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R.A.I.R.O.
(8« année, août 1974, R. 2, p. 129 à 151)

ON THE EXISTENCE,
UNIQUENESS AND APPROXIMATION

OF SADDLE-POINT PROBLEMS ARISING
FROM EAGRANGIAKTSIULTIPLIERS

par F. BREZZI (*)

Communiqué par E. MAGENES

Summary. — We give necessary and sufficient conditions for existence and uniqueness
of a cîass of problems of « saddle point » type which are often encountered in applying the
method of Lagrangian multipliers. A study of the approximation of such problems by means
of « discrete problems » (with or without numerical intégration) is also given, and sufficient
conditions for the convergence and error bounds are obtained.

INTRODUCTION

The present paper has been suggested by the recent development of the so
called « dual analysis » and in particular of the method of Lagrangian multi-
pliers in elasticity problems; we shall refer for now only to a few papers, and
in particular to [12], [14], [24], [25], [28], [29], and to the références contained
in such papers; many other références, however, will be given in the following.
Although the equilibrium, hybrid and mixed methods contained in the men-
tioned works are often quite satisfactory from a numerical point of view, a
complete study of the convergence of these methods and of the behaviour of
the error has not been done until last years, and, however, only in some parti-
cular case (see e.g. [20] and especially [18], [19] for the «mixed methods»
and [5] for the « assumed stresses hybrid method » ; other références on this
subject can be founded in [31]). The interest of these methods, and in parti-
cular of hybrid methods, has been increased by papers [15], [27], [32], in which
the theory of « non conforming » (or « delinquent ») éléments (see e.g. [30],
[21], etc.) is presented as a « particular case » (in some sense) of hybrid methods.
On the other hand, a careful analysis, for instance, of the work [11] on the
Stoke's équations shows that the greatest diiriculties in proving convergence
and error bounds are connected with the use of the method of Lagrangian mul-
tipliers itself, rather than with the physical meaning of the problem. In
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130 F. BREZZI

this sensé, the « gênerai strategy » employée in [11] and in [5], in order to have
convergence and error bounds for discretizations of different problems is, in
fact, quite similar.

These considérations have suggested the author to develop the present
« abstract theory » about saddle-point problems. More generally the problem
treated hère is the following.

(P)

Find (u, i>) in Vx W such that

where V, W are real Hubert spaces, a(w, v) and b(v9 <p) are continuous bilinear
forms on F x F and V X W respectivelly and ƒ, g are given functionals in
V' and W' resp.

In paragraph 1 we give necessary and sufficient conditions on a(u, v)
and b(v, <p) in order to have existence and uniqueness of the solution of pro-
blem (P) for ail given (ƒ, g) in V' x W\ In paragraph 2 we introducé the
« approximate problem » :

find (uh, <]>h) in Vh X Wh such that :

a(uh> vh) + b(vh9 ^ ) = < ƒ, vhyVvh€ Vh,

*) = < g> 9h > V 9/, € #*,

(A)

(where Fh and ^ft are closed subspaces of V and W resp.), and we give, under
suitable assumptions, an upper bound for the « error » :

Eh= \\u — uh\ + ||^ — ^ | | .

The third paragraph is dedicated to further considérations concerning
« numerical intégration » and « non conforming » approximation of W (that
is Wh $ W); this latest topic has been suggested by the papers [27], [32] and
can be applied for instance to the « strongly diffusive » éléments (equilibrium
models) by F. de Veubeke.

Of course, the theoretical results given hère do not answer any question
related to the mentioned methods and in gênerai to the problems in which
the method of Lagrangian multipliers is employed. In some particular cases
the greatest difficulty will often be the vérification of the abstract hypotheses
proposed here. It is reasonable, however, to think that the knowledge of a
« winning strategy » will be, in any case, useful.

Note. — Some of the results of this paper were also reported in a previous note (see [7]) ; I
wisn to thank Prof. J. L. Lions for presenting it to the CR. Acad. Sc. Thanks are also due to
Prof. P. A. Raviart for nis help in useful personel conversations.
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APPROXIMATION OF SADDLE-POINTS 1 3 1

0. PRELEVflNÀRIES

Let X be a real Hubert space; we dénote by X' its dual space; if x' € X'
and x € X the value of x' at the point x will be indicated by < x', x >. The scalar
product and the norm in X will be indicated by (,) and || || (resp.) or by
Qx and and || ||x whenever confusion may rise. We dénote also by Jx

the Riesz's « représentation operator » from X' onto X, defined by

(Jxx\ x) = < x\ x > Vx 6X, x' €X\

It is well known that Jx is a norm preserving isomorphism from X' onto X.
Let now Y be another real Hilbert space and let T be a continuous linear
operator from D(T) s X into 7. The domain jD(r') of the dual operator is
defined by :

D(T') = { ƒ | ƒ € Y', x -> < ƒ , Tx > is continuous on X }.

