [7], but in fact we are following in the footsteps of Kraus [15]. We
restrict ourselves to

(4.3) x2 + 7 = yp, x, y ∈ Z, p ≥ 11 prime, y even.

This is the hard case that is beyond elementary methods. There is no loss
of generality in supposing x ≡ 1 (mod 4).

We associate to this solution the Frey curve:

(4.4) Ex : Y 2 = X3 + xX2 +
x2 + 7

4
X.

This has minimal discriminant and conductor

(4.5) ∆x =
−7y2p

212
, Nx = 14

∏
q prime

q|y, q 6=2,7

q,

and so is clearly a Frey curve in the sense explained earlier. Now Ribet’s
Theorem predicts that the Galois representation on the p-torsion of Ex

arises from a newform of level 14. There is only one newform of level 14
and this turns out to be rational and indeed corresponds to the elliptic
curve

E : Y 2 + XY + Y = X3 + 4X − 6,
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of conductor 14. The elliptic curves Ex and E are related as follows: let
l 6= 2, 7 be prime, then

(a) if l - y, then #Ex(Fl) ≡ #E(Fl) (mod p),
(b) if l | y, then #E(Fl) ≡ 0, 2l + 2 (mod p).

Here #E(Fl) is the number of points on the elliptic curve E over the finite
field Fl. We are not yet successful in showing that there are no solutions
for all p ≥ 11, but it is easy to give a criterion for the non-existence of
solutions for a given prime exponent p.

Lemma. Fix p ≥ 11. Let l 6= 2, 7 be prime satisfying

(i) #E(Fl) 6≡ 0, 2l + 2 (mod p)
(ii) #Ex(Fl) 6≡ #E(Fl) (mod p) for all x ∈ Fl satisfying x2 + 7 ∈ F∗l

p.

Then there are no solutions to the equation x2 + 7 = yp for the given
exponent p.

The lemma is simply a restatement what we said so far. If we choose l
in an arbitrary way then it is likely that condition (ii) will not hold. Indeed
if p - (l − 1) then F∗l

p = F∗l . However, if l = np + 1 then #F∗l
p = n. Hence

a correct choice for l would be a prime of the form np + 1 where n is
small. If criteria (i), (ii) do not hold for some l we choose another of the
same form until we succeed. This gives a very efficient method for showing
that there are no solutions for a given prime exponent p ≥ 11; a method
that is moreover straightforward to program since it involves only finite
field arithmetic and point counting on elliptic curves. In fact it took four
days of computations on a modest desktop computer (in 2002) to prove the
following [18].

Lemma (Cremona-S.). Equation (4.3) has no solutions for 11 ≤ p ≤ 108.

Methods of Diophantine approximation—in particular, Baker’s theory
of linear forms in logarithms—do give bounds for the solutions of many
families of Diophantine equations, including (4.3). For example, in 1998
Lesage showed that p < 6.6× 1015. He also used an elementary method to
rule out solutions for 11 ≤ p < 5000.

The story has a happy ending. In 2003, motivated by this work, Mau-
rice Mignotte substantially improved the bounds for linear forms in three
logarithms which is precisely what is needed for (4.3). In particular, the
new bounds show that p ≤ 1.11 × 109. However, using information that
can be obtained from the modular approach, the theory of linear forms in
logarithms can be made to work better and we obtain p ≤ 2 × 108. Now
re-running the old programs we obtain the following theorem [7].



Diophantine equations 429

Theorem (Bugeaud-Mignotte-S.). The only solutions to equation (4.1) are
the following:

m x y m x y m x y
3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2

The same method has been used to solve x2 + D = ym for the 19 out-
standing values of D mentioned above.

5. Perfect powers in the Fibonacci sequence

There is an important lesson to be learnt from the solution to x2+7 = ym.
It is that the modular approach provides a tremendous amount of local
information (i.e. congruences) on the solutions of the Diophantine equation.
Progress can be made if we figure out a way of combining this with global
information given by other methods (e.g. Baker’s theory).

We now turn to another classical Diophantine problem: determine all
perfect powers in the Fibonacci sequence. Partial results have been ob-
tained by Ljunggren, Cohn, Wyler, London, Finkelstein, Robbins, Pethö,
McLaughlin, etc. It is said that the question was first asked by Mordell
in 1950s, although its first appearance in print is in a 1964 paper of John
Cohn [10].

Let {Fn}∞n=1 be the Fibonacci sequence, defined as usual by F0 = 0,
F1 = 1, Fn+2 = Fn + Fn+1. The equation we want to solve is

Fn = ym, n, y, m ∈ Z, n ≥ 0, m ≥ 2.