Then the dual operator T from Z>(r') into X' is defined by :

< ry , x > - < / ,7x > V* € x, / € £ (n .

We want now to prove a theorem that will be useful in the following.

Theorem 0.1. — Let X, Y be real Hubert spaces; let ^(x, y) be a conti-
nuous bilinear form on X X Y and Iet Tbe the continuous linear operator from X
into Y' associated to 75(x, y), defined by :

< Tx9y > - T5(x, y) Vx € Z, y € F.

all k > 0 the three following statements are equivalent :

Sup
x€X~{0}

ii)

üi) 3 ^ € CCF', r x 1 ) such that TS = ƒ (/rfe«^) Ö» 7 ' öwrf ||S|| ^ Jfe"1.

i) o ü) follows obviously from :

Sup S j g j p - Sup ^

(1) If #1 and #2 are Hilbert spaces, t(Hu H2) will be the space of all linear conti-
nuous operators from Hi into H% with the norm :

iM = ||%(ffl)ff3) = sup \\sx\\

n° août 1974, R-2.



132 F. BREZZI

iii) => ii) follows obviously from the relations (y ̂  0)

S««-S» \\4

ii) => iii) Let N = ker (T) the kernel of T; setting

Tt = restriction of T to N\

from ii) and the closed range theorem (cfr. e.g. Yosida [33], p. 205), we have
that 7\ is an isomorphism from Nx onto F'. From i) we easily get that, for
ail y in Y9

Sup
 1^yl

Then (see part i) o ii) of this proof) || (T{) " x (| ^ A:""1 ; hence || r^ * || < fc"x,
and setting S = T^1 the proof is completed.

Corollary 0.1. — Under the hypotheses of theorem 0.1 for all k and kposi-
tive numbers the three following statements are equivalent :

I) Sup ^!l>k\\y\\^yeYand Sup ^ - } > k \\x\\ V , 6 JT,

II) || 7*|| ^ * ||x|| V x € JT om/ || Ty\ > k \\y\\ V y € 7,

III) T fc a« isomorphism from X onto Y\

with \\T'l\\ < k"1 and WiTT'W < k'1.

Proof — It is sufficient to apply theorem 0.1 to the form ^(x, y) and to
the form TS'Cy, x) = ^(x, ^) (defined onYx X).

REMARK 0.1. — The results contained in theorem 0.1 and in corollary 0.1
are of classical type and might not be new. For instance part I) => III) of
corollary 0.1 was used by Babuska [3],

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



APPROXIMATION OF SADDLE-POINTS 133

1. EXISTENCE AND UNIQUENESS

Let now F and W be real Hilbert spaces, and let a(u, v) and b(v, 9) be
continuous bilinear forms on F x F and F x W respectively. For any given
pair (ƒ, g) in F ' x W' we consider the problem :

(1.1)

find (u, <|0 in V X W such that :

a(u,v) + b(v, ty) = <f,v}V v Ç V,

We remark that, if, for instance, a(u, v) is symmetrie and F-elliptic, in the
sense that there exists a positive constant 8 such that

then problem 1.1 is equivalent to the research of the saddle point on F x W
of the functional

£<P> 9) = \<*P> v) + b(v, 9) - <ƒ v > - <g, 9 > -

We look now for necessary and sufiicient conditions in order that for each
(ƒ, g) in F' x W' problem (1.1) has a unique solution. In other words, if
AeZ(V, V') and BeZ(V, W') are the operators associated to a{u,v) and
b(v, 9) resp., we search for (necessary and) sufficient conditions in order that
the operator A : V X W-+ V' x W', defined by

(1.2) A(v, 9) - (Av + JB'9, Bv\

results an isomorphism.

For this, first of all we introducé the space :

(1.3) Z = Ker (B) = {v \ v € F, 6fe ?) = 0 V9 € PF},

which is a closed subspace of F. Let Z' be the dual space of Z; Z ' can be
identified with a closed subspace of F', consisting of all ƒ € F' such that

(1.4) <ƒ>> = () iffowO = 0 Vvi>€Z.

Let us dénote by TU : F'—>Z' the orthogonal projection from F' onto Z'.
The closed subspace of F ' consisting of all ƒ € F' such that -nf=0 (polar
set of Z) will be indicated by Z°.

We can now prove the following theorem.

n° août 1974, R-2.



134 F. BREZZI

Theorem 1.1. — The operator A defined in (1.2) is an isomorphisrn front
V X W onto V' X W' iffthe twofollowing conditions are satisfied :

(1.5) izA is an isomorphism front Z onto Z',

(1.6) 3fc > 0 such that \\B'(?\\ > k ||<p|| Vcp € WO).

Proof — Suppose that A is an isomorphism. Let us define, for ail g in W\
Sg as the first element of the pair A" *(0, g), that is :

(1.7) w = Ss o 3x € ^ A(w, x) = (0, g).

We have from (1.2) and (1.7) that BS = / ; since A is an isomorphism,
SeZ(W, V) and therefore, by theorem 0.1, (1.6) holds. We define now, for
ail ƒ € Z' , Qf as the first element of the pair A" 1^, 0), that is :

(1.8) w = Qfo 3X € W, A(w, x) = (ƒ, 0).

Since, by the closed range theorem and (1.6), nB'cp = 0 V9 € J^, we get
from (1.8) and (1.2) that izAQf^ nf = f. So TT^Ô = ^ and then nA is sur-
jective. Suppose now that z €Z and izAz = 0; then Az ÇZ° and by (1.6) and
by the closed range theorem there exists a ^ i n ^ such that B'x = — Az.
So A(x, z) = (0,0) and then z — 0. Therefore 7ĉ  is also injective and, obviously,
continuous; hence (1.5) holds. Suppose now, conversely, that (1.5) and (1.6)
hold. From (1.6) and theorem 0.1 the problem

(1.9) M*, $) = (/, g)

is equivalent the problem

(1.10) A(w,+) = (ƒ —^5,0)

with u = w + ü and Bü = g. Hence A is an isomorphism from V x W onto
F ' X W' if Ao, restriction of A to Z x W, is an isomorphism from Z x W
onto F ' x { 0 } . Let now be ƒ G F', and let w€Z be the unique solution
of -KAW = TC/, which existence follows from (1.5). Since n(J—Aw) = 0 we
have ƒ — A w € Z ° and then from (L6) there exists a unique ^ in W such
that i?'^ = — Aw + ƒ; we have proved in this way that for each ƒ € V' there
exists a unique (w, tp) € Z X W such that A0(w, 40 = (ƒ, 0). Then Ao is a
continuous one to one mapping and therefore an isomorphism.

The following proposition expresses the norm of A"1 and (A')~! as func-
tion of the constants related to A and B in theorem 1.1.

(1) For sufficient conditions in order that À be an isomorphism, in more gênerai cases,
see[2].
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APPROXIMATION OF SADDLE-POINTS 135

Proposition 1,1. — Suppose that A and B are such that (1.5) and (1.6) are
satisfied. Let us define :

y = Inf •% ,A , y' = Inf
«€Z-{0> ||W|| «6Z-{0}

n, setting

(1.12) M(a, Y, *) = max { (y" * + fc"xd j - «y" 1))>

(Ar̂  + aÂr^Xl + a
we have :

(1.13) || A"11| <M(a)Y)fc),

(1.14) IRA')"1! <M(oi,Y,k).

Proof. — Let (ƒ, g) € F' X fF and let (H, +) = A" l (ƒ, g), that is :

(1.15)
5« = ̂ .

From (1.6) and theorem 0.1 there exists a w in F such that Bw = g and

(1.16) H « *"' 11*11 •
Setting now v — u — w we get, from (1.15),

(1.17) TZAV = 7ç/"—

and from (1.11),

so we have :

(1.19) Hl < \\4 + «Hl < Y"1 11/11 + k-\y-U + 1) 0,| .
Since from (1.15) we get

(1.20) H ^ l l < II / ! + \\Au\\^ I I / H + a \\u\\,

from (1.6) we obtain

and from (1.19) and (1.21) we have (1.13); the proof of (1.14) can be perfor-
med in a similar manner.

n° août 1974, R-2.



136 F. BREZZI

REMARK 1.1. — It can be easily verified that A is the operator associated
to the form

(1.22) -6((«, +), (v, <p)) = a(u, v) + b(u, <p) + b(v, $).

So by|Corollary 0.1 with X = Y= V X W, A is an isomorphism iff there
exist T,^TJ> 0 such that

(1.23) Sup
x€X-{0}

and Sup

On the other hand it can be shown that condition (1.23) holds iff (1.5)
and (1.6) hold. Then, this can be another way, which extends and generalizes
the idea of Babuska [4], in order to prove theorem 1.1.

The following corollary will be useful in the applications.

Corollary 1.1. — If a(u, v) is Z-elliptic and (1.6) holds, then A is an iso-
morphism.