The problem is much more difficult than x2 + 7 = ym. The reason for the
difficulty is that x2+7 = ym has solutions for only finitely many values of m.
We more-or-less solve the problem by showing that there are no solutions
for large values of m. The Fibonacci powers problem is much more difficult
because F1 = 1 = 1m gives a solution for all values of m. Therefore any
method which gives a contradiction for a given fixed exponent (such as one
in the previous section) is bound to fail. Again we focus on the difficult
case

(5.1) Fn = yp, p ≥ 7 is prime, and n is odd.

Our objective is to show that n = y = 1 (the only solution for this case).
It is appropriate here to talk a little about Baker’s theory of linear forms

in logarithms. Recall the well-known expression for Fibonacci numbers (Bi-
net’s formula),

Fn =
λn − µn

√
5

, λ =
1 +

√
5

2
, µ =

−1
λ

.
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The equation Fn = yp yields∣∣∣∣∣ λn

√
5yp

− 1

∣∣∣∣∣ =
1

λnyp
√

5
.

Suppose now that n > 1 and so y > 1. Then this is saying that λn/(yp
√

5)
is close to 1, which means that its logarithm is small. Quantitatively we
obtain

(5.2) |n log λ− log
√

5− p log y| ≤ 2
λnyp

√
5
.

Here you see an upper bound for a linear form in logarithms of algebraic
numbers. Baker’s theory (and its refinements) supply lower bounds for such
linear forms. The exact lower bound depends on the version quoted and is
likely to be complicated. However, you can obtain a lower bound of the
form

C1

yC2(log p)C3
≤ |n log λ− log

√
5− p log y| ≤ 2

λnyp
√

5
,

for some positive constants C1, C2, C3. Plainly, if p is large, then the left-
most term is larger than the right-most term, giving a contradiction. Thus
p is bounded by some bound that depends on the constants Ci. Mignotte’s
bounds for linear forms in three logarithms show that if n > 1 then p ≤
2× 108.

By a rather involved detour through Thue equations one also obtains
bounds for the index n in terms of p. This step uses ideas of Bugeaud
and Győry and yields bounds that are rather complicated to state (as they
involve many terms), but they very roughly say that n is at most p10p. Even
with p = 7 we obtain n ≤ 3× 1046.

We would like to apply the modular approach here. We skip over all the
details you have seen before (Frey curve, level-lowering, etc.). However all
you need to know is the following fact which I hope you will readily believe
following what you saw in the previous section.

Fact: Fix a prime exponent p ≥ 7 and another prime l 6= 2, 5. There
exists an easily computable and fairly small subset S(l, p) ⊂ Fl such that if
(n, y, p) is a solution to (5.1) then Fn ∈ S(l, p).

By Fn we obviously mean the reduction of Fn modulo l. In other words,
the modular approach is giving us stringent congruence conditions for the
Fibonacci numbers that are perfect powers. We want congruences for n and
not for Fn. Let Ml be the period of the Fibonacci sequence modulo l. Let

N (l, p) = {m ∈ Z/Ml : Fm ∈ S(l, p)}.
It follows that if (n, y, p) is a solution to (5.1) then ñ ∈ N (l, p), where ñ de-
notes reduction modulo Ml. In other words, we obtain stringent conditions
on the index n modulo Ml. Now it is easy to show that Ml divides l2 − 1,
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and it is likely to be a composite number. In fact with a careful choice of l
we can ensure that Ml is a ‘smooth integer’, which means that it is divisible
only by small primes.

Let l1, . . . , lr be distinct primes write Mi for Mli . We have congruence
conditions for n modulo each Mi. By the Chinese Remainder Theorem
we obtain congruence conditions for n modulo M = lcm(M1,M1, . . . ,Mr).
Here an arbitrary choice of li would lead to a combinatorial explosion of
possibilities when we attempt to lift congruences modulo Mi to congruences
modulo M . However choosing the li so that the Mi are smooth and have
many prime factors in common maximises the probability of contradictions
and we get a few congruences for n modulo a large M .

For example, fix p = 7. By an appropriate choice of hundreds of primes
l we obtain, utilising a computer,

ñ ∈
{
1̃, ã, b̃, c̃

}
⊂ Z/M

where

a = 100704598854427777024179418273944411482999002799,
b = 100704598854427777024179418273944411482999002801,
c = 201409197708855554048358836547888822965998005599,
M = 25 × 33 × 52 × 7× 11× · · · × 109.