The proof is immédiate.
REMARK 1.2. —In many applications (see e.g. Raviart-Thomas [27] and

Thomas [32]) we are led to the problem (1.1) by the following procedure. Let Fo

and V be real Hubert spaces, with Fo closed subspace of F, and let a(u, v)
be a continuous bilinear form on F x F which is F0-eliiptic; we want to
solve the problem :

f find u in Fo such that

(1.24) j v) = / f v y v v z v

where ƒ is a given element in F'. For this we consider the space W — V% (polar
space of Fo) which is a closed subspace of F'; problem (1.24) is now equiva-
lent to :

' find («, §) in F x W such that :

(1.25) < a(w, v) + < <K v > = < ƒ, v > V v € F,

and setting

(1.26) b(v9 tp) = ( <p, i; ) , v € F, <p € W Ç= V',

problem (1.25) is of the form (1.1). We note also that from (1.26) we have,
in this case, B' = I (identity), so (1.6) is automatically satisfied; moreover we
have obviously

(1.27) Z = k e r ( 5 ) - Fo,

and then, since a(u, v) is F0-elliptic, corollary 1.1 is immediatelly applicable.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



APPROXIMATION OF SADDLE-POINTS 137

EXAMPLES. — We shall report here only a few examples, related to the
applications of the hybrid methods by Pian and Tong to plate bending pro-
blem (Dirichlet problem for the biharmonic operator A2). The field of appli-
cation of the theory is, however, quite large; for further examples of applica-
tions and for all the details we shall refer to others papers (Le. Pian-Tong [25],
Brezzi [5], [6], F. de Veubeke [15], Raviart-Thomas [27], Thomas [32], Brezzi-
Marini [8], etc.) which have suggested the abstract theory which is presented
here.

EXAMPLE LI. — Let us consider the problem :

A2w =p in Ü,
(1.28)

w = ^ = o on T =
on

where Q is a convex polygon, p(x, y) an element of L2(Q) and n is the out-
ward normal direction to 8£2. We apply to this problem the first hybrid method
(« assumed stresses hybrid method ») by Pian and Tong [25], For this let us
consider, for any given décomposition of £1 into polygonal subdomains Q£

(/ = 1,..., N), the spaces

(1.29) F = { v e (L\Ù)f ; vUxx + 2v2>xy + v3,yy € L2(nt) (Î = 1,..., N) } ,

(1.30) V= {veF; vUxx + 2v2jXy + v3>yy = 0 in O , (i = 1, ...9N)}9

(1.31) JV= { 9 €H%(Q);A2<p = 0 in Qt (1 = 1,..., N)} 9

and let ƒ be an element of F such that :

(1.32) fUxx + 2f2tXy +f3>yy = p in Ü£ (1 = 1,..., JV).

Finally we consider the bilinear form b(v, 9) defined on F x W by :

^ f f
.33) è(r, 9) = A 1 (i>i9 xx + ^ 2 9 xy + ^39 yy) d^ &y

+ ^2,xy + î?31yy)9dxdj | .

Setting now, for every u, v in F,

Ja

(1

—

(1.34)

we define

(1.35)

n° août 1974, R-2.
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138 F. BREZZI

and we introducé the norms :

(1.36) H l *=[*>,*>] > *>€F,

(1.37) \\<?\\w = |<PI1,O = ||?^||i2(Q) + 2 ||9,xJi2(O) + ||9,y>>lli2(ü)> 9 € JF.

Then by corollary 1.1 the problem

' find (w, ty) in V x W such that :

(1.38) i a(u, v) + b(v, ty) = L(v) V w € F,

. £(«, 9) = 7(9) V 9 € JF,

has a unique solution. It can be shown (see Brezzi-Marini [8]) that the solution
(w, <J0 of (1.38) is related to the solution w of (1.28) by :

(1.39) (w, „ , w, xy9 w, yy) = w + ƒ in

(1.40) (w, w, x9 w> y) = — (^, ̂ , x, 4*5 y) on S = \j 8Q(..

EXAMPLE 1.2. — We want to apply now to problem (1.28) the second hybrid
method («assumed displacements hybrid method») by Pian and Tong [25];
for this we consider, for any given décomposition of Q into polygonal sub-
domains Qt(i = 1, .„, N), the spaces :

(1.41)

(1.42) W = { M | M € (L2(Q))3, MUxx + 2M2tXy + M3>yy = 0 in

(1.43) W0^iM\M€W9Mx = <?,XX,M2 - 9 , ^ M3 = <?, yy

in each Qi9 9 6 F }

We define the bilinear form b(v, M) on V X Wby

(1.44) b(v, M)=lt \ <P, XXMX + 2v, xyM2 + v, yyM3) dx ày

and then we define :

(1.45) W={M\M€Ï

Using Southwell stress functions U, V, defined by

(1.46) Mt = V9y , M 2 = - i ( F , x + ï 7 , y ) , M3=C/SX)

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



APPROXIMATION OF SADDLE-POINTS 139

(cfr. e.g. [16]), W can be characterized as the set of M in Wo such that
XJn = Uvx + Vvy and Ut = — Vvx + Uvy (yx = cos ntx, vy = cos nty) are
« continuous » across the interelement boundaries dü.^

In fact setting (see e.g. [15]).

(1.47) Mn = *£ , *„, — „ _ * £ ,

b(v9 M) can be written formally as :

0.48) «„, M* = £

and formula (1.48) can be justified from a mathematical point of view as a

pairing between spaces of the type /71/2(3Qf) (
1) for -^- and -^ L and their

duals.

Let finally ƒ e (L2(Q)y be such that

(1.49) fltXX + 2f2jXy +f3iyy =pin each Qi9

and let, for all v in F,

(1.50) jF(tO = X f (v, xxft + 2v, xyf2 + v, yyf3) dx dy ;

we define

(1.51) a(uy v) = ^ (M, „i?, XX + 2w, xyv, xy + w, yyi;,

If F and W are equipped with the norms

52) u ^ - t H U ( 2 ) , ||M||2, £

)
i? € V.

(1) For the définitions and the properties of Sobolew spaces HS(D.) and HS(T) we
refer to Lions-Magenes [22].

(2) Such notations are classical; see e.g. Ciarlet-Raviart [9], [10], Strang-Fix [31].

n° août 1974, R-2.



140 F. BREZZI

it is easily proved that the conditions of corollary 1.1 are satisfied. Then the
problem

find (w, M) € V x W such that :

a(u9 v) + b(v, M) = F(v) VveV,

0 V

(1.53)

has a unique solution. It can also be verified that, if w is the solution of (1.28)
and (w, M) is the solution of (1.53), then :

(1.54) M> = «,

(1.55) (wxxy wxy9 wyy) =^—M+f.

2. APPROXIMATION

Let now Vh and Wh be closed subspaces of V and W respectively. We
substitute to problem (1.1) the « approximated problem » :

find (uh, tyh) in Vh x Wh such that :

<*(Uh> vh) + bip* W = <Â vh > V vh € Vh,,2

= < g, <?h > V 9h € Wh.

We want now, at first, to find sufficient conditions on Vh and Wh in order
that (2.1) has a unique solution, and, after that, to evaluate the distance
between the « approximate solution » (uhi tyh) of (2.1) and the « exact solution »

(u,«|0af(l.l).

First of ail we suppose that the following hypothesis is satisfied.

Hl. There exists a positive constant kh such that :

(2.2) sup ^ ^ l l ^ l l v9bewh.

We define now :

(2.3) Zh = { vh | vh € Vhy b(vh, 9h) - 0 V9h € Wh },

and we remark that, in gênerai, Zh $ Z. Therefore we need also the following
hypothesis.

H2. There exist two positive constants yh and yf
h such that :

(2.4) Sup %f^ > Yi W VvhçZh,
h- {0} ||«*||

(2-5) Sup
0) \\vh\\

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



APPROXIMATION OF SADDLE-POINTS 141

Let ph be the projection operator from V x W onto Vh x Wh\ identifying
y h X Wf

h with a closed subspace of V' x W' we can define the projection
operator pi from V' X W' onto V'h x ^ . Let now AA : Fh X Wh -> Fh' x ^
be defined by :

(2.6) Ah(vh, cp„) = p£A(i;A, 9 A ) V ̂  € F„ cpA € Wh.

It is clear that the solution (uh, <\>h) of (2.1) (if it exists) is such that

(2.7) K{uhAù

Therefore the following proposition gives an answer to our first question
about existence and uniqueness of the solution of (2.1).

Proposition 2.1. — Under the hypotheses Hl and H2 the operator Ah = p£
is an isomorphism between Vh x Wh and Fft' x W'h ; moreover we have :

(2.8) HA»"1! <M(«,y„,kh),

(2.9) 1\\

where M(a, yA, k^) is always expressed by (1.12).

The proof is immédiate by theorem 1.1 and proposition 1.1.

We can now prove the following theorem.

Theorem 2.1. — Under the hypotheses Hl and H29 for every pair (ƒ, g)
in V' x W' let

(2.10) (ii, i|0 ^ A - 1 (ƒ ,*) ,

(2.H) (^W^A^piC/,*)-

Then we have :

(2.i2) ||«-ifc|| + u-U < <M Inf llw-^ll
\Vh€Vh

where

(2.13) ^ - M ( a ï T ^ ^ ) ( a + p ) + l .

Proof. — First of all, we remark that, from (2.6), (2.10), (2.11), we have for
every (wh, &,) in Vh X Wh :

(2.14) < Ah(uh, W , (wh, XH) > = <f,wh> + <g,XH>

So if (vh9 9A) is any other pair in Vh x Wh we have :

(2.15) < Ah(uh — vh, +A — (pA), (wh, Xh) > = < A(M — vht ty —
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Then by (2.9) and corollary 0.1 (part III) => I)) we have

(2.16) \\uh-vh\\ + | | fe -9* | | <c\\A\\ (\\u-vh\\ + ||+ -

with c = || (Ai)'11| < M a > ïL W- On the other hand it is immédiate to
verify that

(2.17)

hence from (2.16), (2.17) we get

(2.18) H» —ffcll + ||+-+*|| < Wa+ W + l](||«-i;4 + | |+~94)

for every (vh, <ph) in Vh X Wh, and the resuit follows immediately.