Thus the index n belongs to the set

1, a, b, c, 1 + M, a + M, b + M, c + M, 1 + 2M, . . . .

Note that a, b, c, M > 1047 and we said previously that n ≤ 3×1046. Hence
n = 1 as desired. Notice how local information obtained from the modular
approach is combined with global information obtained from Diophantine
approximation.

We have solved the problem for p = 7. In fact this strategy is fairly
realistic for primes p ≤ 1000, but is completely incapable of dealing with
much larger primes. Our bound for p ≤ 2 × 108 seems hopelessly out of
reach.

However, it is possible to use the congruences from the modular approach
to prove that n ≡ ±1 (mod p) for all p ≤ 2 × 108. Writing n = kp ± 1 we
can rewrite the inequality (5.2) as∣∣∣p log

(
λk/y

)
− log

(√
5/λ±1

)∣∣∣ ≤ 2
λnyp

√
5
.

Thus what was a linear form in three logarithms has miraculously trans-
formed into a linear form in two logarithms. Baker’s theory for linear
forms in logarithms works much better now, and using bounds by Lau-
rent, Mignotte and Nesterenko we obtain p < 733. Our bound for n in



432 Samir Siksek

terms of p now gives n < 108733 which is within reach of our previous ar-
guments, and we are able to complete the proof of the following theorem
[6].

Theorem (Bugeaud-Mignotte-S.). The only perfect powers in the Fibonac-
ci sequence are F0 = 0, F1 = F2 = 1, F6 = 8 and F12 = 144.

The computations needed took about 158 hours on a modest desktop
computer and utilised the computer packages PARI [1] and MAGMA [4].

6. Multi-Frey approach

We saw how congruences obtained from the modular approach can help
to solve Diophantine equations. The multi-Frey approach is a newly devel-
oped variant of the modular approach. It uses congruences obtained from
several Frey curves simultaneously. It has been used to attack multiply-
exponential Diophantine equations, in other words Diophantine equations
involving several unknown exponents. Here is a specimen result [8].

Theorem (Bugeaud-Mignotte-S.). Suppose 3 ≤ q < 100 is prime. The
only solutions to the equation

quxn − 2ryn = ±1, x, y non-zero integers, u, r ≥ 0, n ≥ 3

are

1− 2 = −1, 3− 2 = 1, 3− 4 = −1, 9− 8 = 1, 5− 4 = 1,

7− 8 = −1, 17− 16 = 1, 31− 32 = −1, 5× 24 − 34 = −1,

19× 33 − 83 = 1, 17× 73 − 183 = −1, 37× 33 − 103 = −1,

43× 23 − 73 = 1, 53− 2× 33 = −1.

The proof uses all the methods mentioned previously, together with three
simultaneous Frey curves and a very deep theorem of Bennett on equations
of the forms Axn −Byn = ±1.

Currently I am working with Szabolcs Tengely on Diophantine equations
of the form x2 + qu = 2ryn using the multi-Frey approach and a range of
classical methods.

7. Some open problems

It is dishonest to give the impression that the current methods have flat-
tened each and every problem. I would like to mention two of my favourite
problems where good progress has been made using the modular and other
approaches, but which are still out of reach.

The first problem is to solve

x3 + y3 = zn, x, y, z are non-zero coprime integers, n ≥ 3.
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Bruin [3] showed, using descent and Chabauty arguments, that there are
no solutions for n = 4, 5. Kraus [15] used the modular approach to show
the same for prime exponents n with 17 ≤ n < 104. By refining Kraus’
approach, Dahmen [14] shows that there are no solutions for n = 5, 7, 11, 13.
Thus we know that there are no solutions for n ≤ 104. Although this range
is easily extendible, there is no known method for bounding the exponent
n. Recently Chen and myself [9] have shown that the set of exponents n
for which this equation has solutions (in non-zero coprime integers) has
density 0; the proof uses a combination of the modular approach and the
Brauer–Manin obstruction to points on curves.

The second problem is to solve.

x2 − 2 = ym, x, y are integers, m ≥ 3.

This problem is similar to the Fibonacci powers problem in that there is
a solution 12 − 2 = (−1)m for all odd exponents m. However any bound
on x in terms of m is likely to be something like 10mm . For a further
discussion of this problem see Henri Cohen’s new book [13] (in particular,
Volume II, pages 517–521). That book also contains a detailed exposition
of the modular approach (Volume II, Chapter 15) and is an indispensable
handbook for any lover/solver of Diophantine equations.
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