Corollary 2.1. — Suppose that H\ hoïds and that there exists a constant
Sh > 0 such that

(2.19) a(vh,vh)^ Sh\\vh\\
2 VvheZh;

then Ah is an isomorphism from Vh X Wh onto V£ X W'h. Moreover9for every
pair (ƒ, g) in V x W\ if(u, +) - A " 1 ^ g) ™d (uh, 4>h) =

(2.20) 1^-^11 + | | ^ - ^ | | < 5ft( Inf ||tt-ffc|| + Inf | | * -

with <jh = M(a, 8h, k^)(u + P) + 1 •

The proof is immédiate.

REMARK 2.1. — Suppose for instance that a(u, v) is Z-elliptic and that, for
simplicity, g = 0.

Then the first element u of the solution of (1.1) can be characterized as
the solution of :

= </,«>
(2.21) 1 a(u, v)

u<=Z.

Suppose now that Vh and Wh are closed subspaces of Kand W, such that H\
is verified, and let again Zh be the space :

Zh={vh\vh<=Vhi b(vh,9h) = Q V?f t€PF f t}.

If a(u, v) is Zh elliptic then the first element uh of the solution of (2.1) can
be presented as the solution of :
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Since Zh $ Z, (2.22) can be regardée! as an approximation of (2.21) by
<< non-conforming éléments» (see e.g. [17], [21], [30], [31]); therefore
given Z ^ V, a(u, v) and ƒ € F ' , and given a closed subspace Zh C y9 the exis-
tence of W, Wh9 b(v9 9) such that the hypotheses of corollary 1.1 are satisfied,
constitutes some kind of « abstract patch-test » for the éléments of Zh (see
also, in the case of the elasticity and plate bending problems, F. de Veubeke [15] ;
also important in this contest are the papers by Raviart-Thomas [27] and
Thomas [32]).

EXAMPLE 2.1. — We return to the situation of the example 1.1, and we
suppose, for sake of simplicity, that Cl is the square ]0, /[ X ]0, /[ andlfiat Qf

are also squares of lenght h = lN~lj2. Let Kbe the unit square ]0, 1[ X ]0, 1[
and let Pv be a finite dimensional space of smooth vectors functions (vu v2, v3)
defined on K and self-equilibrating, in the sensé that

»i,Kc + 2Î?2fxy + »3jv = 0 on K;
A K A

let Pw be a finite dimensional space of smooth functions 9 defined on K and
such that A2o = 0 in K. For each Q; let Ft be the « affine » invertible trans-

T A I I A A

formation that maps K on O£ and let PVth PWti the images of Pv and Pw

(resp.) through Ft. We consider now the spaces
= {vh\vhSV , vh]ai

= { 9, ! 9, € W , 9*|Û* €Pw.t (i = h - ,

A A

It can be verified (cfr. Brezzi [5], Brezzi-Marini [8]) that if Pv and Pw

verify the following hypothesis :

0
A
Km

A A

for ail 9 in Pw, with X > 0,
then Vk and Wh satisfy hypothesis Hl with constant kh > X > 0, X independent
of A. Since, obviously, in this case

« = Y* = 1

for every décomposition, then the constant ah which appears in (2.12), is in
fact independent of h. We remark that in practice, since the value of 9 in K is

depending only on the values of 9 and 7— on dK, Pw will be chosen as a
on

space of biharmonic functions such that 9 and ~ - are polynominals of assigned
A A A

degree on dK. Of course we ignore the value of 9 at the interior of K, but
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this is not a difficulty since we can use sistematically, for the computations,
Green's formula

J O

where
A

 A 2 , o A . A 2

^ n = Vl^x + 2V2VXVV + V3VV,

* . A 2 2 \A A

_ ^A I A \ / A A *\

Vjç = cos nx , vy = cos ny,

valid whenevever Ü is sufficiently smooth and vljXX + 2v2fXy + t;3 yy = 0 on K,
For further details we refer to Brezzi [5] and Brezzi-Marini [8].

EXAMPLE 2.2. — We return now to the situation of the example 1.2, and
we suppose again that O and all the Qf are squares, as in example 2.1. Let K be
the unit square and let Pv be a finite dimensional linear space of smooth
functions and Pw a finite dimensional linear space of smooth self equilibra-
ting vectors of the type M = (9, xx9 9, xy, 9, yy). We define, for each i
(i = 1,..., N), PVti and PWfi as the images of Pv and Pw through the « affine »
i nvertible transformation Ft which maps K on Q,^ We consider the spaces :

Suppose that Pv and P^ verify hypothesis

A

There exists a constant X > 0 such that

_ I! An _ 1 J ,A A , _A A . A A

A ASup | |p | | 2 t K \K(v9 xx% xx + 2v, xy<p, xy + v9 yy(p, yy \ \ £
v€Pv~{0} JK

for ail (9, xx, 9, xy, 9, yy) in Pw.

Then we can prove that Hl is satisfied with constant kh > X > 0, X inde-
pendent of h. The chiefest difficulty is now, in the particular cases, to prove
that a(u9 v) defined by (1.51), is Zh-elliptic (where Zh is always defined by (2.3))
with constant 8h independent of A. If this is the case, then we get that the
constant âh which appears in (2.20) is in fact independent of h. The vérifica-
tion of Hl can, also in this case, be easily performed using (1.44), (1.47), (1.48),
if we know the value of U and V on 8^. F. de Veubeke has shown (cfr« [15])
that in this case Zh is in fact a space of non conforming approximations
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of HQ(Q) and that we can find in this way all the classical non conforming
éléments for the biharmonic problem (see [30], [31], [21]); for further details
we refer to F. de Veubeke [15]; in a forthcoming paper we shall treat this
case from a mathematical point of view.

3. FURTHER CONSIDERATIONS

Irnaaany applications, the exact computation of afuh, vh)> b(vh, cpft), < ƒ, vh >,
< £> 9* > which appear in the approximated problem (2.1) is rather difficult or,
in some case, impossible. Therefore some kind of numerical intégration
(see e.g. Strang-Fix [31], Ciarlet-Raviart [10]) is needed in order to solve
numerically problem (2.1). We shall shown that the classical results about
the use of numerical intégration for variational problems and for voriational
inequalities can be easily extended to our case. For this, let ah(uh, vh) and
bh(vh, 9/,) be (continuous) bilinear forms on Vh X Vh and on Vh X Wh respec-
tively; suppose moreover that fh and gh are (continuous) linear functionals
on Vh and Wh resp., and consider the problem :

(3.1)

find (Mfc* i\>Z) in Vh X Wh such that :

ak(u£ vh) + bh(vh, rh) = < ƒ*, vk} V vh € Vk9

We suppose that the following hypotheses are satisfied :

Hl*) There exists a positive constant k* such that :

\vh\ -%(vh, <pA) > kh*\\9h\\ V 9h e Wh.
vh€Vh-{0}

H2*) There exist two positive constants y* and y* such that :

Sup | |«J 'lah{uh, vh) > yA* | |^| | V vh € Z*
uh€Zh-{0}

Sup \\vh\ " V ^ , vh) > yS\\uh\\ V uh e Zt
vh€Zh- {0}

where, of course, Z* is definedby :

(3.2) Z * = {vh | vh£ Vh>bh(vh,9h) - 0 V 9 f t € Wh} .

Then, always from theorem 1.1 we get

Proposition 3.1. — Under the hypotheses i f l* and #2* ? for all (fh,gh) in
VI X Wfo problem (3.1) has a unique solution,
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We want now to evaluate the distance between («*, 4>*)> solution of (3.1),
and (M, 40» solution of (1.1). For this we define at first the operator

{ < A*(vh> ?*), (w*, Xh) > =

for all (üft, <pA) and (wh9

•>*) + bk(wh9 <?h) + bh(vh, XA)S

in Vh X Wh.

Let now (uhy t\>h) be the solution of (2.1) and let

(3.4) a* = Sup II;

From proposition 1.1 we get that there exists (vh, <ph) € Vh X PTh such that :

(3.5) ||ifc-q?|| + |Hfc-«i

Moreover we have

(3.6) < A * K - itf f $h - « ) , fe, ?ft) > = < (A* - Aft)(e/A, W ,

and also :

(3.7) | < ( A î - Aft)(Wfts ^h)9 (o* ft) > | ^ | ah(uhi vh) - a(uh, vh)

+ \bh(pkt tó — b(vh9 i>h)\ + \bh(uh, ç j — b(uhy <pA)| .

Setting now :

8 = S u p l i c * ! " 1 ! <g — gk,9u>\>
<PA€FFA-{0>

= S u p || vh II " 1 | ür(wA, ÜA) — aA(wA5 vh) | ,
t»A€FA-{0}

= S u p II 9ft || ~
1 | è(wA) çA) — bh(uh9 <ph) \ ,

<Ph€Wh-{0}

h) = Sup IÎ H -1 \b(vh, W - bh(vh, «Wl ,
r { 0 }

we have from (3.5), (3.6), (3.7), that :

(3.8) K-«;|| + ||*»-+;i
^ M(OL*, y£ kî)Q + S + t̂(wA) + 3S(uh)

Therefore we can conclude with the following theorem.
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Theorem 3.1. — If hypotheses Hl*9 H2* are satisfied and if(u£ fö) and (w, ̂ )
are the solutions of (3.1) and (1.1) respectively, we have :

\u-ut\\
+ M(oc*, y£ kh)(i + S + {A + 5J + &T)(||«J + IÎ ID),

where (uk, ̂  £s ?Ae solution of (2.1) a«J where Jk, 3i, 3$>T are defined by :

A= Sup ^K) |K||~\

& T = Sup

The proof follows immediatelly from (3.8) and the triangular inequality.

REMARK 3.1. — As in corollary 2.1, hypothesis H2* can be substituted, in
the applications, by the Z*-ellipticity5 i.e. there exists a positive constant
8£ such that

h)> 8*\\vh\\
2 V ^ € Z J .

REMARK 3.2. — In the applications the fact that Zh $ Z is sometimes a
difficulty. Then, it can happens that a choice of a « greater » Wh is needed, in
order to have Zh ç Z. This cannot, in gênerai, be obtained unless Wh $ W;
therefore it is of some interest to consider the case of an « external approxi-
mation » of W. We shall give, in the following, some idea of the gênerai case,
but we refer for more précise results, in a large class of examples, to the papers
by Raviart-Thomas [27] and Thomas [32] which contain the best treatment of
the question from a mathematical point of view. On the other hand, from a
numerical point of view, it is recommended to refer to the works by F. de
Veubeke and his associateds (cfr. e.g. [12], [13], [14], [28], [29]) who have
developed the theory of « strongly diffusive » éléments, which is the most
important case of application of the abstract situation described above.

We suppose then that another real Hilbert space, H9 is given, such that

(3.9) W ç H

with continuous injection. We suppose that W is dense in H and so we can
identify H' with a dense subspace of W'. Let now Vh be a closed subspace of V
and Wh a closed subspace of H, such that

(3.10) B(Vh) s H',

and that, for all vh in Vhy if

H'<*%?*> ff = 0 Vçfc€»Tfc,
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then :
w < Bvh, 9 > H = 0 V <p € W

We consider now the following approximation of problem (1.1).

' Find (wA, §h) in Vh x JFft such that :

fe i*) + < 2tefe fc > = < ƒ, *,„ > V tfc € FA,

Bûh, <ph > = <& 9h > V ç* € JFA,

where, of course, g is supposed to belong to H'. We always suppose that
hypothesis H2 is satisfied (*) and we substitute H1 with the following condition.

# 1 ) 7%ere exwte a positive constant Tch such that :

(3.12) Sup || tfcll - 1 < jftfc, 9h>>h || Ç J H V 9h € » ; .

Then by ^Tl? Jï2 and theorem 1.1 we get immediatelly that problem (3.11)
has a unique solution. In order to evaluate the distance between (M, ty) and
(ûh9 tyh) we define at first the space V in the following way :

(3.13) cU={v\veV, BveH'},

and we remark that Vh c HJ from (3.10), and also u € V , since g is supposed
in # ' and (w, <|0 is the solution of (1.1). We define then Âh : HJ X PT-> KA'x ^
b y :

(
for ail (i7, 9) in °U x PT and (Whi Xh) in FA X Wh.

Let now (üA, yh) be a pair in Vh x PFi,; from .ffl, 7?2 and the proposition 1.1
we get that there exists (wh, Xh) m VH X Wh such that :
(3.15) < Âh(ûh — vh9 ï>h — <ph), (w

On the other hand we have :

(3.16) < Ah{üh — vh, $h — 9A), (wh, Xh)> = < ÂA(« — vh9 ty — ^ ) , (wh,

(1) In this case, of course, we will use Zn — { vn \ vn e Vu, Bvn = 0 } £ Z; we remark
therefore that, if a(w, v) is Z-elliptic, then H2 is automatically satisfied.
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Observing now that

(3.17)

| < Ah(v, 9), K , x*) > | < « \\v\\ • IHI + P \\wh\\ • ||<p||fl + p |!r|| • HfclU,

where

(3.18) p = Sup IMT1 II 9IU1 < * ' * > »
*17-{0}

we get from (3.15), (3.16), (3.17), that :

f Inf | | t t -

+ Inf I ^ -

We can conclude with the following theorem.

Theorem3.2. — Under the hypotheses of corollary 1.1, if (3.9), (3.10)

Hl are satisfied, for every (f, g) in V' X W' we have that, if(u, ty) and (Uhy '
are the solutions 0/(1.1) and (3.11) respectivelly, then :

1 Inf \\u-vh\\

+ Inf | |^ — 9A |i

(3 isgiven 6y (3.18).
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